Monitoring Sediment Transport in Certain Harbor Launches in the Southeastern Black Sea
Abstract
:1. Introduction
1.1. Distribution of Fishery Coastal Structures in Türkiye
1.2. Shoaling Problems on the Turkish Coast
2. Study Area
3. Materials and Methods
3.1. Field Surveys
3.2. Sea Level Measurement
3.3. Sediment Properties of the Fields
3.4. Determination of Off-Shore Wave Conditions in the Study Area
4. Results and Discussion
4.1. Shallow-Water Surveys
4.2. Determining the Examined Areas
4.3. Evaluation of Bathymetric Changes in the Harbor Launches
4.3.1. Sandıktaş Harbor Launch
4.3.2. Yanıktaş Harbor Launch
4.3.3. Sarayköy Harbor Launch
5. Conclusions
- Although Sandıktaş has the longest breakwater length compared to the other harbors, approximately 13,200 m3 of accumulation occurred inside the breakwater and the entrance of the harbor launch annually. Accumulation of 1100 m3 and 270 m3 was observed at the same location for Sarayköy and Yanıktaş, respectively.
- No shoaling effect was observed in the Yanıktaş HL, while a serious shoaling problem was found in the Sandıktaş harbor launch due to the location of the harbor launch, the positioning of the breakwater, and the angle between the main breakwater and the dominant wave direction.
- The sediment transport rate was negligibly low at depths greater than −7 m for all study areas.
- The angle formed by the second part of the main breakwater with the direction of the dominant wave is one of the most important parameters.
- The location of the harbor launch and the positioning of the breakwater are very important. The construction of a longer breakwater is not the only solution to blocking sedimentation due to shoaling.
- The direction of coastal sediment transport was from west to east.
- An additional extension to the main breakwater in Sandıktaş was not sufficiently effective for blocking sedimentation due to shoaling.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tourlioti, P.N.; Portman, M.E.; Tzoraki, O.; Pantelakis, I. Interacting with the coast: Residents’ knowledge and perceptions about coastal erosion (Mytilene, Lesvos Island, Greece). Ocean Coast. Manag. 2021, 210, 105705. [Google Scholar] [CrossRef]
- Cooper, J.A.G.; McKenna, J. Social justice in coastal erosion management: The temporal and spatial dimensions. Geoforum 2008, 39, 294–306. [Google Scholar] [CrossRef]
- Petrakis, S.; Alexandrakis, G.; Poulos, S. Recent and future trends of beach zone evolution in relation to its physical characteristics: The case of the Almiros bay (Island of Crete, south Aegean sea). Glob. Nest J. 2014, 16, 104–113. [Google Scholar] [CrossRef]
- Huang, Y.; Jin, P. Impact of human interventions on coastal and marine geological hazards: A review. Bull. Eng. Geol. Environ. 2018, 77, 1081–1090. [Google Scholar] [CrossRef]
- Mentaschi, L.; Vousdoukas, M.I.; Pekel, J.F.; Voukouvalas, E.; Feyen, L. Global long-term observations of coastal erosion and accretion. Sci. Rep. 2018, 8, 12876. [Google Scholar] [CrossRef]
- Neelamani, S. Coastal erosion and accretion in Kuwait–Problems and management strategies. Ocean Coast. Manag. 2017, 156, 76–91. [Google Scholar] [CrossRef]
- Walker, J.R.; Williams, P.J.; Dunham, J.W. Santa Cruz Harbor Shoaling Study. Santa Cruz Harbor, California; Reports Prepared for the San Francisco District, US Army Corps of Engineers; US Army Corps of Engineers: Washington, DC, USA, 1978.
