Cloud Modelling of Property-Level Flood Exposure in Megacities
Abstract
:1. Introduction
2. Methodology
2.1. Hydrodynamic Modelling with CityCAT
2.2. Cloud Computing
2.3. LiDAR Data
2.4. Estimating Flood Exposure to Buildings
2.5. Rainfall Data
3. Area of Interest and Modelling Setup
3.1. Case Study
3.2. CityCAT Setup
4. Results—Flood Risk in London
4.1. Modelled Flow Depth
4.2. Exposure and Flood Damages to Urban Features
4.3. Validation against Real Storm Event
4.4. Cloud Flood Modelling—The Greater Area of London
5. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Paola, F.; Ricciardelli, E.; Cimini, D.; Romano, F.; Viggiano, M.; Cuomo, V. Analysis of Catania flash flood case study by using combined microwave and infrared technique. J. Hydrometeorol. 2014, 15, 1989–1998. [Google Scholar] [CrossRef]
- Yang, L.; Smith, J.; Baeck, M.L.; Smith, B.; Tian, F.; Niyogi, D. Structure and evolution of flash flood producing storms in a small urban watershed. J. Geophys. Res. 2016, 121, 3139–3152. [Google Scholar] [CrossRef]
- Barredo, J.I.; Saurí, D.; Llasat, M.C. Assessing trends in insured losses from floods in Spain 1971–2008. Nat. Hazards Earth Syst. Sci. 2012, 12, 1723–1729. [Google Scholar] [CrossRef]
- IPCC. Synthesis Report Summary for Policymakers. An Assessment of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Guan, M.; Sillanpää, N.; Koivusalo, H. Modelling and assessment of hydrological changes in a developing urban catchment. Hydrol. Process. 2015, 29, 2880–2894. [Google Scholar] [CrossRef]
- Sillanpää, N.; Koivusalo, H. Measurements and data analysis of suburban development impacts on runoff event characteristics and unit hydrographs. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 27 April–2 May 2014; p. 9718. [Google Scholar]
- Falconer, R.H.; Cobby, D.; Smyth, P.; Astle, G.; Dent, J.; Golding, B. Pluvial flooding: New approaches in flood warning, mapping and risk management. J. Flood Risk Manag. 2009, 2, 198–208. [Google Scholar] [CrossRef]
- Djordjević, S.; Prodanović, D.; Maksimović, Č. An approach to simulation of dual drainage. Water Sci. Technol. 1999, 39, 95–103. [Google Scholar] [CrossRef]
- Simões, N.E.; Leitão, J.P.; Maksimović, Č.; Sá Marques, A.; Pina, R. Sensitivity analysis of surface runoff generation in urban flood forecasting. Water Sci. Technol. 2010, 61, 2595–2601. [Google Scholar] [CrossRef]
- Bates, P.D.; Horritt, M.S.; Fewtrell, T.J. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. J. Hydrol. 2010, 387, 33–45. [Google Scholar] [CrossRef]
- Glenis, V.; Kutija, V.; Kilsby, C.G. A fully hydrodynamic urban flood modelling system representing buildings, green space and interventions. Environ. Model. Softw. 2018, 109, 272–292. [Google Scholar] [CrossRef]
- Xia, X.; Liang, Q.; Ming, X. A full-scale fluvial flood modelling framework based on a high-performance integrated hydrodynamic modelling system (HiPIMS). Adv. Water Resour. 2019, 132, 103392. [Google Scholar] [CrossRef]
- Guo, K.; Guan, M.; Yu, D. Urban surface water flood modelling–A comprehensive review of current models and future challenges. Hydrol. Earth Syst. Sci. 2021, 25, 2843–2860. [Google Scholar] [CrossRef]
- Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.F.W.; Dutta, D.; Kim, S. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ. Model. Softw. 2017, 90, 201–216. [Google Scholar] [CrossRef]
- Bach, P.M.; Rauch, W.; Mikkelsen, P.S.; McCarthy, D.T.; Deletic, A. A critical review of integrated urban water modelling–Urban drainage and beyond. Environ. Model. Softw. 2014, 54, 88–107. [Google Scholar] [CrossRef]
- Mignot, E.; Li, X.; Dewals, B. Experimental modelling of urban flooding: A review. J. Hydrol. 2019, 568, 334–342. [Google Scholar] [CrossRef]
