Development Trends, Current Hotspots, and Research Frontiers of Oyster Reefs: A Bibliometric Analysis Based on CiteSpace
Abstract
:1. Introduction
2. Methodology
2.1. Data Sources
2.2. Data Analysis
3. Results
3.1. Distribution of Publications over the Years
3.2. Analysis of Output Characteristics of Articles
3.2.1. Contributing Countries Analysis
3.2.2. Institution Analysis
3.2.3. Author Analysis
3.2.4. Category and Disciplines
3.2.5. Core Journals Analysis
3.2.6. Most-Cited Journals Analysis
3.3. Co-Cited Analysis of References
3.4. Keywords Co-Occurrence Analysis
3.5. Keywords Timeline Analysis
3.6. Burst Keywords Analysis
4. Discussion
4.1. Trends in the Number of Published Papers
4.2. Scientific Contributions
4.3. Research Hotspots in Oyster Reef
4.4. Hotspots Evolution and Research Frontiers in Oyster Reef
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beck, M.W.; Brumbaugh, R.D.; Airoldi, L.; Carranza, A.; Coen, L.D.; Crawford, C.; Defeo, O.; Edgar, G.J.; Hancock, B.; Kay, M.C.; et al. Oyster reefs at risk and recommendations for conservation, restoration, and management. BioScience 2011, 61, 107–116. [Google Scholar] [CrossRef]
- Grabowski, J.H.; Peterson, C.H. Restoring oyster reefs to recover ecosystem services. Ecosyst. Eng. 2007, 4, 281–298. [Google Scholar]
- The Nature Conservancy. Research Report on Conservation and Restoration of Oyster Reef Habitats in China; The Nature Conservancy: Beijing, China, 2022. (In Chinese) [Google Scholar]
- zu Ermgassen, P.S.E.; Spalding, M.D.; Grizzle, R.E.; Brumbaugh, R.D. Quantifying the loss of a marine ecosystem service: Filtration by the eastern oyster in us estuaries. Estuaries Coasts 2013, 36, 36–43. [Google Scholar] [CrossRef]
- Newell, R.I.E.; Cornwell, J.C.; Owens, M.S. Influence of simulated bivalve biodeposition and microphytobenthos on sediment nitrogen dynamics: A laboratory study. Limnol. Oceanogr. 2002, 47, 1367–1379. [Google Scholar] [CrossRef]
- Piazza, B.P.; Banks, P.D.; La Peyre, M.K. The potential for created oyster shell reefs as a sustainable shoreline protection strategy in louisiana. Restor. Ecol. 2005, 13, 499–506. [Google Scholar] [CrossRef]
- Eggleston, D.B. Application of landscape ecological principles to oyster reef habitat restoration. In Oyster Reef Habitat Restoration: A Synopsis and Synthesis of Approaches; Luckenbach, M.W., Mann, R., Wesson, J.A., Eds.; Virginia Institute of Marine Science Press: Gloucester Point, VA, USA, 1999; pp. 213–227. [Google Scholar]
- Micheli, F.; Peterson, C.H. Estuarine vegetated habitats as corridors for predator movements. Conserv. Biol. 1999, 13, 869–881. [Google Scholar] [CrossRef]
- Peterson, C.H.; Grabowski, J.H.; Powers, S.P. Estimated enhancement of fish production resulting from restoring oyster reef habitat: Quantitative valuation. Mar. Ecol. Prog. Ser. 2003, 264, 249–264. [Google Scholar] [CrossRef]
- Ferraro, S.P.; Cole, F.A. Benthic macrofauna-habitat associations in willapa bay, washington, USA. Estuar. Coast. Shelf Sci. 2007, 71, 491–507. [Google Scholar] [CrossRef]
