Impact of Natural Microorganisms on the Removal of COD and the Cells Activity of the Chlorella sp. in Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms and Culture Conditions
2.2. Cyclic Culture of Chlorella sp.
2.3. Wastewater Treatment
2.4. Analytical Methods
2.4.1. Microorganisms Growth
2.4.2. COD Concentration
2.4.3. Impact of Chlorella sp. Concentrations on the COD Removal Rate
2.4.4. Impact of Extraction Concentrations on Chlorella sp. Proliferation Multiples
3. Results and Discussion
3.1. Chlorella sp. Culture
3.2. Wastewater Treatment by Chlorella sp.
3.3. Cell Activity and Proliferative Capacity of Chlorella sp.
3.4. Effects of Natural Microorganisms
3.5. Improvement of COD Removal with Natural Microorganisms
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mo, W.Y.; Man, Y.B.; Wong, M.H. Use of food waste, fish waste and food processing waste for China’s aquaculture industry: Needs and challenge. Sci. Total Environ. 2018, 613–614, 635–643. [Google Scholar] [CrossRef]
- Wang, H.H. The perspective of meat and meat-alternative consumption in China. Meat Sci. 2022, 194, 108982. [Google Scholar] [CrossRef] [PubMed]
- Samoraj, M.; Mironiuk, M.; Izydorczyk, G.; Witek-Krowiak, A.; Szopa, D.; Moustakas, K.; Chojnacka, K. The challenges and perspectives for anaerobic digestion of animal waste and fertilizer application of the digestate. Chemosphere 2022, 295, 133799. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Jia, M.; Zeng, Y.Q.; Li, W.; He, J.; Ren, J.; Bai, J.; Zhang, L.; Li, J.; Yang, S. Enhanced treatment of organic matter in slaughter wastewater through live Bacillus velezensis strain using nano zinc oxide microsphere. Environ. Pollut. 2022, 292, 118306. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Li, F.; Du, M.; Wang, Y.; Sun, Z. Measuring pollutant emissions of cattle breeding and its spatial-temporal variation in China. J. Environ. Manag. 2021, 299, 113615. [Google Scholar] [CrossRef]
- Hamza, R.A.; Sheng, Z.; Iorhemen, O.T.; Zaghloul, M.S.; Tay, J.H. Impact of food-to-microorganisms ratio on the stability of aerobic granular sludge treating high-strength organic wastewater. Water Res. 2018, 147, 287–298. [Google Scholar] [CrossRef]
- Ren, Q.; Chen, X.; Yumminaga, Y.; Wang, N.; Yan, W.; Li, Y.; Liu, L.; Shi, J. Effect of operating conditions on the performance of multichannel ceramic ultrafiltration membranes for cattle wastewater treatment. J. Water Process Eng. 2021, 41, 102102. [Google Scholar] [CrossRef]
- Wang, D.; Li, T.; Yan, C.; Zhou, Y.; Zhou, L. A novel bio-flocculation combined with electrodialysis process: Efficient removal of pollutants and sustainable resource recovery from swine wastewater. Sep. Purif. Technol. 2023, 304, 122330. [Google Scholar] [CrossRef]
- Mook, W.T.; Chakrabarti, M.H.; Aroua, M.K.; Khan, G.M.A.; Ali, B.S.; Islam, M.S.; Abu Hassan, M.A. Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review. Desalination 2012, 285, 1–13. [Google Scholar] [CrossRef]
- Gorito, A.M.; Lado Ribeiro, A.R.; Pereira, M.F.R.; Almeida, C.M.R.; Silva, A.M.T. Advanced oxidation technologies and constructed wetlands in aquaculture farms: What do we know so far about micropollutant removal? Environ. Res. 2022, 204, 111955. [Google Scholar] [CrossRef]
