Cometabolism of Chlorinated Volatile Organic Compounds and 1,4-Dioxane in Groundwater
Abstract
:1. Introduction
2. Biodegradation Pathways
3. Biodegradation Kinetics
4. Substrate Delivery
5. Substrate Quality
6. Inhibitory and Stimulatory Factors
7. Monitoring
Tool | What It Detects | What It Determines | Limitations |
---|---|---|---|
Compound-Specific Isotope Analysis (CSIA) | Fractionation of heavier and lighter stable isotopes of a compound |
|
|
EMD: Quantitative Polymerase Chain Reaction (qPCR), Reverse Transcriptase qPCR (RT-qPCR), and microarrays | qPCR: abundance of a specific gene RT-qPCR: expression level of a specific gene Microarray: abundance of multiple genes | The potential for biodegradation of a contaminant in the groundwater plume |
|
8. Summary
Funding
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Hatzinger, P. “Applying Cometabolism for Treatment of Traditional and Emerging Contaminants at DoD Sites” [Webinar]. SERDP & ESTCP. Published 28 January 2022. Available online: https://www.youtube.com/watch?v=zCdF85FLtHg (accessed on 18 December 2021).
- Anderson, R.H.; Anderson, J.K.; Bower, P.A. Co-occurrence of 1,4-dioxane with tri-chloroethylene in chlorinated solvent groundwater plumes at US Air Force installations: Fact or fiction. Integr. Environ. Assess. Manag. 2012, 8, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Surprenant, K.S. Dioxane. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2000; p. 543. [Google Scholar]
- Chiang, S.Y.D.; Anderson, R.; Wilken, M.; Walecka-Hutchison, C. Practical Perspectives of 1,4-Dioxane Investigation and Remediation. Remediation 2016, 27, 7–27. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (US EPA). The DNAPL Remediation Challenge: Is There a Case for Source Depletion? EPA/600/R-03/143; United States Environmental Protection Agency: Washington, DC, USA, 2003. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/300061GP.PDF?Dockey=300061GP.PDF (accessed on 9 September 2021).
- Looney, B.; Large-Dilute Plumes: Challenges and Opportunities—Introduction and Background. Federal Remediation Technologies Roundtable and the Department of Navy. 2013, CLU-IN Webinar. Available online: https://clu-in.org/conf/tio/FRTRPresents_050113/ (accessed on 9 September 2021).
- Li, F.; Deng, D.Y.; Zeng, L.K.; Abrams, S.; Li, M.Y. Sequential anaerobic and aerobic bioaugmentation for commingled groundwater contamination of trichloroethene and 1,4-dioxane. Sci. Total Environ. 2021, 774, 145118. [Google Scholar] [CrossRef] [PubMed]
- Mohr, T.K.; DiGuiseppi, W.H.; Anderson, J.K.; Hatton, J.W.; Bishop, J.; Selcoe, B.; Kappleman, W.B. Environmental Investigation and Remediation: 1,4-Dioxane and Other Solvent Stabilizers, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Adamson, D.T.; Anderson, R.H.; Mahendra, S.; Newell, C.J. Evidence of 1,4-Dioxane Attenuation at Groundwater Sites Contaminated with Chlorinated Solvents and 1,4-Dioxane. Environ. Sci. Technol. 2015, 49, 6510–6518. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency (US EPA). Problem Formulation of the Risk Evaluation for 1,4-Dioxane; U.S. Environmental Protection Agency–Office of Chemical Safety and Pollution Prevention, Ed.; EPA-740-R1-7012; United States Environmental Protection Agency: Washington, DC, USA, 2018. Available online: https://www.epa.gov/sites/default/files/2018-06/documents/14-dioxane_problem_formulat:ion_5-31-18.pdf (accessed on 9 September 2021).