- McLeod, I.M.; zu Ermgassen, P.S.E.; Gillies, C.L.; Hancock, B.; Humphries, A. Chapter 25—Can bivalve habitat restoration improve degraded estuaries? In Coasts and Estuaries: The Future; Wolanski, E., Day, J.W., Elliott, M., Ramachandran, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 427–442. [Google Scholar]
- Fitzsimons, J.; Branigan, S.; Brumbaugh, R.D.; McDonald, T.; zu Ermgassen, P.S.E. Restoration Guidelines for Shellfish Reefs; The Nature Conservancy: Arlington, VA, USA, 2019. [Google Scholar]
- Morgan, L.M.; Rakocinski, C.F. Predominant factors limiting the recovery of the eastern oyster (Crassostrea virginica) in western mississippi sound, USA. Estuar. Coast. Shelf Sci. 2022, 264, 107652. [Google Scholar] [CrossRef]
- zu Ermgassen, P.S.E.; Spalding, M.D.; Blake, B.; Coen, L.D.; Dumbauld, B.; Geiger, S.; Grabowski, J.H.; Grizzle, R.; Luckenbach, M.; McGraw, K.; et al. Historical ecology with real numbers: Past and present extent and biomass of an imperilled estuarine habitat. Proc. R. Soc. B-Biol. Sci. 2012, 279, 3393–3400. [Google Scholar] [CrossRef]
- Kennedy, V.S.; Breitburg, D.L.; Christman, M.C.; Luckenbach, M.W.; Paynter, K.; Kramer, J.; Sellner, K.G.; Dew-Baxter, J.; Keller, C.; Mann, R. Lessons learned from efforts to restore oyster populations in maryland and virginia, 1990 to 2007. J. Shellfish Res. 2011, 30, 719–731. [Google Scholar] [CrossRef]
- Hatchell, B.; Konchar, K.; Merrill, M.; Shea, C.; Smith, K. Use of biodegradable coir for subtidal oyster habitat restoration: Testing two reef designs in northwest florida. Estuaries Coasts 2022, 45, 2675–2689. [Google Scholar] [CrossRef]
- Jiang, W.; Shi, W.J.; Li, N.N.; Fan, R.L.; Zhang, W.K.; Quan, W.M. Oyster and barnacle recruitment dynamics on and near a natural reef in china: Implications for oyster reef restoration. Front. Mar. Sci. 2022, 9, 905373. [Google Scholar] [CrossRef]
- Hernández, A.B.; Brumbaugh, R.D.; Frederick, P.; Grizzle, R.; Luckenbach, M.W.; Peterson, C.H.; Angelini, C. Restoring the eastern oyster: How much progress has been made in 53 years? Front. Ecol. Environ. 2018, 16, 463–471. [Google Scholar] [CrossRef]
- La Peyre, M.K.; Humphries, A.T.; Casas, S.M.; La Peyre, J.F. Temporal variation in development of ecosystem services from oyster reef restoration. Ecol. Eng. 2014, 63, 34–44. [Google Scholar] [CrossRef]
- Hogan, S.; Reidenbach, M.A. Quantifying tradeoffs in ecosystem services under various oyster reef restoration designs. Estuaries Coasts 2022, 45, 677–690. [Google Scholar] [CrossRef]
- Narayan, S.; Beck, M.W.; Reguero, B.G.; Losada, I.J.; van Wesenbeeck, B.; Pontee, N.; Sanchirico, J.N.; Ingram, J.C.; Lange, G.M.; Burks-Copes, K.A. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS ONE 2016, 11, e0154735. [Google Scholar] [CrossRef]
- Lemasson, A.J.; Knights, A.M. Differential responses in anti-predation traits of the native oyster ostrea edulis and invasive magallana gigas to ocean acidification and warming. Mar. Ecol.-Prog. Ser. 2021, 665, 87–102. [Google Scholar] [CrossRef]
- McClenachan, G.; Witt, M.; Walters, L.J. Replacement of oyster reefs by mangroves: Unexpected climate-driven ecosystem shifts. Glob. Chang. Biol. 2021, 27, 1226–1238. [Google Scholar] [CrossRef]
- Ridge, J.T.; Rodriguez, A.B.; Fodrie, F.J. Evidence of exceptional oyster-reef resilience to fluctuations in sea level. Ecol. Evol. 2017, 7, 10409–10420. [Google Scholar] [CrossRef]