- Tang, H.; Ma, Z.; Qin, Y.; Wu, H.; Xu, X.; Xin, L.; Wu, W. Pilot-scale study of step-feed anaerobic coupled four-stage micro-oxygen gradient aeration process for treating digested swine wastewater with low carbon/nitrogen ratios. Bioresour. Technol. 2023, 380, 129087. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Huang, X.; Lei, C.; Zhang, T.C.; Wu, W. Effect of organic matter strength on anammox for modified greenhouse turtle breeding wastewater treatment. Bioresour. Technol. 2013, 148, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, Q.; Zhu, Y.; Zhao, T. Response of wastewater treatment performance, microbial composition and functional genes to different C/N ratios and carrier types in MBBR inoculated with heterotrophic nitrification-aerobic denitrification bacteria. Bioresour. Technol. 2021, 336, 125339. [Google Scholar] [CrossRef] [PubMed]
- Sanjaya, E.H.; Chen, Y.; Guo, Y.; Wu, J.; Chen, H.; Din, M.F.M.; Li, Y.Y. The performance of simultaneous partial nitritation, anammox, denitrification, and COD oxidation (SNADCO) method in the treatment of digested effluent of fish processing wastewater. Bioresour. Technol. 2022, 346, 126622. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Li, L.; Wang, Y.; Qiu, K.; Chen, S.; Zeng, J.; Liu, R.; Yang, Q.; Huang, W. Differential physiological response of marine and freshwater microalgae to polystyrene microplastics. J. Hazard. Mater. 2023, 448, 130814. [Google Scholar] [CrossRef]
- Couto, D.; Conde, T.A.; Melo, T.; Neves, B.; Costa, M.; Silva, J.; Domingues, R.; Domingues, P. The chemodiversity of polar lipidomes of microalgae from different taxa. Algal Res. 2023, 70, 103006. [Google Scholar] [CrossRef]
- Chen, C.Y.; Kuo, E.W.; Nagarajan, D.; Dong, C.D.; Lee, D.J.; Varjani, S.; Lam, S.S.; Chang, J.S. Semi-batch cultivation of Chlorella sorokiniana AK-1 with dual carriers for the effective treatment of full strength piggery wastewater treatment. Bioresour. Technol. 2021, 326, 124773. [Google Scholar] [CrossRef]
- Sirohi, R.; Joun, J.; Lee, J.Y.; Yu, B.S.; Sim, S.J. Waste mitigation and resource recovery from food industry wastewater employing microalgae-bacterial consortium. Bioresour. Technol. 2022, 352, 127129. [Google Scholar] [CrossRef]
- Kumar, N.; Banerjee, C.; Chang, J.-S.; Shukla, P. Valorization of wastewater through microalgae as a prospect for generation of biofuel and high-value products. J. Clean. Prod. 2022, 362, 132114. [Google Scholar] [CrossRef]
- Song, Y.; Wang, L.; Qiang, X.; Gu, W.; Ma, Z.; Wang, G. The promising way to treat wastewater by microalgae: Approaches, mechanisms, applications and challenges. J. Water Process Eng. 2022, 49, 103012. [Google Scholar] [CrossRef]
- Zhou, J.L.; Yang, L.; Huang, K.X.; Chen, D.Z.; Gao, F. Mechanisms and application of microalgae on removing emerging contaminants from wastewater: A review. Bioresour. Technol. 2022, 364, 128049. [Google Scholar] [CrossRef]
- Huang, W.; Liu, D.; Huang, W.; Cai, W.; Zhang, Z.; Lei, Z. Achieving partial nitrification and high lipid production in an algal-bacterial granule system when treating low COD/NH4-N wastewater. Chemosphere 2020, 248, 126106. [Google Scholar] [CrossRef]
- Hu, X.; Meneses, Y.E.; Aly Hassan, A. Integration of sodium hypochlorite pretreatment with co-immobilized microalgae/bacteria treatment of meat processing wastewater. Bioresour. Technol. 2020, 304, 122953. [Google Scholar] [CrossRef] [PubMed]
- Sniffen, K.D.; Price, J.R.; Sales, C.M.; Olson, M.S. Influence of Scale on Biomass Growth and Nutrient Removal in an Algal-Bacterial Leachate Treatment System. Environ. Sci. Technol. 2017, 51, 13344–13352. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yin, C.; Yang, Z.; Hu, X.; Liu, Z.; Song, W. Assessing the potential of Chlorella sp. for treatment and resource utilization of brewery wastewater coupled with bioproduct production. J. Clean. Prod. 2022, 367, 132939. [Google Scholar] [CrossRef]
