The Influence of Organic and Inorganic Fertilizer Applications on Nitrogen Transformation and Yield in Greenhouse Tomato Cultivation with Surface and Drip Irrigation Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.2.1. Test Soil
2.2.2. Experimental Design
2.2.3. Irrigation and Fertilization Methods
2.3. Monitoring Indicators and Analysis Methods
2.3.1. Soil Mineral Nitrogen
2.3.2. Determination of Ammonia Volatilization in Surface Soils
2.3.3. Tomato Yield and Quality
2.4. Statistical Analysis
3. Results
3.1. Soil Ammonia Volatilization
3.1.1. Soil Ammonia Volatilization Rate
3.1.2. Cumulative Ammonia Volatilization Emissions
3.2. Soil Mineral Nitrogen
3.3. Tomato Yield and Quality
3.4. Correlation Analysis
4. Discussion
4.1. Effect of Different Water and Fertilizer Managements on Ammonia Volatilization Rates and Ammonia Volatilization Losses
4.2. Effect of Different Water and Fertilizer Treatments on Soil Mineral Nitrogen
4.3. Optimizing Water and Fertilizer Management to Achieve a Balance between Tomato Yield and Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chu, X.; Zheng, L.; Ye, G.; Chen, J. Comparison of greenhouse gas emissions between open field and facility tomato production in China. J. Agric. Environ. Sci. 2023, 42, 1870–1881, (In Chinese with English Abstract). [Google Scholar]
- Cui, M.; Sun, X.; Hu, C.; Di, H.J.; Tan, Q.; Zhao, C. Effective mitigation of nitrate leaching and nitrous oxide emissions in intensive vegetable production systems using a nitrification inhibitor, dicyandiamide. J. Soils Sediments 2011, 11, 722–730. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, Z.; Li, J.; Xu, Z.; Qian, C.; Xia, X.; Liu, Y.; Feng, Y. Tofu by-product soy whey substitutes urea: Reduced ammonia volatilization, enhanced soil fertility and improved fruit quality in cherry tomato production. Environ. Res. 2023, 226, 115662. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Evans, S.E.; Friesen, M.L.; Tiemann, L.K. Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: A meta-analysis of field studies. Soil Biol. Biochem. 2018, 127, 71–78. [Google Scholar] [CrossRef]
- Li, Y.; Xu, J.; Liu, X.; Liu, B.; Liu, W.; Jiao, X.; Zhou, J. Win-win for monosodium glutamate industry and paddy agriculture: Replacing chemical nitrogen with liquid organic fertilizer from wastewater mitigates reactive nitrogen losses while sustaining yields. J. Clean. Prod. 2022, 347, 131287. [Google Scholar] [CrossRef]
- Xu, W.; Liu, W.; Tang, S.; Yang, Q.; Meng, L.; Wu, Y.; Wang, J.; Wu, L.; Wu, M.; Xue, X.; et al. Long-term partial substitution of chemical nitrogen fertilizer with organic fertilizers increased SOC stability by mediating soil C mineralization and enzyme activities in a rubber plantation of Hainan Island, China. Appl. Soil Ecol. 2023, 182, 104691. [Google Scholar] [CrossRef]
- Beusen, A.H.W.; Bouwman, A.F.; Heuberger, P.S.C.; Van Drecht, G.; Van Der Hoek, K.W. Bottom-up uncertainty estimates of global ammonia emissions from global agricultural production systems. Atmos. Environ. 2008, 42, 6067–6077. [Google Scholar] [CrossRef]