- Fodrie, F.J.; Rodriguez, A.B.; Gittman, R.K.; Grabowski, J.H.; Lindquist, N.L.; Peterson, C.H.; Piehler, M.F.; Ridge, J.T. Oyster reefs as carbon sources and sinks. Proc. R. Soc. B-Biol. Sci. 2017, 284, 20170891. [Google Scholar] [CrossRef]
- Ridge, J.T.; Rodriguez, A.B.; Fodrie, F.J. Salt marsh and fringing oyster reef transgression in a shallow temperate estuary: Implications for restoration, conservation and blue carbon. Estuaries Coasts 2017, 40, 1013–1027. [Google Scholar] [CrossRef]
- Goelz, T.; Vogt, B.; Hartley, T. Alternative substrates used for oyster reef restoration: A review. J. Shellfish Res. 2020, 39, 1–12. [Google Scholar] [CrossRef]
- Reeves, S.E.; Renzi, J.J.; Fobert, E.K.; Silliman, B.R.; Hancock, B.; Gillies, C.L. Facilitating better outcomes: How positive species interactions can improve oyster reef restoration. Front. Mar. Sci. 2020, 7, 656. [Google Scholar] [CrossRef]
- Howie, A.H.; Bishop, M.J. Contemporary oyster reef restoration: Responding to a changing world. Front. Ecol. Evol. 2021, 9, 689915. [Google Scholar] [CrossRef]
- McAfee, D.; McLeod, I.M.; Boström-Einarsson, L.; Gillies, C.L. The value and opportunity of restoring Australia’s lost rock oyster reefs. Restor. Ecol. 2020, 28, 304–314. [Google Scholar] [CrossRef]
- Brumbaugh, R.D.; Coen, L.D. Contemporary approaches for small-scale oyster reef restoration to address substrate versus recruitment limitation: A review and comments relevant for the Olympia oyster, Ostrea lurida Carpenter 1864. J. Shellfish Res. 2009, 28, 147–161. [Google Scholar] [CrossRef]
- You, J.; Chen, X.; Chen, L.; Chen, J.; Chai, B.; Kang, A.; Lei, X.; Wang, S. A Systematic Bibliometric Review of Low Impact Development Research Articles. Water 2022, 14, 2675. [Google Scholar] [CrossRef]
- Chen, L.; Li, W.; Li, J.; Fu, Q.; Wang, T. Evolution trend research of global ocean power generation based on a 45-year scientometric analysis. J. Mar. Sci. Eng. 2021, 9, 218. [Google Scholar] [CrossRef]
- Lai, Q.; Ma, J.; He, F.; Zhang, A.; Pei, D.; Wei, G.; Zhu, X. Research Development, Current Hotspots, and Future Directions of Blue Carbon: A Bibliometric Analysis. Water 2022, 14, 1193. [Google Scholar] [CrossRef]
- Jović, M.; Tijan, E.; Brčić, D.; Pucihar, A. Digitalization in maritime transport and seaports: Bibliometric, content and thematic analysis. J. Mar. Sci. Eng. 2022, 10, 486. [Google Scholar] [CrossRef]
- Zhang, Z.; Jin, G.; Hu, Y.; He, N.; Niu, J. Performance Management of Natural Resources: A Systematic Review and Conceptual Framework for China. Water 2022, 14, 3338. [Google Scholar] [CrossRef]
- Chen, C.M. Citespace ii: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Najmi, A.; Rashidi, T.H.; Abbasi, A.; Waller, S.T. Reviewing the transport domain: An evolutionary bibliometrics and network analysis. Scientometrics 2017, 110, 843–865. [Google Scholar] [CrossRef]
- Lopes, A.; de Carvalho, M.M. Evolution of the open innovation paradigm: Towards a contingent conceptual model. Technol. Forecast. Soc. Chang. 2018, 132, 284–298. [Google Scholar] [CrossRef]