- Dayananda, H.V.; Gerritsen, F. Sedimentation studies on a small harbor on a coast of high littoral drift. In Proceedings of the International Conference on Coastal and Port Engineering in Developing Countries, Colombo, Sri Lanka, 20–26 March 1983. [Google Scholar]
- Parchure, T.M.; Teeter, A.M. Potential Methods for Reducing Shoaling in Harbors and Navigation Channels; Technical Report, OCLC: 230741604; US Army Engineer Research and Development Center: Vicksburg, MA, USA, 2003. [Google Scholar]
- Parchure, T.M. Structural Methods to Reduce Navigation Channel Shoaling; Technical Report, OCLC: 62148217; US Army Engineer Research and Development Center: Vicksburg, MA, USA, 2005. [Google Scholar]
- Hughes, S.A.; Hales, L.Z. Shoaling of Aguadilla Harbor, Puerto Rico; Technical Report, OCLC: 155845260; US Army Engineer Research and Development Center: Vicksburg, MA, USA, 2007. [Google Scholar]
- Bayraktar, E.A. Coastal Effects of T Groins and Shoaling of Fishery Harbors in the Eastern Black Sea Coasts. Master’s Thesis, Karadeniz Technical University, Trabzon, Türkiye, 2009. [Google Scholar]
- Süme, V.; Yüksek, Ö. Investigation of the shoaling of fishery coastal structures in the Eastern Black Sea coast. J. Gazi Univ. Fac. Eng. Archit. 2017, 33, 843–852. [Google Scholar] [CrossRef]
- Karasu, S.; Marangoz, H.O.; Gülkaya, E.; Akpınar, A.; Ceylan, Y.; Yılmaz, E. Performance based assessment of a small-scale artificially nourished beach. Ocean Coast. Manag. 2023, 224, 106827. [Google Scholar] [CrossRef]
- Gao, J.; Shi, H.; Zang, J.; Liu, Y. Mechanism analysis on the mitigation of harbor resonance by periodic undulating topography. Ocean Eng. 2023, 281, 114923. [Google Scholar] [CrossRef]
- Gao, J.; Ma, X.; Dong, G.; Chen, H.; Liu, Q.; Zang, J. Investigation on the effects of Bragg reflection on harbor oscillations. Coast. Eng. 2021, 170, 103977. [Google Scholar] [CrossRef]
- Duplančić Leder, T.; Baučić, M.; Leder, N.; Gilić, F. Optical satellite-derived bathymetry: An overview and wos and scopus bibliometric analysis. Remote Sens. 2023, 15, 1294. [Google Scholar] [CrossRef]
- Guo, X.; Jin, X.; Jin, S. Shallow Water Bathymetry Mapping from ICESat-2 and Sentinel-2 Based on BP Neural Network Model. Water 2022, 14, 3862. [Google Scholar] [CrossRef]
- Lubac, B.; Burvingt, O.; Nicolae Lerma, A.; Sénéchal, N. Performance and Uncertainty of Satellite-Derived Bathymetry Empirical Approaches in an Energetic Coastal Environment. Remote Sens. 2022, 14, 2350. [Google Scholar] [CrossRef]
- Evagorou, E.; Argyriou, A.; Papadopoulos, N.; Mettas, C.; Alexandrakis, G.; Hadjimitsis, D. Evaluation of Satellite-Derived Bathymetry from High and Medium-Resolution Sensors Using Empirical Methods. Remote Sens. 2022, 14, 772. [Google Scholar] [CrossRef]
- Bergsma, E.W.; Almar, R.; Rolland, A.; Binet, R.; Brodie, K.L.; Bak, A.S. Coastal morphology from space: A showcase of monitoring the topography-bathymetry continuum. Remote Sens. Environ. 2021, 261, 112469. [Google Scholar] [CrossRef]
- Jagalingam, P.; Akshaya, B.J.; Hegde, A.V. Bathymetry mapping using Landsat 8 satellite imagery. Procedia Eng. 2015, 116, 560–566. [Google Scholar] [CrossRef]
- Guo, Y.; Feng, C.; Xu, W.; Liu, Y.; Su, D.; Qi, C.; Dong, Z. Water-land classification for single-wavelength airborne LiDAR bathymetry based on waveform feature statistics and point cloud neighborhood analysis. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103268. [Google Scholar] [CrossRef]
- Janowski, L.; Wroblewski, R.; Rucinska, M.; Kubowicz-Grajewska, A.; Tysiac, P. Automatic classification and mapping of the seabed using airborne LiDAR bathymetry. Eng. Geol. 2022, 301, 106615. [Google Scholar] [CrossRef]
- Wang, C.; Li, Q.; Liu, Y.; Wu, G.; Liu, P.; Ding, X. A comparison of waveform processing algorithms for single-wavelength LiDAR bathymetry. ISPRS J. Photogramm. Remote Sens. 2015, 101, 22–35. [Google Scholar] [CrossRef]
- Szafarczyk, A.; Toś, C. The use of green laser in LiDAR bathymetry: State of the art and recent advancements. Sensors 2022, 23, 292. [Google Scholar] [CrossRef]