- Castaing, J.B.; Massé, A.; Séchet, V.; Sabiri, N.E.; Pontié, M.; Haure, J.; Jaouen, P. Immersed hollow fibres microfiltration (MF) for removing undesirable micro-algae and protecting semi-closed aquaculture basins. Desalination 2011, 276, 386–396. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, R.; Xia, W.; Kong, Y.; Nie, Y.; Zhou, Y.; Zhang, C. Coagulation performance of Al/Fe based covalently bonded composite coagulants for algae removal. Sep. Purif. Technol. 2022, 285, 120401. [Google Scholar] [CrossRef]
- Chen, X.; Lin, Y.; Li, W.; Zhang, G.; Wang, Y.; Ma, J.; Meng, Z.; Wu, S.; Wang, S.; Zhang, X.; et al. Amidoximated CeMOFs superstructures with algae-removing properties for efficient uranium extraction from simulated seawater. Sustain. Mater. Technol. 2022, 34, e00521. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, J.; Sun, W.; Chen, W.; Liu, B.; Jin, L.; Li, J.; Li, J.; Tian, L.; Wang, X. Efficiency and mechanism of ozonated microbubbles for enhancing the removal of algae and algae-derived organic matter. Chemosphere 2023, 312, 137220. [Google Scholar] [CrossRef]
- Fu, M.; Cao, S.; Li, J.; Zhao, S.; Liu, J.; Zhuang, M.; Qin, Y.; Gao, S.; Sun, Y.; Kim, J.K.; et al. Controlling the main source of green tides in the Yellow Sea through the method of biological competition. Mar. Pollut. Bull. 2022, 177, 113561. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Yuan, H.; Liu, J.; Sun, Y.; Tong, Y.; Zhao, S.; Xia, J.; Li, S.; Hu, M.; Cao, J.; et al. A review of physical, chemical, and biological green tide prevention methods in the Southern Yellow Sea. Mar. Pollut. Bull. 2022, 180, 113772. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Kuo, E.W.; Nagarajan, D.; Ho, S.H.; Dong, C.D.; Lee, D.J.; Chang, J.S. Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Bioresour. Technol. 2020, 302, 122814. [Google Scholar] [CrossRef]
- Kobayashi, N.; Barnes, A.; Jensen, T.; Noel, E.; Andlay, G.; Rosenberg, J.N.; Betenbaugh, M.J.; Guarnieri, M.T.; Oyler, G.A. Comparison of biomass and lipid production under ambient carbon dioxide vigorous aeration and 3% carbon dioxide condition among the lead candidate Chlorella strains screened by various photobioreactor scales. Bioresour. Technol. 2015, 198, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Song, A.; Huang, Y.; Liao, Q.; Xia, A.; Zhu, X.; Zhu, X. Domesticating Chlorella vulgaris with gradually increased the concentration of digested piggery wastewater to bio-remove ammonia nitrogen. Algal Res. 2021, 60, 102526. [Google Scholar] [CrossRef]
- Soto, M.F.; Diaz, C.A.; Zapata, A.M.; Higuita, J.C. BOD and COD removal in vinasses from sugarcane alcoholic distillation by Chlorella vulgaris: Environmental evaluation. Biochem. Eng. J. 2021, 176, 108191. [Google Scholar] [CrossRef]
- Li, J.; Song, L. Applicability of the MTT assay for measuring viability of cyanobacteria and algae, specifically for Microcystis aeruginosa (Chroococcales, Cyanobacteria). Phycologia 2007, 46, 593–599. [Google Scholar] [CrossRef]
- Schuss, Z.; Tor, K.; Holcman, D. Do cells sense time by number of divisions? J. Theor. Biol. 2018, 452, 10–16. [Google Scholar] [CrossRef]
- Wolf, S.E.; Shalev, I. The Shelterin Protein Expansion of Telomere Dynamics: Linking Early Life Adversity, Life History, and the Hallmarks of Aging. Neurosci. Biobehav. Rev. 2023, 152, 105261. [Google Scholar] [CrossRef]
- Dong, H.; Liu, W.; Zhang, H.; Zheng, X.; Duan, H.; Zhou, L.; Xu, T.; Ruan, R. Improvement of phosphate solubilizing bacteria Paenibacillus xylanexedens on the growth of Chlorella pyrenoidosa and wastewater treatment in attached cultivation. Chemosphere 2022, 306, 135604. [Google Scholar] [CrossRef]