- Kang, Y.-G.; Chun, J.-H.; Lee, J.-H.; Park, S.-Y.; Luyima, D.; Oh, T.-K.; Yun, Y.-U. Effects of Varying Rates of Nitrogen and Biochar pH on NH3 Emissions and Agronomic Performance of Chinese Cabbage (Brassica rapa ssp. pekinensis). Agronomy 2021, 12, 61. [Google Scholar] [CrossRef]
- Park, S.; Choi, H.-Y.; Kang, Y.-G.; Park, S.J.; Luyima, D.; Lee, J.-H.; Taek-Keun, O. Evaluation of ammonia (NH3) emissions from soil amended with rice hull biochar. Korean J. Agric. Sci. 2020, 47, 1049–1056. [Google Scholar]
- Yun-Gu, K.; Lee, J.-H.; Jin-Hyuk, C.; Yun, Y.-U.; Taek-Keun, O.; Sung, J. Evaluation of NH3 emissions in accordance with the pH of biochar. Korean J. Agric. Sci. 2021, 48, 787–796. [Google Scholar] [CrossRef]
- Fungo, B.; Lehmann, J.; Kalbitz, K.; Thionģo, M.; Tenywa, M.; Okeyo, I.; Neufeldt, H. Ammonia and nitrous oxide emissions from a field Ultisol amended with tithonia green manure, urea, and biochar. Biol. Fertil. Soils 2019, 55, 135–148. [Google Scholar] [CrossRef]
- He, H.; Feng, Y.; Wang, H.; Wang, B.; Xie, W.; Chen, S.; Lu, Q.; Feng, Y.; Xue, L. Waste-based hydrothermal carbonization aqueous phase substitutes urea for rice paddy return: Improved soil fertility and grain yield. J. Clean. Prod. 2022, 344, 131135. [Google Scholar] [CrossRef]
- Chen, S.; Li, D.; He, H.; Zhang, Q.; Lu, H.; Xue, L.; Feng, Y.; Sun, H. Substituting urea with biogas slurry and hydrothermal carbonization aqueous product could decrease NH3 volatilization and increase soil DOM in wheat growth cycle. Environ. Res. 2022, 214, 113997. [Google Scholar] [CrossRef]
- Gao, F.; Li, H.; Mu, X.; Gao, H.; Zhang, Y.; Li, R.; Cao, K.; Ye, L. Effects of Organic Fertilizer Application on Tomato Yield and Quality: A Meta-Analysis. Appl. Sci. 2023, 13, 2184. [Google Scholar] [CrossRef]
- Tao, Y.; Liu, T.; Wu, J.; Wu, Z.; Liao, D.; Shah, F.; Wu, W. Effect of Combined Application of Chicken Manure and Inorganic Nitrogen Fertilizer on Yield and Quality of Cherry Tomato. Agronomy 2022, 12, 1574. [Google Scholar] [CrossRef]
- Sun, C.; Bei, K.; Liu, Y.; Pan, Z. Humic Acid Improves Greenhouse Tomato Quality and Bacterial Richness in Rhizosphere Soil. ACS Omega 2022, 7, 29823–29831. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, J.; Zhang, B.; Li, D.; Li, G.; Li, Y. Effect of different organic fertilizers application on growth and environmental risk of nitrate under a vegetable field. Sci. Rep. 2017, 7, 17020. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Cheng, Y.; Li, T.; Sun, H.; Xue, L.; Cui, H.; Feng, Y.; Yang, L.; Chu, Q. Co-application of biogas slurry and hydrothermal carbonization aqueous phase substitutes urea as the nitrogen fertilizer and mitigates ammonia volatilization from paddy soil. Environ. Pollut. 2021, 287, 117340. [Google Scholar] [CrossRef]
- Oyetunji, O.; Bolan, N.; Hancock, G. A comprehensive review on enhancing nutrient use efficiency and productivity of broadacre (arable) crops with the combined utilization of compost and fertilizers. J. Environ. Manag. 2022, 317, 115395. [Google Scholar] [CrossRef]