- Alevizos, E.; Oikonomou, D.; Argyriou, A.V.; Alexakis, D.D. Fusion of drone-Based RGB and multi-spectral imagery for shallow water bathymetry inversion. Remote Sens. 2022, 14, 1127. [Google Scholar] [CrossRef]
- Xuekui, W.; Qingquing, W. Study on sedimentation characteristics of soft clay. In Proceedings of the 3rd International Conference on Energy Resources and Sustainable Development (ICERSD 2020), Harbin, China, 25–27 December 2020. [Google Scholar] [CrossRef]
- Kimmoun, O.; Hsu, H.C.; Hoffmann, N.; Chabchoub, A. Experiments on uni-directional and nonlinear wave group shoaling. Ocean Dyn. 2021, 71, 1105–1112. [Google Scholar] [CrossRef]
- Bottin, R.R. Design Wave and Shoaling Protection, Ventura Harbor, California; Technical Report, OCLC: 23993027; US Army Engineer Research and Development Center: Vicksburg, MA, USA, 1991. [Google Scholar]
- Günbak, A.; Gökçe, K.T.; Güler, I. Sedimentation and erosion problems of Yakakent Fishery Harbor. In Proceedings of the 23rd International Conference on Coastal Engineering, Venice, Italy, 4–9 October 1992. [Google Scholar]
- Thompson, E.F.; Diramos, I.P.; Bottin, R.R. Comparison of Predicted and Measured Shoaling at Morro Bay Harbor Entrance, California; Technical Report, OCLC: 225248141; US Army Engineer Research and Development Center: Vicksburg, MA, USA, 2002. [Google Scholar]
- Güner, H.A.A.; Yüksel, Y.; Çevik, E.Ö. Determination of shoreline evolution: A case study. In Proceedings of the 2011 Conference on Coastal Engineering Practice, San Diego, CA, USA, 21–24 August 2011; World Scientific: Singapore, 2011. [Google Scholar]
- Moritz, H.R.; Norton, J.K.; Groth, K.C. Evaluating Opportunities to Reduce Shoaling within the Federal Navigation Channel at Port Orford: A Relative Comparison of Breakwater Repair Alternatives; Supplemental Project Report; US Army Engineer Research and Development Center: Vicksburg, MA, USA, 2018. [Google Scholar]
- Sharaan, M.; Ibrahim, M.G.; Iskander, M.; Masria, A.; Nadaoka, K. Analysis of sedimentation at the fishing harbor entrance: Case study of El-Burullus, Egypt. J. Coast. Conserv. 2018, 23, 1143–1156. [Google Scholar] [CrossRef]
- Klante, C. Sediment Transport and Bathymetric Change at Hornafjörður Tidal Inlet: Field Data Analysis and Mathematical Modeling; TVVR; Lund University: Lund, Sweden, 2018; Volume 18, Available online: https://lup.lub.lu.se/record/5904bc2d-f7d0-4ec4-95f7-e6f13377417c (accessed on 20 October 2023).
- Mojabi, M.; Hejazi, K.; Karimi, M. Numerical investigation of effective harbor geometry parameters on sedimentation inside square harbors. Int. J. Mar. Sci. Eng. 2013, 3, 57–68. [Google Scholar]
- Bottin, R.R.; Mize, M.G. St. Paul Harbor, St. Paul Island, Alaska Design for Wave and Shoaling Protection; Technical Report, OCLC: 18736041; US Army Engineer Research and Development Center: Vicksburg, MA, USA, 1988. [Google Scholar]
- Özölçer, İ.H.; Kömürcü, M.İ.; Birben, A.R.; Yüksek, Ö.; Karasu, S. Effects of T-shape groin parameters on beach accretion. Ocean Eng. 2006, 33, 382–403. [Google Scholar] [CrossRef]
- Yüksek, Ö. Effects of breakwater parameters on shoaling of fishery harbors. J. Waterw. Port Coast. Ocean Eng. 1995, 121, 13–22. [Google Scholar] [CrossRef]
- Seabergh, W.C.; McCoy, J.W. Prevention of Shoaling at Little Lake Harbor, Michigian; Technical Report, OCLC: 870338420; U.S. Army Engineer Waterways Experiment Station: Vicksburg, MS, USA, 1982. [Google Scholar]
- Simav, Ö.; Şeker, D.Z.; Tanık, A.; Gazioğlu, C. Determination of risk areas of Turkish coasts with coastal vulnerability indicator. Map Mag. 2015, 153, 1–8. [Google Scholar]
- DLH. Fishery Coastal Structures Situation and Needs Analysis, 1; DLH: Ankara, Türkiye, 2011. [Google Scholar]
- Karataş, E.; Karataş, A. The importance of fishery production as an income source in Türkiye. J. Surv. Eng. Fish. Sci. 2017, 4, 38–53. [Google Scholar]
- DLH. Fishery Coastal Structures Situation and Needs Analysis, 2; DLH: Ankara, Türkiye, 2011. [Google Scholar]
- TUSAGA-Active System Working Principle. Available online: https://tkgm.gov.tr/sites/default/files/2020-10/tusaga-aktif_sistemi.pdf (accessed on 28 June 2020).