- Singh, A.; Dawson, D.; Trigg, M.; Wright, N. A review of modelling methodologies for flood source area (FSA) identification. Nat. Hazards 2021, 107, 1047–1068. [Google Scholar] [CrossRef]
- Karim, F.; Armin, M.A.; Ahmedt-Aristizabal, D.; Tychsen-Smith, L.; Petersson, L. A Review of Hydrodynamic and Machine Learning Approaches for Flood Inundation Modeling. Water 2023, 15, 566. [Google Scholar] [CrossRef]
- Glenis, V.; McGough, A.; Kutija, V.; Kilsby, C.; Woodman, S. Flood modelling for cities using Cloud computing. J. Cloud Comput. 2013, 2, 7. [Google Scholar] [CrossRef]
- Kutija, V.; Bertsch, R.; Glenis, V.; Alderson, D.; Parkin, G.; Walsh, C.; Robinson, J.; Kilsby, C. Model Validation Using Crowd-Sourced Data From A Large Pluvial Flood. In Proceedings of the International Conference on Hydroinformatics, New York, NY, USA, 17–21 August 2014; The City University of New York: New York, NY, USA, 2014. [Google Scholar]
- Bertsch, R.; Glenis, V.; Kilsby, C. Urban flood simulation using synthetic storm drain networks. Water 2017, 9, 925. [Google Scholar] [CrossRef]
- Jenkins, K.; Hall, J.; Glenis, V.; Kilsby, C. A Probabilistic Analysis of Surface Water Flood Risk in London. Risk Anal. 2018, 38, 1169–1182. [Google Scholar] [CrossRef]
- Vercruysse, K.; Dawson, D.A.; Glenis, V.; Bertsch, R.; Wright, N.; Kilsby, C. Developing spatial prioritization criteria for integrated urban flood management based on a source-to-impact flood analysis. J. Hydrol. 2019, 578, 124038. [Google Scholar] [CrossRef]
- Bertsch, R.; Glenis, V.; Kilsby, C. Building level flood exposure analysis using a hydrodynamic model. Environ. Model. Softw. 2022, 156, 105490. [Google Scholar] [CrossRef]
- Iliadis, C.; Glenis, V.; Kilsby, C. A cost-benefit ‘source-receptor’ framework for implementation of Blue-Green flood risk management. J. Hydrol. 2023. under review. [Google Scholar]
- Iliadis, C.; Glenis, V.; Kilsby, C. Representing buildings and urban features in hydrodynamic flood models. J. Flood Risk Manag. 2023, e12950. [Google Scholar] [CrossRef]
- Rosenzweig, B.R.; Herreros Cantis, P.; Kim, Y.; Cohn, A.; Grove, K.; Brock, J.; Yesuf, J.; Mistry, P.; Welty, C.; McPhearson, T.; et al. The Value of Urban Flood Modeling. Earth’s Future 2021, 9, e2020EF001739. [Google Scholar] [CrossRef]
- Iliadis, C.; Galiatsatou, P.; Glenis, V.; Prinos, P.; Kilsby, C. Urban Flood Modelling under Extreme Rainfall Conditions for Building-Level Flood Exposure Analysis. Hydrology 2023, 10, 172. [Google Scholar] [CrossRef]
- Hunter, N.M.; Bates, P.D.; Neelz, S.; Pender, G.; Villanueva, I.; Wright, N.G.; Liang, D.; Falconer, R.A.; Lin, B.; Waller, S.; et al. Benchmarking 2D hydraulic models for urban flooding. Proc. ICE-Water Manag. 2008, 161, 13–30. [Google Scholar] [CrossRef]
- Syme, W.J. Flooding in Urban Areas–2D Modelling Approaches for Buildings and Fences. In Proceedings of the 9th National Conference on Hydraulics in Water Engineering Darwin Convention Centre, Darwin, Australia, 23–26 September 2008; Engineers Australia: Barton, Australia, 2008; p. 135. [Google Scholar]
- Neal, J.C.; Bates, P.D.; Fewtrell, T.J.; Hunter, N.M.; Wilson, M.D.; Horritt, M.S. Distributed whole city water level measurements from the Carlisle 2005 urban flood event and comparison with hydraulic model simulations. J. Hydrol. 2009, 368, 42–55. [Google Scholar] [CrossRef]
- Chen, A.S.; Djordjevic, S.; Fowler, H.J.; Burton, A.; Walsh, C.; Harvey, H.; Wood, G. Pluvial flood modelling of the South East London resilience zone in the community resilience to extreme weather (CREW) Project. In Proceedings of the Flood and Coastal Risk Management Conference, Telford, UK.