- Liu, B.; Wang, X.; Ma, L.; Chadwick, D.; Chen, X. Combined applications of organic and synthetic nitrogen fertilizers for improving crop yield and reducing reactive nitrogen losses from China’s vegetable systems: A meta-analysis. Environ. Pollut. 2021, 269, 116143. [Google Scholar] [CrossRef]
- Xu, F.; Chang, H. Soil Greenhouse Gas Emissions and Nitrogen Change for Wheat Field Application of Composted Sewage Sludge. Agronomy 2022, 12, 1946. [Google Scholar] [CrossRef]
- Chen, J.-H. The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. Dep. Soil Environ. Sci. 2006, 16, 1–11. [Google Scholar]
- Selvakumar, G.; Yi, P.H.; Lee, S.E.; Han, S.G.; Chung, B.N. Hairy vetch, compost and chemical fertilizer management effects on red pepper yield, quality, and soil microbial population. Hortic. Environ. Biotechnol. 2018, 59, 607–614. [Google Scholar] [CrossRef]
- Yao, R.; Li, H.; Zhu, W.; Yang, J.; Wang, X.; Yin, C.; Jing, Y.; Chen, Q.; Xie, W. Biochar and potassium humate shift the migration, transformation and redistribution of urea-N in salt-affected soil under drip fertigation: Soil column and incubation experiments. Irrig. Sci. 2021, 40, 267–282. [Google Scholar] [CrossRef]
- Yang, J.; Jiao, Y.; Yang, W.; Gu, P.; Bai, S.; Liu, L.; Yu, J. Effects of sprinkler and furrow irrigation methods on NH3 volatilization from agricultural soils. Chin. Environ. Sci. 2019, 39, 960–968, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Song, C.; Jiao, Y.; Yang, W.; Yu, Y.; Zhang, J.; Liu, Y. Research progress on the influence of irrigation methods on ammonia volatilization in farmland. IOP Conf. Ser. Earth Environ. Sci. 2021, 647, 012170. [Google Scholar] [CrossRef]
- Fan, Y.; Hao, X.; Ding, R.; Kang, S. Soil water and nitrogen dynamics from interaction of irrigation and fertilization management practices in a greenhouse vegetable rotation. Soil Sci. Soc. Am. J. 2020, 84, 901–913. [Google Scholar] [CrossRef]
- Bao, S. Soil Agrochemical Analysis; China Agricultural Press: Beijing, China, 2000. [Google Scholar]
- Wang, C.; Liu, X.; Ju, X.; Zhang, F. In-situ determination of soil ammonia volatilization in the field using aeration method. J. Plant Nutr. Fertil. 2002, 2, 205–209, (In Chinese with English Abstract). [Google Scholar]
- Chen, G.; Li, S. Plant Physiology Experiment; Higher Education Press: Beijing, China, 2016. [Google Scholar]
- Shan, L.; He, Y.; Chen, J.; Huang, Q.; Wang, H. Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China. J. Environ. Sci. (China) 2015, 38, 14–23. [Google Scholar] [CrossRef]
- Wan, X.; Wu, W.; Li, C.; Liu, Y.; Wen, X.; Liao, Y. Soil ammonia volatilization following urea application suppresses root hair formation and reduces seed germination in six wheat varieties. Environ. Exp. Bot. 2016, 132, 130–139. [Google Scholar] [CrossRef]
- Xu, J.; Liao, L.; Tan, J.; Shao, X. Ammonia volatilization in gemmiparous and early seedling stages from direct seeding rice fields with different nitrogen management strategies: A pots experiment. Soil Tillage Res. 2013, 126, 169–176. [Google Scholar] [CrossRef]