- Interstate Technology Regulatory Council (ITRC). Environmental Fate, Transport, and Investigation Strategies: 1,4-Dioxane; The Interstate Technology & Regulatory Council Technical Resources for Addressing Environmental Releases of 1,4-Dioxane: Washington, DC, USA, 2020; Available online: https://14d-1.itrcweb.org/environmental-fate-transport-and-investigative-strategies/#gsc.tab=0 (accessed on 9 September 2021).
- Polasko, A.L.; Zulli, A.; Gedalanga, P.B.; Pornwongthong, P.; Mahendra, S. A Mixed Microbial Community for the Biodegradation of Chlorinated Ethenes and 1,4-Dioxane. Environ. Sci. Technol. Lett. 2019, 6, 49–54. [Google Scholar] [CrossRef]
- Hazen, T.C. Cometabolic Bioremediation. In Handbook of Hydrocarbon and Lipid Microbiology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 2505–2514. [Google Scholar]
- United States Environmental Protection Agency (US EPA). Ground Water Issue Paper: Synthesis Report on State of Understanding of Chlorinated Solvent Transformation; EPA/600/R-13/237; United States Environmental Protection Agency: Washington, DC, USA, 2013. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/P100JDPP.PDF?Dockey=P100JDPP.PDF (accessed on 9 September 2021).
- Ryoo, D.; Shim, H.; Canada, K.; Barbieri, P.; Wood, T.K. Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1. Nat. Biotechnol. 2000, 18, 775–778. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (US EPA). Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water; EPA/600/R-98/128; United States Environmental Protection Agency: Washington, DC, USA, 1998. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/30003ONO.PDF?Dockey=30003ONO.PDF (accessed on 9 September 2021).
- Dolinova, I.; Strojsova, M.; Cernik, M.; Nemecek, J.; Machackova, J.; Sevcu, A. Microbial degradation of chloroethenes: A review. Environ. Sci. Pollut. Res. 2017, 24, 13262–13283. [Google Scholar] [CrossRef]
- Air Force Center for Energy and the Environment (AFCEE). Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents. Parsons Corporation 2004. Available online: https://www.frtr.gov/matrix/documents/Enhanced-In-Situ-Reductive-Dechlorinated-for-Groundwater/2004-Principles-and-Practices-of-Enhanced-Anaerobic-Bioremediation-of-Chlorinated-Solvents.pdf (accessed on 9 September 2021).
- Bradley, P.M. Microbial Mineralization of Cis-Dichloroethene and Vinyl Chloride as a Component of Natural Attenuation of Chloroethene Contaminants under Conditions Identified in the Field as Anoxic; U.S.Geological Survey Scientific Investigations Report 2012–5032; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2012.
- Löffler, F.E.; Ritalahti, K.M.; Zinder, S.H. Dehalococcoides and Reductive Dechlorination of Chlorinated Solvents. In Bioaugmentation for Groundwater Remediation. SERDP/ESTCP Remediation Technology Monograph Series; Stroo, H., Leeson, A., Ward, C., Eds.; Springer Science & Business Media, LLC.: New York, NY, USA, 2013; pp. 39–88, 361. [Google Scholar]
- Nzila, A. Update on the cometabolism of organic pollutants by bacteria. Environ. Pollut. 2013, 178, 474–482. [Google Scholar] [CrossRef]
- Cui, Y.; Li, X.; Yan, J.; Lv, Y.; Jin, H.; Wang, J.; Kara-Murdoch, F.; Yang, Y.; Löffler, F.E. Dehalogenimonas etheniformans sp. nov., a formate-oxidizing, organohalide-respiring bacterium isolated from grape pomace. Int. J. Syst. Evol. Microbiol. 2023, 73, 005881. [Google Scholar] [CrossRef]