- Zhang, Y.; Pu, S.; Lv, X.; Gao, Y.; Ge, L. Global trends and prospects in microplastics research: A bibliometric analysis. J. Hazard. Mater. 2020, 400, 123110. [Google Scholar] [CrossRef]
- Yao, L.; Hui, L.; Yang, Z.; Chen, X.; Xiao, A. Freshwater microplastics pollution: Detecting and visualizing emerging trends based on citespace ii. Chemosphere 2020, 245, 125627. [Google Scholar] [CrossRef]
- Kamali, M.; Jahaninafard, D.; Mostafaie, A.; Davarazar, M.; Gomes, A.P.D.; Tarelho, L.A.C.; Dewil, R.; Aminabhavi, T.M. Scientometric analysis and scientific trends on biochar application as soil amendment. Chem. Eng. J. 2020, 395, 125128. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Shen, Z.; Chi, M.; Lv, C.; Li, C.; Bai, L.; Thabet, H.K.; El-Bahy, S.M.; Ibrahim, M.M.; et al. Investigation on the evolution of hydrothermal biochar. Chemosphere 2022, 307, 135774. [Google Scholar] [CrossRef]
- de Castilhos Ghisi, N.; Zuanazzi, N.R.; Fabrin, T.M.C.; Oliveira, E.C. Glyphosate and its toxicology: A scientometric review. Sci. Total Environ. 2020, 733, 139359. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, J.; Zhang, Y.; Wang, J.; He, S.; Zhou, X. Study on sustainable urbanization literature based on web of science, scopus, and China national knowledge infrastructure: A scientometric analysis in citespace. J. Clean. Prod. 2020, 264, 121537. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Sang, P. A bibliometric review of studies on construction and demolition waste management by using citespace. Energy Build. 2022, 258, 111822. [Google Scholar] [CrossRef]
- Davarazar, M.; Mostafaie, A.; Jahanianfard, D.; Davarazar, P.; Ghiasi, S.A.B.; Gorchich, M.; Nemati, B.; Kamali, M.; Aminabhavi, T.M. Treatment technologies for pharmaceutical effluents-a scientometric study. J. Environ. Manag. 2020, 254, 109800. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Zhang, J.; Fu, C.; Zhang, X. Progress in urban metabolism research and hotspot analysis based on citespace analysis. J. Clean. Prod. 2021, 281, 125224. [Google Scholar] [CrossRef]
- Fu, L.; Mao, S.; Chen, F.; Zhao, S.; Su, W.; Lai, G.; Yu, A.; Lin, C.T. Graphene-based electrochemical sensors for antibiotic detection in water, food and soil: A scientometric analysis in citespace (2011–2021). Chemosphere 2022, 297, 134127. [Google Scholar] [CrossRef]
- Yu, D.J.; Xu, C. Mapping research on carbon emissions trading: A co-citation analysis. Renew. Sustain. Energy Rev. 2017, 74, 1314–1322. [Google Scholar] [CrossRef]
- Li, L.; Liu, X.J.; Zhang, X.Y. Uncovering the research progress and hotspots on the public use of recycled water: A bibliometric perspective. Environ. Sci. Pollut. Res. 2021, 28, 44845–44860. [Google Scholar] [CrossRef]
- Shi, J.J.; Shi, S.Q.; Shi, S.; Jia, Q.L.; Yuan, G.Z.; Chu, Y.G.; Wang, H.; Hu, Y.H.; Cui, H.M. Bibliometric analysis of potassium channel research. Channels 2020, 14, 18–27. [Google Scholar] [CrossRef]
- Beck, M.W.; Brumbaugh, R.D.; Airoldi, L.; Carranza, A.; Coen, L.D.; Crawford, C.; Defeo, O.; Edgar, G.; Hancock, B.; Kay, M.; et al. Shellfish Reefs at Risk: A Global Analysis of Problems and Solutions; The Nature Conservancy: Arlington, VA, USA, 2009; 52p. [Google Scholar]
