Sustainable Water Treatment with Induced Bank Filtration
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Water Testing Methods
2.3. IBF Construction and Testing
3. Results
Full-Scale IBF System
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bandyopadhyay, S. Sustainable Access to Treated Drinking Water in Rural India. In Rural Water Systems for Multiple Uses and Livelihood Security—Chapter 9; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 203–227. [Google Scholar] [CrossRef]
- Naik, P.K.; Awasthi, A.K.; Anand, A.V.S.S.; Behera, P.N. Hydrogeochemistry of the Koyna River basin, India. Environ. Earth Sci. 2009, 59, 613–629. [Google Scholar] [CrossRef]
- Thomas, B.; Vinka, C.; Pawan, L.; David, S. Sustainable groundwater treatment technologies for underserved rural communities in emerging economies. Sci. Total. Environ. 2021, 813, 152633. [Google Scholar] [CrossRef] [PubMed]
- Boving, T.B.; Patil, K. Riverbank Filtration Technology at the Nexus of Water-Energy-Food. In Water-Energy-Food Nexus; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 207–219. [Google Scholar] [CrossRef]
- Schubert, J. Hydraulic aspects of riverbank filtration—Field studies. J. Hydrol. 2002, 266, 145–161. [Google Scholar] [CrossRef]
- Gutiérrez, J.; Halem, D.; Rietveld, L. Riverbank filtration for the treatment of highly turbid Colombian rivers. Drink. Water Eng. Sci. 2017, 10, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Tufenkji, N.; Miller, G.F.; Ryan, J.N.; Harvey, R.W.; Elimelech, M. Transport of Cryptosporidium Oocysts in Porous Media: Role of Straining and Physicochemical Filtration. Environ. Sci. Technol. 2004, 38, 5932–5938. [Google Scholar] [CrossRef]
- Visscher, J.T. Slow Sand Filtration: Design, Operation, and Maintenance. J. AWWA 1990, 82, 67–71. [Google Scholar] [CrossRef]
- Ahmed, A.K.A.; Marhaba, T.F. Review on river bank filtration as an in situ water treatment process. Clean Technol. Environ. Policy 2017, 19, 349–359. [Google Scholar] [CrossRef]
- Gupta, V.; Johnson, W.P.; Shafieian, P.; Ryu, H.; Alum, A.; Abbaszadegan, M.; Hubbs, S.A.; Rauch-Williams, T. Riverbank Filtration: Comparison of Pilot Scale Transport with Theory. Environ. Sci. Technol. 2009, 43, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Unger, M.C. The Role of the Schmutzdecke in Escherichia coli Removal in Slow Sand and Riverbank Filtration. Master’s Thesis, University of New Hampshire, Durham, NH, USA, 2006; p. 251. Available online: https://scholars.unh.edu/thesis/251 (accessed on 1 January 2020).
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.-H. Emerging trends in global freshwater availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef]
- Huisman, L.; Wood, W.E. Slow Sand Filtration; World Health Organization: Geneva, Switzerland, 1974. [Google Scholar]
- Howe, K.J.; Hand, D.W.; Crittenden, J.C.; Trussell, R.R. Principles of Water Treatment; Wiley: Hoboken, NJ, USA, 2012; 672p. [Google Scholar]
- Ranjan, P.; Prem, M. Schmutzdecke- A Filtration Layer of Slow Sand Filter. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 637–645. [Google Scholar] [CrossRef]
- Elliott, M.A.; Stauber, C.E.; Koksal, F.; DiGiano, F.A.; Sobsey, M.D. Reductions of E. coli, echovirus type 12 and bacteriophages in an intermittently operated household-scale slow sand filter. Water Res. 2008, 42, 2662–2670. [Google Scholar] [CrossRef] [PubMed]
- Lynn, T.J.; Wanjugi, P.; Harwood, V.J.; Ergas, S.J. Dynamic performance of biosand filters. J. AWWA 2013, 105, E587–E595. [Google Scholar] [CrossRef]
- Bouwer, E.J.; Rijnaarts, H.H.M.; Cunningham, A.B.; Gerlach, R. Biofilms in porous media. In Biofilms II: Process Analysis and Applications; Bryers, J., Ed.; Wiley-Liss, Inc.: Hoboken, NJ, USA, 2000; pp. 123–158. ISBN 0-471-29656-2. [Google Scholar]
- Cullen, T.R.; Letterman, R.D. The Effect of Slow Sand Filter Maintenance on Water Quality. J. AWWA 1985, 77, 48–55. [Google Scholar] [CrossRef]
- Marrón, C. Sand-Filtration Water Treatment Plants. Design, operation and maintenance. In Practical Action; The Schumacher Centre for Technology and Development, Bourton on Dunsmore: Rugby, UK, 1999; 35p, Available online: www.practicalaction.org (accessed on 1 January 2020).
- Kubare, M.; Haarhoff, J. Rational design of domestic biosand filters. J. Water Supply Res. Technol. AQUA 2010, 59, 1–15. [Google Scholar] [CrossRef]
- Basit, S.E.; Brown, D. Slow sand filter for the Blue Nile Health Project. Waterlines 1986, 5, 29–31. [Google Scholar] [CrossRef]
- IS 10500:2012; Indian Standard Drinking Water Specifications (2nd Revision). BIS—Bureau of Indian Standards: New Delhi, India, 2012.