- Monlau, F.; Sambusiti, C.; Ficara, E.; Aboulkas, A.; Barakat, A.; Carrère, H. New opportunities for agricultural digestate valorization: Current situation and perspectives. Energy Environ. Sci. 2015, 8, 2600–2621. [Google Scholar] [CrossRef]
- Burlacot, A.; Peltier, G. Energy crosstalk between photosynthesis and the algal CO2-concentrating mechanisms. Trends Plant Sci. 2023, 28, 795–807. [Google Scholar] [CrossRef] [PubMed]
- Stigter, J.D.; Beck, M.B.; Gilbert, R.J. Identification of model structure for photosynthesis and respiration of algal populations. Water Sci. Technol. 1997, 36, 35–42. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, W.; Lu, X.; Gu, Y.; Wu, S.; Shen, Z.; Han, X.; Yang, G.; Ren, C. Adaptive pathways of soil microorganisms to stoichiometric imbalances regulate microbial respiration following afforestation in the Loess Plateau, China. Soil Biol. Biochem. 2020, 151, 108048. [Google Scholar] [CrossRef]
- Aharon, E.; Mookherjee, A.; Perez-Montano, F.; Mateus da Silva, G.; Sathyamoorthy, R.; Burdman, S.; Jurkevitch, E. Secretion systems play a critical role in resistance to predation by Bdellovibrio bacteriovorus. Res. Microbiol. 2021, 172, 103878. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Peng, D.; Ren, Y. Protozoan predation on nitrification performance and microbial community during bioaugmentation. Bioresour. Technol. 2011, 102, 10855–10860. [Google Scholar] [CrossRef]
- Yuan, X.; Cui, K.; Chen, Y.; Xu, W.; Li, P.; He, Y. Response of microbial community and biological nitrogen removal to the accumulation of nonylphenol in sequencing batch reactor. Int. J. Environ. Sci. Technol. 2023, 20, 12669–12680. [Google Scholar] [CrossRef] [PubMed]
- Ikram, M.; Naeem, M.; Zahoor, M.; Hanafiah, M.M.; Oyekanmi, A.A.; Ullah, R.; Farraj, D.A.A.; Elshikh, M.S.; Zekker, I.; Gulfam, N. Biological Degradation of the Azo Dye Basic Orange 2 by Escherichia coli: A Sustainable and Ecofriendly Approach for the Treatment of Textile Wastewater. Water 2022, 14, 2063. [Google Scholar] [CrossRef]
- Khan, A.U.; Rehman, M.U.; Zahoor, M.; Shah, A.B.; Zekker, I. Biodegradation of Brown 706 Dye by Bacterial Strain Pseudomonas aeruginosa. Water 2021, 13, 2959. [Google Scholar] [CrossRef]
- Veiga, E.; Cossart, P. The role of clathrin-dependent endocytosis in bacterial internalization. Trends Cell Biol. 2006, 16, 499–504. [Google Scholar] [CrossRef]
- Boonbangkeng, D.; Treesubsuntorn, C.; Krobthong, S.; Yingchutrakul, Y.; Pekkoh, J.; Thiravetyan, P. Using cell-free supernatant of Bacillus sp. AK3 in combination with Chlorella to remove harmful algal bloom species, TP, TN, and COD from water. J. Environ. Chem. Eng. 2022, 10, 108645. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Q.; Zhang, X.; Zhang, X. Impact of Natural Microorganisms on the Removal of COD and the Cells Activity of the Chlorella sp. in Wastewater. Water 2023, 15, 3544. https://doi.org/10.3390/w15203544
Sun Q, Zhang X, Zhang X. Impact of Natural Microorganisms on the Removal of COD and the Cells Activity of the Chlorella sp. in Wastewater. Water. 2023; 15(20):3544. https://doi.org/10.3390/w15203544
Chicago/Turabian StyleSun, Qingnan, Xiaoping Zhang, and Xin Zhang. 2023. "Impact of Natural Microorganisms on the Removal of COD and the Cells Activity of the Chlorella sp. in Wastewater" Water 15, no. 20: 3544. https://doi.org/10.3390/w15203544
APA StyleSun, Q., Zhang, X., & Zhang, X. (2023). Impact of Natural Microorganisms on the Removal of COD and the Cells Activity of the Chlorella sp. in Wastewater. Water, 15(20), 3544. https://doi.org/10.3390/w15203544