- Fewtrell, T.J.; Duncan, A.; Sampson, C.C.; Neal, J.C.; Bates, P.D. Benchmarking urban flood models of varying complexity and scale using high resolution terrestrial LiDAR data. Phys. Chem. Earth 2011, 36, 281–291. [Google Scholar] [CrossRef]
- Fewtrell, T.J.; Bates, P.D.; Horritt, M.; Hunter, N.M. Evaluating the effect of scale in flood inundation modelling in urban environments. Hydrol. Process. 2008, 22, 5107–5118. [Google Scholar] [CrossRef]
- Paquier, A.; Mignot, E.; Bazin, P.-H. From Hydraulic Modelling to Urban Flood Risk. Procedia Eng. 2015, 115, 37–44. [Google Scholar] [CrossRef]
- Bisht, D.; Chatterjee, C.; Kalakoti, S.; Upadhyay, P.; Sahoo, M.; Panda, A. Modeling urban floods and drainage using SWMM and MIKE URBAN: A case study. Nat. Hazards 2016, 84, 749–776. [Google Scholar] [CrossRef]
- Huang, H.; Liao, W.; Lei, X.; Wang, C.; Cai, Z.; Wang, H. An urban DEM reconstruction method based on multisource data fusion for urban pluvial flooding simulation. J. Hydrol. 2022, 617, 128825. [Google Scholar] [CrossRef]
- Xu, T.; Xie, Z.; Jiang, F.; Yang, S.; Deng, Z.; Zhao, L.; Wen, G.; Du, Q. Urban flooding resilience evaluation with coupled rainfall and flooding models: A small area in Kunming City, China as an example. Water Sci. Technol. 2023, 87, 2820–2839. [Google Scholar] [CrossRef] [PubMed]
- Bellos, V.; Tsakiris, G. A hybrid method for flood simulation in small catchments combining hydrodynamic and hydrological techniques. J. Hydrol. 2016, 540, 331–339. [Google Scholar] [CrossRef]
- Lamb, R.; Keef, C.; Tawn, J.; Laeger, S.; Meadowcroft, I.; Surendran, S.; Dunning, P.; Batstone, C. A new method to assess the risk of local and widespread flooding on rivers and coasts. J. Flood Risk Manag. 2010, 3, 323–336. [Google Scholar] [CrossRef]
- Papaioannou, G.; Vasiliades, L.; Loukas, A.; Alamanos, A.; Efstratiadis, A.; Koukouvinos, A.; Tsoukalas, I.; Kossieris, P. A Flood Inundation Modeling Approach for Urban and Rural Areas in Lake and Large-Scale River Basins. Water 2021, 13, 1264. [Google Scholar] [CrossRef]
- Ngo, H.; Ranasinghe, R.; Zevenbergen, C.; Kirezci, E.; Maheng, D.; Radhakrishnan, M.; Pathirana, A. An Efficient Modeling Approach for Probabilistic Assessments of Present-Day and Future Fluvial Flooding. Front. Clim. 2022, 4, 798618. [Google Scholar] [CrossRef]
- Guerreiro, S.; Glenis, V.; Dawson, R.; Kilsby, C. Pluvial Flooding in European Cities-A Continental Approach to Urban Flood Modelling. Water 2017, 9, 296. [Google Scholar] [CrossRef]
- Hu, H.; Yang, H.; Wen, J.; Zhang, M.; Wu, Y. An Integrated Model of Pluvial Flood Risk and Adaptation Measure Evaluation in Shanghai City. Water 2023, 15, 602. [Google Scholar] [CrossRef]
- McClean, F.; Dawson, R.; Kilsby, C. Implications of Using Global Digital Elevation Models for Flood Risk Analysis in Cities. Water Resour. Res. 2020, 56, e2020WR028241. [Google Scholar] [CrossRef]
- Xafoulis, N.; Kontos, Y.; Farsirotou, E.; Kotsopoulos, S.; Perifanos, K.; Alamanis, N.; Dedousis, D.; Katsifarakis, K. Evaluation of Various Resolution DEMs in Flood Risk Assessment and Practical Rules for Flood Mapping in Data-Scarce Geospatial Areas: A Case Study in Thessaly, Greece. Hydrology 2023, 10, 91. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, A.S.; Fu, G.; Djordjević, S.; Zhang, C.; Savić, D.A. An integrated framework for high-resolution urban flood modelling considering multiple information sources and urban features. Environ. Model. Softw. 2018, 107, 85–95. [Google Scholar] [CrossRef]