- Baggett, L.P.; Powers, S.P.; Brumbaugh, R.; Coen, L.D.; DeAngelis, B.; Greene, J.; Hancock, B.; Morlock, S. Oyster Habitat Restoration Monitoring and Assessment Handbook; The Nature Conservancy: Arlington, VA, USA, 2014. [Google Scholar]
- zu Ermgassen, P.; Hancock, B.; DeAngelis, B.; Greene, J.; Schuster, E.; Spalding, M.; Brumbaugh, R. Setting Objectives for Oyster Habitat Restoration Using Ecosystem Services: A Manager’s Guide; The Nature Conservancy: Arlington, VA, USA, 2016; 76p. [Google Scholar]
- Chen, C.; Leydesdorff, L. Patterns of connections and movements in dual-map overlays: A new method of publication portfolio analysis. J. Assoc. Inf. Sci. Technol. 2014, 65, 334–351. [Google Scholar] [CrossRef]
- Aryadoust, V.; Ang, B.H. Exploring the frontiers of eye tracking research in language studies: A novel co-citation scientometric review. Comput. Assist. Lang. Learn. 2021, 34, 898–933. [Google Scholar] [CrossRef]
- Grabowski, J.H.; Brumbaugh, R.D.; Conrad, R.F.; Keeler, A.G.; Opaluch, J.J.; Peterson, C.H.; Piehler, M.F.; Powers, S.P.; Smyth, A.R. Economic Valuation of Ecosystem Services Provided by Oyster Reefs. BioScience 2012, 62, 900–909. [Google Scholar] [CrossRef]
- Airoldi, L.; Beck, M.W. Loss, status and trends for coastal marine habitats of Europe. Oceanogr. Mar. Biol. 2007, 45, 345–405. [Google Scholar]
- Lenihan, H.S.; Peterson, C.H. How habitat degradation through fishery disturbance enhances impacts of hypoxia on oyster reefs. Ecol. Appl. 1998, 8, 128–140. [Google Scholar] [CrossRef]
- Bahr, L.M.; Lanier, W.P. The Ecology of Intertidal Oyster Reefs of the South Atlantic Coast: A Community Profile; FWS/OBS-81/15; U.S. Fish Wildlife Service, Office of Biological Services: Washington, DC, USA, 1981; 105p.
- Dellapenna, T.M. Oyster reef. In Encyclopedia of Estuaries; Kennish, M.J., Ed.; Springer: Dordrecht, The Netherlands, 2016; pp. 470–474. [Google Scholar]
- Straquadine, N.R.W.; Kudela, R.M.; Gobler, C.J. Hepatotoxic shellfish poisoning: Accumulation of microcystins in eastern oysters (crassostrea virginica) and asian clams (corbicula fluminea) exposed to wild and cultured populations of the harmful cyanobacteria, microcystis. Harmful Algae 2022, 115, 102236. [Google Scholar] [CrossRef]
- Harding, J.M.; Mann, R. Estimates of naked goby (gobiosoma bosc), striped blenny (chasmodes bosquianus) and eastern oyster (Crassostrea virginica) larval production around a restored chesapeake bay oyster reef. Bull. Mar. Sci. 2000, 66, 29–45. [Google Scholar]
- Rodney, W.S.; Paynter, K.T. Comparisons of macrofaunal assemblages on restored and non-restored oyster reefs in mesohaline regions of chesapeake bay in maryland. J. Exp. Mar. Biol. Ecol. 2006, 335, 39–51. [Google Scholar] [CrossRef]
- Lipcius, R.N.; Burke, R.P. Successful recruitment, survival and long-term persistence of eastern oyster and hooked mussel on a subtidal, artificial restoration reef system in chesapeake bay. PLoS ONE 2018, 13, e0204329. [Google Scholar] [CrossRef]
- Plutchak, R.; Major, K.; Cebrian, J.; Foster, C.D.; Miller, M.E.C.; Anton, A.; Sheehan, K.L.; Heck, K.L.; Powers, S.P. Impacts of oyster reef restoration on primary productivity and nutrient dynamics in tidal creeks of the north central gulf of mexico. Estuaries Coasts 2010, 33, 1355–1364. [Google Scholar] [CrossRef]