- Banerjee, B.; Pathak, H.; Aggarwal, P. Effects of dicyandiamide, farmyard manure and irrigation on crop yields and ammonia volatilization from an alluvial soil under a rice (Oryza sativa L.)-wheat (Triticum aestivum L.) cropping system. Biol. Fertil. Soils 2002, 36, 207–214. [Google Scholar] [CrossRef]
- Liu, T.; Huang, J.; Chai, K.; Cao, C.; Li, C. Effects of N Fertilizer Sources and Tillage Practices on NH3 Volatilization, Grain Yield, and N Use Efficiency of Rice Fields in Central China. Front. Plant Sci. 2018, 9, 385. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Liu, H.; Luo, J.; Wang, H.; Zhai, L.; Geng, Y.; Zhang, Y.; Li, J.; Lei, Q.; Bashir, M.A.; et al. Long-term manure application increased greenhouse gas emissions but had no effect on ammonia volatilization in a Northern China upland field. Sci. Total Environ. 2018, 633, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; He, H.; Li, D.; He, S.; Yang, B.; Xue, L.; Chu, Q. Biowaste hydrothermal carbonization aqueous product application in rice paddy: Focus on rice growth and ammonia volatilization. Chemosphere 2021, 277, 130233. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.; Nayak, A.K.; Swain, C.K.; Dhal, B.R.; Kumar, A.; Kumar, U.; Tripathi, R.; Shahid, M.; Behera, K.K. Impact of integrated nutrient management options on GHG emission, N loss and N use efficiency of low land rice. Soil Tillage Res. 2020, 200, 104616. [Google Scholar] [CrossRef]
- Wang, B.; Li, R.; Wan, Y.; Li, Y.; Cai, W.; Guo, C.; Qin, X.; Song, C.; Wilkes, A. Air warming and CO2 enrichment cause more ammonia volatilization from rice paddies: An OTC field study. Sci. Total Environ. 2021, 752, 142071. [Google Scholar] [CrossRef]
- Yu, S.; Xue, L.; Feng, Y.; Liu, Y.; Song, Z.; Mandal, S.; Yang, L.; Sun, Q.; Xing, B. Hydrochar reduced NH3 volatilization from rice paddy soil: Microbial-aging rather than water-washing is recommended before application. J. Clean. Prod. 2020, 268, 122233. [Google Scholar] [CrossRef]
- Pereira, A.; Castro, J.S.; Ribeiro, V.J.; Calijuri, M.L. Organomineral fertilizers pastilles from microalgae grown in wastewater: Ammonia volatilization and plant growth. Sci. Total Environ. 2021, 779, 146205. [Google Scholar] [CrossRef]
- Correa, M.D.; Ronald, R.; Schnabela, D.; Stouta, W.L. Spatial and seasonal variation of gross nitrogen transformations and microbial biomass in a Northeastern US grassland. Soil Biol. Biochem. 2002, 34, 445–457. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, D.; Zhang, Y.; Zhai, L.; Yin, B.; Zhou, F.; Geng, Y.; Pan, J.; Luo, J.; Gu, B.; et al. Ammonia emissions from paddy fields are underestimated in China. Environ. Pollut. 2018, 235, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Severino, L.S.; Costa, F.X.; Beltrão, N.E.d.M.; Lucena, A.M.A.d.; Guimarães, M.M.B. Mineralização da torta de mamona, esterco bovino e bagaço de cana estimada pela respiração microbiana. Rev. Biol. Ciênc. Terra 2005, 5, 1–6. [Google Scholar]