- Alpar, B.; Doğan, E.; Yüce, H.; Altıok, H. Sea level changes along the Turkish coasts of the Black Sea, the Aegean Sea and the Eastern Mediterranean. Mediterr. Mar. Sci. 2000, 1, 141–156. [Google Scholar] [CrossRef]
- Volkov, D.L.; Landerer, F.W. Internal and external forcing of sea level variability in the Black Sea. Clim. Dyn. J. 2015, 45, 2633–2646. [Google Scholar] [CrossRef]
- Defant, A. Physical Oceanography; Macmillan: Plymouth, MI, USA, 2007; pp. 1–827. [Google Scholar]
- ASTM 422; Standard Test Method for Particle-Size Analysis of Soils. ASTM: Philadelphia, PA, USA, 2007.
- ASTM 2487; Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM: Philadelphia, PA, USA, 2006.
- Booij, N.; Holthuijsen, L.H.; Ris, R.C. A third-generation wave model for coastal regions. Model description and validation. J. Geophys. Res. 1999, 104, 7649–7666. [Google Scholar] [CrossRef]
- Holthuijsen, L.H.; Booij, N.; Ris, R.C. A spectral wave model for the coastal zone. In Proceedings of the 2nd International Symposium on Ocean Wave Measurement and Analysis, New Orleans, LA, USA, 25–28 July 1993; pp. 630–641. [Google Scholar]
- Akpınar, A.; Bingölbali, B.; Van Vledder, G.P. Wind and wave characteristics in the Black Sea based on the SWAN wave model forced with the CFSR winds. Ocean Eng. 2016, 126, 276–298. [Google Scholar] [CrossRef]
- General Bathymetric Chart of the Oceans (GEBCO) Bathymetry Data. 2019. Available online: https://www.gebco.net/data_and_products/gridded_bathymetry_data (accessed on 20 November 2022).
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.T.; Chuang, H.Y.; Iredell, M.; et al. The NCEP climate forecast system version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Komen, G.J.; Cavaleri, L.; Donelan, M.; Hasselmann, K.; Hasselmann, S.; Janssen, P.A.E.M. Dynamics and Modeling of Ocean Waves; Cambridge University Press: La Vergne, TN, USA, 1994. [Google Scholar]
- Janssen, P.A. Quasi-Linear theory of wind-wave generation applied to wave forecasting. J. Phys. Oceanogr. 1991, 21, 1631–1642. [Google Scholar] [CrossRef]
- Janssen, P.A. Consequences of the effect of surface gravity waves on the mean air flow. In Proceedings of the International Union of Theoretical and Applied Mechanics (IUTAM), Sydney, Australia, 3–5 June 1991. [Google Scholar]
- Hasselmann, K.; Raney, R.K.; Plant, W.J.; Alpers, W.; Shuchman, R.A.; Lyzenga, D.R.; Rufenach, C.L.; Tucker, M.J. Theory of synthetic aperture radar ocean imagin: A MARSEN view. J. Geophys. Res. Oceans 1985, 90, 4659–4686. [Google Scholar] [CrossRef]
- Zijlema, M.; Van Vledder, G.P.; Holthuijsen, L.H. Bottom friction and wind drag for wave models. Coast. Eng. 2012, 65, 19–26. [Google Scholar] [CrossRef]
- Battjes, J.A.; Janssen, J.P.F.M. Energy loss and set-up due to breaking of random waves. In Proceedings of the 16th International Conference on Coastal Engineering, Hamburg, Germany, 27 August–3 September 1978. [Google Scholar]