- La Peyre, M.; Furlong, J.; Brown, L.A.; Piazza, B.P.; Brown, K. Oyster reef restoration in the northern gulf of mexico: Extent, methods and outcomes. Ocean Coast. Manag. 2014, 89, 20–28. [Google Scholar] [CrossRef]
- Pine, W.E.; Johnson, F.A.; Frederick, P.C.; Coggins, L.G. Adaptive management in practice and the problem of application at multiple scales-insights from oyster reef restoration on florida’s gulf coast. Mar. Coast. Fish. 2022, 14, e10192. [Google Scholar] [CrossRef]
- Powers, S.P.; Peterson, C.H.; Grabowski, J.H.; Lenihan, H.S. Success of constructed oyster reefs in no-harvest sanctuaries: Implications for restoration. Mar. Ecol. Prog. Ser. 2009, 389, 159–170. [Google Scholar] [CrossRef]
- Brown, L.A.; Furlong, J.N.; Brown, K.M.; La Peyre, M.K. Oyster reef restoration in the northern gulf of mexico: Effect of artificial substrate and age on nekton and benthic macroinvertebrate assemblage use. Restor. Ecol. 2014, 22, 214–222. [Google Scholar] [CrossRef]
- Waldbusser, G.G.; Powell, E.N.; Mann, R. Ecosystem effects of shell aggregations and cycling in coastal waters: An example of chesapeake bay oyster reefs. Ecology 2013, 94, 895–903. [Google Scholar] [CrossRef]
- Pfirrmann, B.W.; Seitz, R.D. Ecosystem services of restored oyster reefs in a Chesapeake Bay tributary: Abundance and foraging of estuarine fishes. Mar. Ecol. Prog. Ser. 2019, 628, 155–169. [Google Scholar] [CrossRef]
- Piehler, M.F.; Smyth, A.R. Habitat-specific distinctions in estuarine denitrification affect both ecosystem function and services. Ecosphere 2011, 2, 12. [Google Scholar] [CrossRef]
- Locher, B.; Hurst, N.R.; Walters, L.J.; Chambers, L.G. Juvenile oyster (Crassostrea virginica) biodeposits contribute to a rapid rise in sediment nutrients on restored intertidal oyster reefs (Mosquito Lagoon, FL, USA). Estuaries Coasts 2021, 44, 1363–1379. [Google Scholar] [CrossRef]
- Troast, B.V.; Walters, L.J.; Cook, G.S. A multi-tiered assessment of fish community responses to habitat restoration in a coastal lagoon. Mar. Ecol.-Prog. Ser. 2022, 698, 1–14. [Google Scholar] [CrossRef]
- Hynes, S.; Burger, R.; Tudella, J.; Norton, D.; Chen, W. Estimating the costs and benefits of protecting a coastal amenity from climate change-related hazards: Nature based solutions via oyster reef restoration versus grey infrastructure. Ecol. Econ. 2022, 194, 107349. [Google Scholar] [CrossRef]
- Johns, C.M. Understanding barriers to green infrastructure policy and stormwater management in the city of Toronto: A shift from grey to green or policy layering and conversion? J. Plan. Lit. 2022, 37, 152–153. [Google Scholar] [CrossRef]
- Seavey, J.R.; Pine, W.E.; Frederick, P.; Sturmer, L.; Berrigan, M. Decadal changes in oyster reefs in the big bend of Florida’s gulf coast. Ecosphere 2011, 2, 114. [Google Scholar] [CrossRef]
- Draper, A.M.; Weissburg, M.J. Differential effects of warming and acidification on chemosensory transmission and detection may strengthen non-consumptive effects of blue crab predators (Callinectes sapidus) on mud crab prey (Panopeus herbstii). Front. Mar. Sci. 2022, 9, 1518. [Google Scholar] [CrossRef]