- Rochette, P.; Angers, D.A.; Chantigny, M.H.; MacDonald, J.D.; Gasser, M.-O.; Bertrand, N. Reducing ammonia volatilization in a no-till soil by incorporating urea and pig slurry in shallow bands. Nutr. Cycl. Agroecosyst. 2008, 84, 71–80. [Google Scholar] [CrossRef]
- Shang, Q.; Gao, C.; Yang, X.; Wu, P.; Ling, N.; Shen, Q.; Guo, S. Ammonia volatilization in Chinese double rice-cropping systems: A 3-year field measurement in long-term fertilizer experiments. Biol. Fertil. Soils 2013, 50, 715–725. [Google Scholar] [CrossRef]
- Zhang, Y.; Nie, Y.; Liu, Y.; Huang, X.; Yang, Y.; Xiong, H.; Zhu, H.; Li, Y. Characteristics of Greenhouse Gas Emissions from Yellow Paddy Soils under Long-Term Organic Fertilizer Application. Sustainability 2022, 14, 12574. [Google Scholar] [CrossRef]
- Li, L.; Li, S. Progress of nitrogen mineralization and influencing factors of organic fertilizers. J. Plant Nutr. Fertil. 2012, 18, 749–757, (In Chinese with English Abstract). [Google Scholar]
- Yan, L.; Zhang, Z.; Chen, Y.; Gao, Q.; Lu, W.; Abdelrahman, A.M. Effect of water and temperature on ammonia volatilization of maize straw returning. Toxicol. Environ. Chem. 2016, 98, 638–647. [Google Scholar] [CrossRef]
- Luo, S.; Wang, S.; Yao, P.; Guo, D.; Li, X.; Li, S.; Tian, C. Soil microbial communities under film mulching and N fertilization in semiarid farmland. Nutr. Cycl. Agroecosyst. 2019, 114, 157–170. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Y.; Li, X.; Yu, J. Effects of partial replacement of chemical fertilizers by organic fertilizers on soil microbial biomass and mineral nitrogen content. J. Jiangxi Agric. Univ. 2009, 21, 70–73, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Bhogal, A.; Williams, J.R.; Nicholson, F.A.; Chadwick, D.R.; Chambers, K.H.; Chambers, B.J. Mineralization of organic nitrogen from farm manure applications. Soil Use Manag. 2016, 32, 32–43. [Google Scholar] [CrossRef]
- Chadwick, D.R.; John, F.; Pain, B.F.; Chambers, B.J.; Williams, J. Plant uptake of nitrogen from the organic nitrogen fraction of animal manures: A laboratory experiment. J. Agric. Sci. 2000, 134, 159–168. [Google Scholar] [CrossRef]
- Scotti, R.; Bonanomi, G.; Scelza, R.; Zoina, A.; Rao, M.A. Organic amendments as sustainable tool to recovery fertility in intensive agricultural systems. J. Soil Sci. Plant Nutr. 2015, 15, 333–352. [Google Scholar] [CrossRef]
- Said-Pullicino, D.; Cucu, M.A.; Sodano, M.; Birk, J.J.; Glaser, B.; Celi, L. Nitrogen immobilization in paddy soils as affected by redox conditions and rice straw incorporation. Geoderma 2014, 228–229, 44–53. [Google Scholar] [CrossRef]
- Liang, Y.; Al-Kaisi, M.; Yuan, J.; Liu, J.; Zhang, H.; Wang, L.; Cai, H.; Ren, J. Effect of chemical fertilizer and straw-derived organic amendments on continuous maize yield, soil carbon sequestration and soil quality in a Chinese Mollisol. Agric. Ecosyst. Environ. 2021, 314, 107403. [Google Scholar] [CrossRef]
- Wu, W.; Lin, Z.; Zhu, X.; Li, G.; Zhang, W.; Chen, Y.; Ren, L.; Luo, S.; Lin, H.; Zhou, H.; et al. Improved tomato yield and quality by altering soil physicochemical properties and nitrification processes in the combined use of organic-inorganic fertilizers. Eur. J. Soil Biol. 2022, 109, 103384. [Google Scholar] [CrossRef]