- Jamali, B.; Löwe, R.; Bach, P.M.; Urich, C.; Arnbjerg-Nielsen, K.; Deletic, A. A rapid urban flood inundation and damage assessment model. J. Hydrol. 2018, 564, 1085–1098. [Google Scholar] [CrossRef]
- Escobar-Silva, E.V.; Almeida, C.M.d.; Silva, G.B.L.d.; Bursteinas, I.; Rocha Filho, K.L.d.; de Oliveira, C.G.; Fagundes, M.R.; Paiva, R.C.D.d. Assessing the Extent of Flood-Prone Areas in a South-American Megacity Using Different High Resolution DTMs. Water 2023, 15, 1127. [Google Scholar] [CrossRef]
- Tan, W.-Y. Shallow Water Hydrodynamics: Mathematical Theory and Numerical Solution for a Two-Dimensional System of Shallow-Water Equations; Elsevier: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Toro, E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- McKenna, J.; Glenis, V.; Kilsby, C. A new riemann solver for modelling bridges in flood flows–Development and experimental validation. Appl. Math. Comput. 2023, 447, 127870. [Google Scholar] [CrossRef]
- Kilsby, C.; Glenis, V.; Bertsch, R. Coupled surface/sub-surface modelling to investigate the potential for blue-green infrastructure to deliver urban flood risk reduction benefits. In Blue-Green Cities: Integrating Urban Flood Risk Management with Green Infrastructure; Thorne, C., Ed.; ICE Publishing: London, UK, 2020; pp. 37–50. [Google Scholar]
- Teng, J.; Vaze, J.; Kim, S.; Dutta, D.; Jakeman, A.J.; Croke, B.F.W. Enhancing the Capability of a Simple, Computationally Efficient, Conceptual Flood Inundation Model in Hydrologically Complex Terrain. Water Resour. Manag. 2019, 33, 831–845. [Google Scholar] [CrossRef]
- Thrysøe, C.; Balstrøm, T.; Borup, M.; Löwe, R.; Jamali, B.; Arnbjerg-Nielsen, K. FloodStroem: A fast dynamic GIS-based urban flood and damage model. J. Hydrol. 2021, 600, 126521. [Google Scholar] [CrossRef]
- Cea, L.; Costabile, P. Flood Risk in Urban Areas: Modelling, Management and Adaptation to Climate Change. A Review. Hydrology 2022, 9, 50. [Google Scholar] [CrossRef]
- Liu, R.; Wei, J.; Ren, Y.; Liu, Q.; Wang, G.; Shao, S.; Tang, S. HydroMP–A computing platform for hydrodynamic simulation based on cloud computing. J. Hydroinform. 2017, 19, 953–972. [Google Scholar] [CrossRef]
- Bentivoglio, R.; Isufi, E.; Jonkman, S.N.; Taormina, R. Deep learning methods for flood mapping: A review of existing applications and future research directions. Hydrol. Earth Syst. Sci. 2022, 26, 4345–4378. [Google Scholar] [CrossRef]
- Alonso, J.; Orue-Echevarria, L.; Casola, V.; Torre, A.I.; Huarte, M.; Osaba, E.; Lobo, J.L. Understanding the challenges and novel architectural models of multi-cloud native applications—A systematic literature review. J. Cloud Comput. 2023, 12, 6. [Google Scholar] [CrossRef]
- Vesuviano, G. The FEH22 Rainfall Depth Duration-Frequency (DDF) Model; UK Centre for Ecology and Hydrology: Bangor, UK, 2022. [Google Scholar]
- UK Centre for Ecology & Hydrology. Environmental Science for a World Where People and Nature Prosper. Available online: https://www.ceh.ac.uk/ (accessed on 25 April 2023).