- McGuinness, S.L.; O’Toole, J.; Barker, S.F.; Forbes, A.B.; Boving, T.B.; Giriyan, A.; Patil, K.; D’Souza, F.; Cheng, A.C.; Leder, K. Household Water Storage Management, Hygiene Practices, and Associated Drinking Water Quality in Rural India. Environ. Sci. Technol. 2020, 54, 4963–4973. [Google Scholar] [CrossRef] [PubMed]
- CGWB—Central Ground Water Boar. Annual Reports. Ministry of Jal Shakti, Department of Water Resources, River Development and Ganga Rejuvenation. Government of India. 2007. Available online: http://cgwb.gov.in/Ann-Reports.html (accessed on 1 January 2020).
- NOAA National Climatic Data Center. Available online: https://www.ncei.noaa.gov/cdo-web/ (accessed on 1 January 2020).
- Naik, P.K. On harnessing the springs in the Western Ghats, Maharashtra. Bhujal News. Q. J. Cent. Ground Water Board 1993, 8, 13–18. [Google Scholar]
- Das, A.; Krishnaswami, S.; Sarin, M.M.; Pande, K. Chemical weathering in the Krishna Basin and Western Ghats of the Deccan Traps, India: Rates of basalt weathering and their controls. Geochim. Cosmochim. Acta 2005, 69, 2067–2084. [Google Scholar] [CrossRef]
- EPA Region 4 (Science and Ecosystem Support Division). Approval of Colilert-18 for the Detection and Enumeration of Fecal Coliforms in Wastewater Samples; EPA (United States Environmental Protection Agency): Washington, DC, USA, 2010.
- Analytical Methods Approved for Compliance Monitoring under the Long Term 2 Enhanced Surface Water Treatment Rule. EPA 821-F-17-001; EPA (United States Environmental Protection Agency): Washington, DC, USA, 2017.
- Schelling, M.; Boving, T.B.; Patil, K. Induced Bank Filtration: Hydraulic Testing of Pilot Filters. IOP Conf. Ser. Earth Environ. Sci. 2021, 933, 012043. [Google Scholar] [CrossRef]
- Cleary, S.A. Sustainable Drinking Water Treatment for Small Communities Using Multistage Slow Sand Filtration. University of Waterloo. 2005. Available online: https://uwspace.uwaterloo.ca/handle/10012/926 (accessed on 1 January 2020).
- Boving, T.B.; Patil, K.; D’Souza, F.; Barker, S.F.; McGuinness, S.L.; O’Toole, J.; Sinclair, M.; Forbes, A.B.; Leder, K. Performance of Riverbank Filtration under Hydrogeologic Conditions along the Upper Krishna River in Southern India. Water 2018, 11, 12. [Google Scholar] [CrossRef] [Green Version]
- Laluraj, C.M.; Gopinath, G. Assessment on Seasonal Variation of Groundwater Quality of Phreatic Aquifers—A River Basin System. Environ. Monit. Assess. 2006, 117, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Javed, F.; Ahmed, M.N.; Shah, H.U.; Iqbal, M.S.; Wahid, A.; Ahmad, S.S. Effects of seasonal variations on physicochemical properties and concentrations of faecal coliform in river Kabul. World Appl. Sci. J. 2014, 29, 142–149. [Google Scholar] [CrossRef]
- Vincy, M.V.; Brilliant, R.; Pradeepkumar, A.P. Prevalence of indicator and pathogenic bacteria in a tropical river of Western Ghats, India. Appl. Water Sci. 2017, 7, 833–844. [Google Scholar] [CrossRef] [Green Version]
- Laghari, A.N.; Walasai, G.D.; Jatoi, A.R.; Shaikh, F.A.; Siyal, Z.A. Performance Analysis of Water Filtration Units for Reduction of pH, Turbidity, Solids and Electricity Conductivity. Eng. Technol. Appl. Sci. Res. 2018, 8, 3209–3212. [Google Scholar] [CrossRef]
Cost Category | # Items | Cost Per Item | Total Cost (USD) |
---|---|---|---|
1000 L plastic tank (pre-filter) | 1 | 60 | 60 |
PVC pipe | 90 | 5 | 450 |
Valves | 70 | 2 | 140 |
Purchased sand/gravel filter material | 1 truck load | 350 | 350 |
Concrete | 150 bags | 5 | 750 |
Steel rebar (6 mm and 10 mm) | 250 | 1 | 250 |
Rental of construction machinery | 2 days | 150 | 300 |
Other construction material | NA | NA | 200 |
Labor | 350 days | 6 | 2100 |
Total | 4600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schelling, M.; Patil, K.; Boving, T.B. Sustainable Water Treatment with Induced Bank Filtration. Water 2023, 15, 361. https://doi.org/10.3390/w15020361
Schelling M, Patil K, Boving TB. Sustainable Water Treatment with Induced Bank Filtration. Water. 2023; 15(2):361. https://doi.org/10.3390/w15020361
Chicago/Turabian StyleSchelling, Miles, Kavita Patil, and Thomas B. Boving. 2023. "Sustainable Water Treatment with Induced Bank Filtration" Water 15, no. 2: 361. https://doi.org/10.3390/w15020361
APA StyleSchelling, M., Patil, K., & Boving, T. B. (2023). Sustainable Water Treatment with Induced Bank Filtration. Water, 15(2), 361. https://doi.org/10.3390/w15020361