- Dong, Z.; Li, H.; Xiao, J.; Sun, J.; Liu, R.; Zhang, A. Soil multifunctionality of paddy field is explained by soil pH rather than microbial diversity after 8-years of repeated applications of biochar and nitrogen fertilizer. Sci. Total Environ. 2022, 853, 158620. [Google Scholar] [CrossRef]
- Badr, M.A.; Abou Hussein, S.D.; El-Tohamy, W.A.; Gruda, N. Nutrient uptake and yield of tomato under various methods of fertilizer application and levels of fertigation in arid lands. Gesunde Pflanz. 2010, 62, 11–19. [Google Scholar] [CrossRef]
- Li, Y.-J.; Yuan, B.-Z.; Bie, Z.-L.; Kang, Y. Effect of drip irrigation criteria on yield and quality of muskmelon grown in greenhouse conditions. Agric. Water Manag. 2012, 109, 30–35. [Google Scholar] [CrossRef]
- Graham, C.; Beck, R.; Thavarajah, D. Dietary Reference Intake and Nutritional Yield of Lentils in the Northern Great Plains. Crop Sci. 2018, 58, 1342–1348. [Google Scholar] [CrossRef]
- Li, B.; Wim, V.; Shukla, M.K.; Du, T. Drip irrigation provides a trade-off between yield and nutritional quality of tomato in the solar greenhouse. Agric. Water Manag. 2021, 249, 106777. [Google Scholar] [CrossRef]
- Moreira-Ascarrunz, S.D.; Larsson, H.; Prieto-Linde, M.L.; Johansson, E. Mineral Nutritional Yield and Nutrient Density of Locally Adapted Wheat Genotypes under Organic Production. Foods 2016, 5, 89. [Google Scholar] [CrossRef] [PubMed]
- Nyathi, M.K.; Van Halsema, G.E.; Beletse, Y.G.; Annandale, J.G.; Struik, P.C. Nutritional water productivity of selected leafy vegetables. Agric. Water Manag. 2018, 209, 111–122. [Google Scholar] [CrossRef]
- Ren, H.; Han, G.; Schönbach, P.; Gierus, M.; Taube, F. Forage nutritional characteristics and yield dynamics in a grazed semiarid steppe ecosystem of Inner Mongolia, China. Ecol. Indic. 2016, 60, 460–469. [Google Scholar] [CrossRef]
- Xing, Y.; Zhang, F.; Zhang, Y.; Li, J.; Qiang, S.; Wu, L. Effects of drip irrigation fertilization and water-fertilization coupling on yield, quality, water, and nitrogen utilization of greenhouse tomato. Chin. Agric. Sci. 2015, 48, 713–726, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
pH | EC (1:5) (μS·cm−1) | OM % | AP (mg·kg−1) | AK (mg·kg−1) | TN (mg·kg−1) |
---|---|---|---|---|---|
8.26 ± 0.13 | 325.2 ± 5.83 | 0.54 ± 0.12 | 8.41 ± 1.82 | 311 ± 3.05 | 970 ± 0.07 |
Treatments | N % | C:N |
---|---|---|
Control (urea) | 46.00 | 0.43 |
Chicken manure | 1.50 | 5.83 |
Cattle manure | 0.50 | 18.36 |
Sheep manure | 0.70 | 6.42 |
Irrigation Technology | Fertilizer Treatment | Fertilizer Application Ratio of Manure to Chemical Fertilizer | Base Fertilizer (g/pot) | Topdressing (g/pot) |
---|---|---|---|---|
Surface irrigation (SI) | CK | 100% urea | Urea (14 g) | Urea (5.5 g) |
FC1 | 30% chicken + 70% urea fertilizer | Manure (830 g) + urea (1.5 g) | Urea (5.5 g) | |
FC2 | 40% chicken + 60% urea fertilizer | Manure (1100 g) + urea (1.8 g) | Urea (4.1 g) | |