- Eldeberky, Y.; Battjes, J.A. Spectral modeling of wave breaking: Application to Boussinesq equations. J. Geophys. Res. Oceans 1996, 101, 1253–1264. [Google Scholar] [CrossRef]
Region | Fishery Harbor (FH) | Harbor Launch (HL) | Other | Total |
---|---|---|---|---|
Eastern and Middle Black Sea | 40 | 83 | 2 | 125 |
Western Black Sea | 29 | 12 | 3 | 44 |
Marmara | 66 | 18 | 1 | 85 |
Aegean | 60 | 22 | 3 | 85 |
Mediterranean | 16 | 1 | 2 | 19 |
Internal Water | 3 | 0 | 2 | 5 |
Province | Coastline Length (km) | Fishery Harbor (FH) | Harbor Launch (HL) | Total | % |
---|---|---|---|---|---|
Artvin | 34 | 3 | 5 | 8 | 8.2 |
Rize | 80 | 5 | 34 | 39 | 39.8 |
Trabzon | 135 | 11 | 16 | 27 | 27.5 |
Giresun | 112 | 4 | 20 | 24 | 24.5 |
Total | 361 | 23 | 75 | 98 | 100 |
Region | FCSs | FCS/Total FCSs (%) | ND | ND/FCSs (%) | ND/Total FCSs (%) |
---|---|---|---|---|---|
Black Sea | 169 | 46.6 | 78 | 46.2 | 21.5 |
Marmara | 85 | 23.4 | 69 | 80.3 | 19.0 |
Aegean | 85 | 23.4 | 37 | 43.5 | 10.2 |
Mediterranean | 19 | 5.2 | 16 | 84.2 | 4.4 |
Internal Water | 5 | 1.4 | |||
Total | 363 | 200 | 55.1 |
Province | FCSs | ND | ND/FCSs (%) |
---|---|---|---|
Artvin | 8 | 2 | 25 |
Rize | 39 | 17 | 43.6 |
Trabzon | 27 | 16 | 59.3 |
Giresun | 24 | 15 | 62.5 |
Total | 98 | 50 |
Provinces with FCS | Short Term | Medium Term | Long Term | ||||||
---|---|---|---|---|---|---|---|---|---|
Maintenance | Dredging | Additional Structures | Maintenance | Dredging | Additional Structures | Maintenance | Dredging | Additional Structures | |
Artvin | 2 | - | 1 | - | 2 | 3 | - | - | - |
Rize | 5 | 10 | 14 | 2 | 7 | 8 | - | - | - |
Trabzon | 2 | 3 | 3 | - | 1 | 2 | 1 | 1 | 1 |
Giresun | - | - | - | - | - | - | - | - | - |
Name | Class | District | Short Term | Medium Term | Long Term | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Maintenance | Dredging | Extension | Maintenance | Dredging | Extension | Maintenance | Dredging | Extension | |||
Sarayköy | Harbor Launch | İyidere | - | - | - | Yes | Yes | Yes | - | - | - |
Sandıktaş | Harbor Launch | Derepazarı | - | Yes | - | - | - | - | - | - | Yes |
Yanıktaş | Harbor Launch | Derepazarı | - | - | - | - | Yes | Yes | - | - | - |
Sarayköy Harbor Launch | Sandıktaş Harbor Launch | Yanıktaş Harbor Launch | |
---|---|---|---|
Category | Under operation | Under operation | Under operation |
Main breakwater length (m) | 167 | 290 | 150 |
Secondary breakwater length (m) | 80 | 60 | 0 |
Pier capacity | 0 | 0 | 0 |
Boat capacity | 10 | 20 | 22 |
The angle of the main breakwater with respect to north (in degrees) | 55 | 100 | 90 |
Called ID | Dates | Harbor Launch |
---|---|---|
s1 | 2 June 2016 | Sarayköy |
y1 | 20 June 2016 | Yanıktaş |
s2 | 29 April 2017 | Sarayköy |
n1/y2 | 7 February 2017 | Sandıktaş/Yanıktaş |