- Pereira, R.R.C.; Scanes, E.; Parker, L.M.; Byrne, M.; Cole, V.J.; Ross, P.M. Restoring the flat oyster Ostrea angasi in the face of a changing climate. Mar. Ecol.-Prog. Ser. 2019, 625, 27–39. [Google Scholar] [CrossRef]
Rating | Country | Year a | Centrality b | Frequency | Average c | Contribution (%) |
---|---|---|---|---|---|---|
1 | USA | 1981 | 0.52 | 712 | 17 | 67.7 |
2 | Australia | 1999 | 0.23 | 85 | 4 | 8.1 |
3 | Netherlands | 1991 | 0.10 | 52 | 2 | 4.9 |
4 | Peoples R China | 2007 | 0.02 | 39 | 3 | 3.7 |
5 | England | 2006 | 0.26 | 36 | 2 | 3.4 |
6 | France | 1998 | 0.08 | 30 | 1 | 2.8 |
7 | Germany | 2003 | 0.02 | 30 | 2 | 2.8 |
8 | Canada | 1997 | 0.02 | 24 | 1 | 2.3 |
9 | Argentina | 2004 | 0.00 | 15 | 1 | 1.4 |
10 | Scotland | 2016 | 0.02 | 15 | 3 | 1.4 |
Rating | Author | Country | Count | Year | Contribution (%) |
---|---|---|---|---|---|
1 | Grabowski, J.H. | USA | 34 | 2000 | 3.2 |
2 | Walters, L.J. | USA | 29 | 2002 | 2.8 |
3 | Powers, S.P. | USA | 24 | 2002 | 2.3 |
4 | Eggleston, D.B. | USA | 23 | 1998 | 2.2 |
5 | Peterson, C.H. | USA | 23 | 1998 | 2.2 |
6 | Powell, E.N. | USA | 19 | 1987 | 1.8 |
7 | La Peyer, M. | USA | 19 | 2005 | 1.8 |
8 | Piehler, M.F. | USA | 18 | 2011 | 1.7 |
9 | Mann, R. | USA | 18 | 1998 | 1.7 |
10 | Harding, J.M. | USA | 17 | 1999 | 1.6 |
Rating | Citing Journal | Count | Contribution (%) | Impact Factor |
---|---|---|---|---|
1 | Journal of Shellfish Research | 92 | 8.7 | 1.218 |
2 | Marine Ecology Progress Series | 77 | 7.3 | 2.915 |
3 | Estuaries and Coasts | 55 | 5.2 | 3.032 |
4 | Journal of Experimental Marine Biology and Ecology | 38 | 3.6 | 2.476 |
5 | PLoS ONE | 31 | 2.9 | 3.752 |
6 | Restoration Ecology | 31 | 2.9 | 4.181 |
7 | Frontiers in Marine Science | 24 | 2.3 | 5.247 |
8 | Estuarine Coastal and Shelf Science | 23 | 2.2 | 3.229 |
9 | Ecological Engineering | 19 | 1.8 | 4.379 |
10 | Journal of Sea Research | 19 | 1.8 | 2.287 |
Rating | Cited Journal | Centrality | Frequency |
---|---|---|---|
1 | Marine Ecology Progress Series | 0.02 | 788 |
2 | Journal of Experimental Marine Biology and Ecology | 0.02 | 597 |
3 | Journal of Shellfish Research | 0.05 | 574 |
4 | Science | 0.03 | 510 |
5 | Estuaries | 0.05 | 483 |
6 | Ecology | 0.11 | 471 |
7 | Estuarine Coastal and Shelf Science | 0.04 | 467 |
8 | Marine Biology | 0.04 | 446 |
9 | Bioscience | 0.14 | 438 |
10 | Estuarine Coastal | 0.00 | 382 |
Rating | Title | Year | Author | Journal | Citations |
---|---|---|---|---|---|
1 | Loss, status and trends for coastal marine habitats of Europe | 2007 | Airoldi, L. and Beck, M.W. | Oceanography and Marine Biology | 750 [59] |
2 | Oyster Reefs at Risk and Recommendations for Conservation, Restoration, and Management | 2011 | Beck, M.W.; Brumbaugh, R.D.; Airoldi, L.; et al. | BioScience | 738 [1] |
3 | How habitat degradation through fishery disturbance enhances impacts of hypoxia on oyster reefs | 1998 | Lenihan, H.S. and Peterson, C.H. | Ecological Applications | 324 [60] |
4 | The cost and feasibility of marine coastal restoration | 2016 | Bayraktarov, E.; Saunders, M.I.; Abdullah, S.; et al. | Ecological Applications | 322 |