FC3 | 50% chicken + 50% urea fertilizer | Manure (1380 g) | Urea (4.1 g) | |
FB3 | 50% cattle + 50% urea fertilizer | Manure (4140 g) | Urea (4.1 g) | |
FS3 | 50% sheep + 50% urea fertilizer | Manure (2960 g) | Urea (4.1 g) | |
Surface drip irrigation (SDI) | CK | 100% urea | Urea (14 g) | Urea (5.5 g) |
FC1 | 30% chicken + 70% urea fertilizer | Manure (830 g) + urea (1.5 g) | Urea (5.5 g) | |
FC2 | 40% chicken + 60% urea fertilizer | Manure (1100 g) + urea (1.8 g) | Urea (4.1 g) | |
FC3 | 50% chicken + 50% urea fertilizer | Manure (1380 g) | Urea (4.1 g) | |
FB3 | 50% cattle + 50% urea fertilizer | Manure (4140 g) | Urea (4.1 g) | |
FS3 | 50% sheep + 50% urea fertilizer | Manure (2960 g) | Urea (4.1 g) |
Treatments | Accumulation of NH3 Volatilization (kg·hm−2) | |
---|---|---|
SI | CK | 27.30 ± 2.43 b |
FC1 | 34.19 ± 1.61 a | |
FC2 | 16.58 ± 0.70 de | |
FC3 | 15.65 ± 1.42 e | |
FB3 | 18.15 ± 1.09 cd | |
FS3 | 19.58 ± 0.77 c | |
SDI | CK | 15.81 ± 0.28 a |
FC1 | 8.07 ± 0.88 c | |
FC2 | 8.80 ± 0.21 c | |
FC3 | 7.61 ± 0.51 d | |
FB3 | 5.24 ± 0.23 e | |
FS3 | 9.03 ± 0.43 b |
Irrigation Technology | Fertilizer Treatment | Yield (kg·hm−2) | Vitamin C (mg/100 g) | Acidity/% | Soluble Sugar/% |
---|---|---|---|---|---|
SI | CK | 9719.28 a | 0.94 c | 0.81 b | 10.64 b |
FC1 | 11,506.35 a | 1.19 b | 0.72 bc | 11.90 ab | |
FC2 | 9761.85 a | 1.20 b | 0.70 bc | 10.89 b | |
FC3 | 11,738.55 a | 1.15 b | 0.54 a | 12.24 a | |
FB3 | 10,153.24 a | 1.55 a | 0.59 ab | 11.26 ab | |
FS3 | 10,262.03 a | 1.53 a | 0.64 ab | 11.27 ab | |
SDI | CK | 8542.95 de | 1.01 a | 0.70 ab | 10.65 bcd |
FC1 | 7475.76 e | 1.20 ab | 0.53 cd | 11.81 ab | |
FC2 | 10,066.73 cd | 1.26 b | 0.81 a | 9.91 cd | |
FC3 | 13,414.50 a | 1.37 b | 0.51 cd | 11.06 bc | |
FB3 | 10,337.84 bc | 1.26 b | 0.41 d | 9.66 d | |
FS3 | 12,017.79 ab | 1.33 b | 0.59 bc | 12.28 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Cui, J.; Guo, W.; She, Y.; Li, P. The Influence of Organic and Inorganic Fertilizer Applications on Nitrogen Transformation and Yield in Greenhouse Tomato Cultivation with Surface and Drip Irrigation Techniques. Water 2023, 15, 3546. https://doi.org/10.3390/w15203546
Li T, Cui J, Guo W, She Y, Li P. The Influence of Organic and Inorganic Fertilizer Applications on Nitrogen Transformation and Yield in Greenhouse Tomato Cultivation with Surface and Drip Irrigation Techniques. Water. 2023; 15(20):3546. https://doi.org/10.3390/w15203546
Chicago/Turabian StyleLi, Tong, Jiaxin Cui, Wei Guo, Yingjun She, and Ping Li. 2023. "The Influence of Organic and Inorganic Fertilizer Applications on Nitrogen Transformation and Yield in Greenhouse Tomato Cultivation with Surface and Drip Irrigation Techniques" Water 15, no. 20: 3546. https://doi.org/10.3390/w15203546
APA StyleLi, T., Cui, J., Guo, W., She, Y., & Li, P. (2023). The Influence of Organic and Inorganic Fertilizer Applications on Nitrogen Transformation and Yield in Greenhouse Tomato Cultivation with Surface and Drip Irrigation Techniques. Water, 15(20), 3546. https://doi.org/10.3390/w15203546