s3 | 4 November 2017 | Sarayköy |
n2/y3 | 5 November 2017 | Sandıktaş/Yanıktaş |
n3 | 8 April 2018 | Sandıktaş |
Number of Samples | Sample Weight (g) | Remaining in Sieve No. 200 | Remaining in Sieve No. 4 | d10 (mm) | d30 (mm) | d50 (mm) | d60 (mm) | Cu | Cc | USCS Soil Class |
---|---|---|---|---|---|---|---|---|---|---|
1 | 492 | 100 | 0 | 0.27 | 0.34 | 0.43 | 0.50 | 1.85 | 0.87 | SP |
2 | 456 | 98.2 | 0 | 0.16 | 0.27 | 0.33 | 0.36 | 2.30 | 1.34 | SP |
3 | 484 | 95.5 | 0 | 0.12 | 0.20 | 0.29 | 0.32 | 2.67 | 1.03 | SP |
4 | 776 | 99.5 | 0 | 0.21 | 0.30 | 0.37 | 0.41 | 1.93 | 1.03 | SP |
5 | 942 | 99.6 | 0 | 0.16 | 0.29 | 0.37 | 0.42 | 2.54 | 1.20 | SP |
6 | 998 | 99.8 | 0 | 0.21 | 0.30 | 0.37 | 0.41 | 1.92 | 1.03 | SP |
7 | 314 | 99.4 | 0 | 0.14 | 0.25 | 0.30 | 0.32 | 2.27 | 1.41 | SP |
8 | 928 | 100 | 0 | 0.22 | 0.28 | 0.32 | 0.34 | 1.56 | 1.06 | SP |
9 | 416 | 99.5 | 0 | 0.14 | 0.23 | 0.29 | 0.32 | 2.34 | 1.24 | SP |
10 | 292 | 95.2 | 0 | 0.11 | 0.15 | 0.20 | 0.23 | 2.05 | 0.87 | SP |
11 | 162 | 90.1 | 0 | 0.11 | 0.13 | 0.16 | 0.18 | 1.72 | 0.90 | SC/SM |
Number of Samples | Sample Weight (g) | Remaining in Sieve No. 200 | Remaining in Sieve No. 4 | d10 (mm) | d30 (mm) | d50 (mm) | d60 (mm) | Cu | Cc | USCS Soil Class |
---|---|---|---|---|---|---|---|---|---|---|
1 | 554 | 99.6 | 0 | 0.28 | 0.43 | 0.52 | 0.58 | 2.07 | 1.14 | SP |
2 | 346 | 99.4 | 0 | 0.28 | 0.46 | 0.55 | 0.60 | 2.11 | 1.23 | SP |
3 | 396 | 100 | 0 | 0.45 | 0.66 | 0.89 | 0.96 | 2.13 | 1.01 | SP |
4 | 308 | 100 | 0 | 0.28 | 0.45 | 0.54 | 0.60 | 2.13 | 1.19 | SP |
5 | 40 | 100 | 0 | 0.15 | 0.28 | 0.43 | 0.50 | 3.32 | 1.04 | SP |
6 | 300 | 100 | 0 | 0.45 | 0.57 | 0.73 | 0.83 | 1.86 | 0.88 | SP |
7 | 236 | 100 | 0 | 0.23 | 0.34 | 0.47 | 0.53 | 2.29 | 0.97 | SP |
8 | 142 | 100 | 0 | 0.25 | 0.43 | 0.53 | 0.59 | 2.35 | 1.23 | SP |
Difference of Period | Areas | Polygon Area, m2 | Volume Difference, m3 | Mean Vertical Variation, m3/m2 |
---|---|---|---|---|
2. Survey−1. Survey (n2−n1) | Part A | 37,291 | −1498 | −0.04 |
Part B | 27,000 | 3199 | 0.12 | |
Part C | 9648 | 3021 | 0.31 | |
Part D | 16,483 | −139 | −0.01 | |
Part E | 31,873 | 2027 | 0.06 | |
3. Survey−2. Survey (n3−n2) | Part A | 37,581 | −4097 | −0.11 |
Part B | 27,115 | −127 | 0.00 | |
Part C | 10,653 | 5748 | 0.54 | |
Part D | 16,281 | 181 | 0.01 | |
Part E | 32,682 | 14,038 | 0.43 | |
3. Survey−1. Survey (n3−n1) | Part A | 37,372 | −5617 | −0.15 |
Part B | 27,419 | 3222 | 0.12 | |
Part C | 9871 | 8939 | 0.91 | |
Part D | 16,281 | 69 | 0.00 | |
Part E | 32,075 | 15,971 | 0.50 |
Sandıktaş HL | Mean Water Depths (m) | ||||
---|---|---|---|---|---|
A | B | C | D | E | |
1. Survey—7 February 2017 | 4.99 | 5.63 | 0.90 | 6.82 | 3.86 |
2. Survey—5 November 2017 | 5.05 | 5.50 | 0.65 | 6.83 | 3.79 |
3. Survey—8 April 2018 | 5.14 | 5.53 | 0.04 | 6.82 | 3.35 |