5 | Economic Valuation of Ecosystem Services Provided by Oyster Reefs | 2012 | Grabowski, J.H.; Brumbaugh, R.D.; Conrad, R.F.; et al. | BioScience | 320 [58] |
6 | The role of ecosystems in coastal protection: Adapting to climate change and coastal hazards | 2014 | Spalding, M.D.; Ruffo, S.; Lacambra, C.; et al. | Ocean and Coastal Management | 290 |
7 | Epizootiology of Perkinsus marinus disease of oysters in Chesapeake Bay, with emphasis on data since 1985 | 1996 | Burreson, E.M. and Calvo, L.M.R. | Journal of Shellfish Research | 286 |
8 | Habitat complexity disrupts predator-prey interactions but not the trophic cascade on oyster reefs | 2004 | Grabowski, J.H. | Ecology | 284 |
9 | Estimated enhancement of fish production resulting from restoring oyster reef habitat: quantitative valuation | 2003 | Peterson, C.H.; Grabowski, J.H. and Powers, S.P. | Marine Ecology Progress Series | 284 [9] |
10 | Physical-biological coupling on oyster reefs: How habitat structure influences individual performance | 1999 | Lenihan, H.S. | Ecological Monographs | 279 |
Rating | Keyword | Centrality | Frequency | Year |
---|---|---|---|---|
1 | oyster reef | 0.03 | 293 | 1990 |
2 | Crassostrea virginica | 0.09 | 270 | 1992 |
3 | Chesapeake Bay | 0.09 | 169 | 1990 |
4 | restoration | 0.02 | 159 | 2003 |
5 | eastern oyster | 0.05 | 115 | 1996 |
6 | habitat | 0.05 | 106 | 1996 |
7 | ecosystem service | 0.05 | 101 | 2008 |
8 | growth | 0.01 | 93 | 1997 |
9 | conservation | 0.02 | 83 | 2002 |
10 | recruitment | 0.05 | 80 | 1991 |
11 | population | 0.04 | 71 | 1991 |
12 | community | 0.06 | 70 | 1991 |
13 | fish | 0.02 | 68 | 1996 |
14 | impact | 0.04 | 67 | 1999 |
15 | pattern | 0.01 | 57 | 1994 |
16 | reef | 0.02 | 54 | 1992 |
17 | Crassostrea gigas | 0.08 | 53 | 1992 |
18 | bay | 0.02 | 53 | 1999 |
19 | settlement | 0.03 | 46 | 1998 |
20 | dynamics | 0.08 | 46 | 1996 |
21 | Gulf of Mexico | 0.04 | 45 | 1997 |
22 | ecosystem | 0.04 | 42 | 1995 |
23 | climate change | 0.07 | 39 | 2004 |
24 | estuary | 0.03 | 39 | 1990 |
25 | survival | 0.03 | 37 | 2001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.; Lu, D.; Sun, L.; Mo, W.; Shen, M.; Li, M.; Li, C.; Zhang, M.; Cheng, J.; Wang, D.; et al. Development Trends, Current Hotspots, and Research Frontiers of Oyster Reefs: A Bibliometric Analysis Based on CiteSpace. Water 2023, 15, 3619. https://doi.org/10.3390/w15203619
Cheng J, Lu D, Sun L, Mo W, Shen M, Li M, Li C, Zhang M, Cheng J, Wang D, et al. Development Trends, Current Hotspots, and Research Frontiers of Oyster Reefs: A Bibliometric Analysis Based on CiteSpace. Water. 2023; 15(20):3619. https://doi.org/10.3390/w15203619
Chicago/Turabian StyleCheng, Jie, Duian Lu, Li Sun, Wei Mo, Mengnan Shen, Ming Li, Chenyang Li, Ming Zhang, Jun Cheng, Degang Wang, and et al. 2023. "Development Trends, Current Hotspots, and Research Frontiers of Oyster Reefs: A Bibliometric Analysis Based on CiteSpace" Water 15, no. 20: 3619. https://doi.org/10.3390/w15203619
APA StyleCheng, J., Lu, D., Sun, L., Mo, W., Shen, M., Li, M., Li, C., Zhang, M., Cheng, J., Wang, D., & Tan, Y. (2023). Development Trends, Current Hotspots, and Research Frontiers of Oyster Reefs: A Bibliometric Analysis Based on CiteSpace. Water, 15(20), 3619. https://doi.org/10.3390/w15203619