- Kjeldsen, T.R. The revitalised FSR/FEH rainfall-runoff method. In Flood Estimation Handbook–Supplementary Report No. 1; Centre for Ecology & Hydrology: Crowmarsh Gifford, UK, 2007. [Google Scholar]
- Great London Authority. Surface Water Flooding in London–Roundtable Progress Report; London Lea Catchment; Greater London Authority: London, UK, 2022.
- LONDON ASSEMBLY. Oxford St–The Busiest Feet Street in the World? Available online: https://www.london.gov.uk/press-releases/assembly/oxford-st-the-busiest-feet-street-in-the-world (accessed on 24 April 2023).
- Ordnance Survey. OS MasterMap Topografy. 2020. Available online: https://www.ordnancesurvey.co.uk/products/os-mastermap-topography-layer#:~:text=With%20OS%20MasterMap%20Topography%20Layer%2C%20each%20feature%20is,routes%20and%20imagery%20provided%20by%20the%20other%20layers. (accessed on 20 March 2020).
- Warrick, A.W. Soil Water Dynamics; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Priest, S.; Viavattene, C.; Penning-Rowsell, E.; Steinhausen, M.; Dennis, P.; Joyce, J.; Morris, J.; Chatterton, J. Flood and Coastal Erosion Risk Management; Taylor and Francis: London, UK, 2022. [Google Scholar]
- Loftis, J.D.; Wang, H.; Forrest, D.; Rhee, S.; Nguyen, C. Emerging flood model validation frameworks for street-level inundation modeling with StormSense. In Proceedings of the 2nd International Workshop on Science of Smart City Operations and Platforms Engineering, Pittsburgh, PA, USA, 18–21 April 2017; pp. 13–18. [Google Scholar]
- See, L. A review of citizen science and crowdsourcing in applications of pluvial flooding. Front. Earth Sci. 2019, 7, 44. [Google Scholar] [CrossRef]
- Microsoft. Windows Azure Platform, Microsoft Cloud Services. Available online: http://www.microsoft.com/windowsazure/ (accessed on 7 April 2022).