Difference of Period | Areas | Polygon Area, m2 | Volume Difference, m3 | Mean Vertical Variation, m3/m2 |
---|---|---|---|---|
2. Survey–1. Survey (y2–y1) | Part A | 53,860 | −8368 | −0.16 |
Part B | 12,555 | 2477 | 0.20 | |
Part C | 6040 | 444 | 0.07 | |
Part D | 72,829 | 1004 | 0.01 | |
3. Survey–2. Survey (y3–y2) | Part A | 54,263 | 921 | 0.02 |
Part B | 12,743 | −11.09 | −0.09 | |
Part C | 6337 | −493 | −0.08 | |
Part D | 72,829 | −9134 | −0.13 | |
3. Survey–1. Survey (y3–y1) | Part A | 53,902 | −7790 | −0.14 |
Part B | 12,743 | 1331 | 0.10 | |
Part C | 6443 | 14.5 | 0.00 | |
Part D | 72,829 | −8135 | −0.11 |
Yanıktaş HL | Mean Water Depths (m) | |||
---|---|---|---|---|
A | B | C | D | |
1. Survey—20 June 2016 | 5.15 | 5.13 | 2.48 | 4.39 |
2. Survey—7 February 2017 | 5.31 | 5.01 | 2.41 | 4.38 |
3. Survey—5 November 2017 | 5.29 | 5.04 | 2.50 | 4.51 |
Difference of Period | Areas | Polygon Area, m2 | Volume Difference, m3 | Mean Vertical Variation, m3/m2 |
---|---|---|---|---|
2. Survey–1. Survey (s2−s1) | Part A | 23,540 | 2173 | 0.09 |
Part B | 5827 | 459 | 0.08 | |
Part C | 3301 | 610 | 0.18 | |
Part D | 20,935 | 2917 | 0.14 | |
Part E | 16,158 | −3384 | −0.21 | |
3. Survey−2. Survey (s3−s2) | Part A | 25,842 | −943 | −0.04 |
Part B | 6230 | 21 | 0 | |
Part C | 3565 | −90 | −0.03 | |
Part D | 21,131 | −3331 | −0.16 | |
Part E | 16,241 | −2724 | −0.17 | |
3. Survey−1. Survey (s3−s1) | Part A | 23,759.5 | 1255 | 0.05 |
Part B | 5822 | 440 | 0.08 | |
Part C | 3301 | 539 | 0.17 | |
Part D | 20,935 | −407 | −0.02 | |
Part E | 16,094 | −6070 | −0.38 |
Sarayköy HL | Mean Water Depths (m) | ||||
---|---|---|---|---|---|
A | B | C | D | E | |
1. Survey—2 June 2016 | 3.82 | 4.37 | 0.36 | 2.36 | 4.94 |
2. Survey—29 April 2017 | 3.73 | 4.29 | 0.18 | 2.22 | 5.14 |
3. Survey—4 November 2017 | 3.76 | 4.29 | 0.22 | 2.38 | 5.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karasu, S.; Marangoz, H.O.; Kocapir, B.H.; Yilmaz, E.; Özölçer, İ.H.; Akpinar, A. Monitoring Sediment Transport in Certain Harbor Launches in the Southeastern Black Sea. Water 2023, 15, 3860. https://doi.org/10.3390/w15213860
Karasu S, Marangoz HO, Kocapir BH, Yilmaz E, Özölçer İH, Akpinar A. Monitoring Sediment Transport in Certain Harbor Launches in the Southeastern Black Sea. Water. 2023; 15(21):3860. https://doi.org/10.3390/w15213860
Chicago/Turabian StyleKarasu, Servet, Hasan Oğulcan Marangoz, Barbaros Hayrettin Kocapir, Enver Yilmaz, İsmail Hakkı Özölçer, and Adem Akpinar. 2023. "Monitoring Sediment Transport in Certain Harbor Launches in the Southeastern Black Sea" Water 15, no. 21: 3860. https://doi.org/10.3390/w15213860
APA StyleKarasu, S., Marangoz, H. O., Kocapir, B. H., Yilmaz, E., Özölçer, İ. H., & Akpinar, A. (2023). Monitoring Sediment Transport in Certain Harbor Launches in the Southeastern Black Sea. Water, 15(21), 3860. https://doi.org/10.3390/w15213860