- Singh, A.; Dawson, D.; Trigg, M.A.; Wright, N.; Seymour, C.; Ferriday, L. Drainage representation in flood models: Application and analysis of capacity assessment framework. J. Hydrol. 2023, 622, 129718. [Google Scholar] [CrossRef]
- Chaudhary, P.; D’Aronco, S.; Moy de Vitry, M.; Leitão, J.P.; Wegner, J.D. Flood-water level estimation from social media images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 4, 5–12. [Google Scholar] [CrossRef]
Number of Cells in a Computational Grid | Required RAM in GB (Approximate) |
---|---|
500,000 | 16 |
1,500,000 | 20 |
10,000,000 | 40 |
15,000,000 | 60 |
50,000,000 | 200 |
Exposure Class | Mean Depth (m) | 90th Percentile (m) |
---|---|---|
Low | <0.10 | <0.30 |
Medium | <0.10 | ≥0.30 |
≥0.10–<0.30 | <0.30 | |
High | ≥0.10 | ≥0.30 |
Return Period | Rainfall (mm) |
---|---|
2 | 11.7 |
5 | 20.4 |
10 | 26.7 |
20 | 32.9 |
50 | 41.5 |
100 | 48.4 |
Number of Cells in Computational Grids | Cell Size | Required RAM (GB) | Simulation Time per Storm Scenario (min) |
---|---|---|---|
255,786 | 10 m | ≈16 | 10 |
1,007,735 | 5 m | ≈20 | 30 |
6,299,585 | 2 m | ≈40 | 300 |
25,199,282 | 1 m | ≈122 | 1200 |
Number of Buildings (Total 3430) | Percentage of Total | |
---|---|---|
High flood risk—1 m model | 695 | 20.3% |
High flood risk—10 m model | 363 | 10.6% |
No change from 1 m and 10 m models | 2029 | 59.2% |
Change: zero/low/medium to high | 575 | 16.8% |
Change: high to zero/low/medium | 826 | 24.1% |
Net change: high to zero/low/medium | 251 | 7.3% |
A/A | Flood Points | Dops | Dmin | Dmax | Model Depth in m |
---|---|---|---|---|---|
1 | Horse Guards Road | 0.07 | 0.034 | 0.49 | 0.10 |
2 | Leicester Square | 0.01 | 0.002 | 0.16 | 0.02 |
3 | Piccadilly Circus | 0.10 | 0.002 | 0.22 | 0.13 |
4 | Ladbrook Grove | 0.60 | 0.001 | 0.82 | 0.82 |
5 | Maida Vale | 0.65 | 0.001 | 0.75 | 0.75 |
6 | Portobello Road | 0.38 | 0.110 | 0.46 | 0.46 |
7 | Dorset Square | 0.25 | 0.133 | 0.34 | 0.34 |
8 | Maida Vale | 0.07 | 0.116 | 0.27 | 0.08 |
9 | TFC Camberwell | 0.23 | 0.204 | 0.42 | 0.29 |
10 | Hackney Wick DLR Station | 0.22 | 0.400 | 0.61 | 0.25 |
11 | New Covent Garden Market | 0.30 | 0.002 | 0.34 | 0.34 |
12 | Brookfield Rd | 0.35 | 0.510 | 0.99 | 0.40 |
13 | Lea Bridge Road | 0.90 | 0.002 | 0.96 | 0.96 |
14 | Idea Store Whitechapel | 0.22 | 0.002 | 0.84 | 0.25 |
RP | Medium | High | Total |
---|---|---|---|
2 | 5159 | 5447 | 10,606 |
5 | 13,458 | 15,274 | 28,732 |
10 | 37,553 | 48,948 | 86,501 |
20 | 50,414 | 68,337 | 118,751 |
50 | 63,189 | 89,885 | 153,074 |
100 | 105,381 | 163,516 | 268,897 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iliadis, C.; Glenis, V.; Kilsby, C. Cloud Modelling of Property-Level Flood Exposure in Megacities. Water 2023, 15, 3395. https://doi.org/10.3390/w15193395
Iliadis C, Glenis V, Kilsby C. Cloud Modelling of Property-Level Flood Exposure in Megacities. Water. 2023; 15(19):3395. https://doi.org/10.3390/w15193395
Chicago/Turabian StyleIliadis, Christos, Vassilis Glenis, and Chris Kilsby. 2023. "Cloud Modelling of Property-Level Flood Exposure in Megacities" Water 15, no. 19: 3395. https://doi.org/10.3390/w15193395
APA StyleIliadis, C., Glenis, V., & Kilsby, C. (2023). Cloud Modelling of Property-Level Flood Exposure in Megacities. Water, 15(19), 3395. https://doi.org/10.3390/w15193395