- Miao, Y.; Heintz, M.B.; Bell, C.H.; Johnson, N.W.; Polasko, A.L.; Favero, D.; Mahendra, S. Profiling microbial community structures and functions in bioremediation strategies for treating 1,4-dioxane-contaminated groundwater. J. Hazard. Mater. 2021, 408, 124457. [Google Scholar] [CrossRef]
- Ramalingam, V.; Cupples, A.M. Anaerobic 1,4-dioxane biodegradation and microbial community analysis in microcosms inoculated with soils or sediments and different electron acceptors. Appl. Microbiol. Biotechnol. 2020, 104, 4155–4170. [Google Scholar] [CrossRef] [PubMed]
- Deng, D.Y.; Pham, D.N.; Li, F.; Li, M.Y. Discovery of an Inducible Toluene Monooxygenase That Cooxidizes 1,4-Dioxane and 1,1-Dichloroethylene in Propanotrophic Azoarcus sp. Strain DD4. Appl. Environ. Microbiol. 2020, 86, e01163-20. [Google Scholar] [CrossRef]
- Hatzinger, P.B.; Banerjee, R.; Rezes, R.; Streger, S.H.; McClay, K.; Schaefer, C.E. Potential for cometabolic biodegradation of 1,4-dioxane in aquifers with methane or ethane as primary substrates. Biodegradation 2017, 28, 453–468. [Google Scholar] [CrossRef] [PubMed]
- Hand, S.; Wang, B.; Chu, K.H. Biodegradation of 1,4-dioxane: Effects of enzyme inducers and trichloroethylene. Sci. Total Environ. 2015, 520, 154–159. [Google Scholar] [CrossRef]
- Li, F.; Deng, D.; Li, M. Distinct Catalytic Behaviors between Two 1,4-Dioxane-Degrading Monooxygenases: Kinetics, Inhibition, and Substrate Range. Environ. Sci. Technol. 2020, 54, 1898–1908. [Google Scholar] [CrossRef]
- Murnane, R.A.; Chen, W.; Hyman, M.; Semprini, L. Long-term cometabolic transformation of 1,1,1-trichloroethane and 1,4-dioxane by Rhodococcus rhodochrous ATCC 21198 grown on alcohols slowly produced by orthosilicates. J. Contam. Hydrol. 2021, 240, 103796. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Li, F.; Wang, W.; Wang, R.; Yang, Y.; Cui, T.; Liu, N.; Li, M. Cometabolic degradation of 1,4-dioxane by a tetrahydrofuran-growing Arthrobacter sp. WN18. Ecotoxicol. Environ. Saf. 2021, 217, 112206. [Google Scholar] [CrossRef]
- Barajas-Rodriguez, F.J.; Freedman, D.L. Aerobic biodegradation kinetics for 1,4-dioxane under metabolic and cometabolic conditions. J. Hazard. Mater. 2018, 350, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Barajas-Rodriguez, F.J.; Murdoch, L.C.; Falta, R.W.; Freedman, D.L. Simulation of in situ biodegradation of 1,4-dioxane under metabolic and cometabolic conditions. J. Contam. Hydrol. 2019, 223, 103464. [Google Scholar] [CrossRef]
- Hyman, M. “Methods for Detecting Monooxygenases Involved in Emerging Contaminant Biodegradation” [Webinar]. Microbial Insights. Published 26 January 2021. Available online: https://register.gotowebinar.com/register/6678793575888629005 (accessed on 21 December 2021).
- Interstate Technology Regulatory Council (ITRC). Case Studies: 1,4-Dioxane; The Interstate Technology & Regulatory Council Technical Resources for Addressing Environmental Releases of 1,4-Dioxane: Washington, DC, USA, 2020; Available online: https://14d-1.itrcweb.org/case-studies/#gsc.tab=0 (accessed on 18 December 2021).
- Lippincott, D.; Streger, S.H.; Streger, C.E.; Schaefer, J.; Hinkle, J.; Stormo, R.J. Steffan. Bioaugmentation and Propane Biosparging for In Situ Biodegradation of 1,4-Dioxane. Groundw. Monit. Remediat. 2015, 35, 81–92. [Google Scholar] [CrossRef]
- Chu, M.-Y.J.; Bennett, P.J.; Dolan, M.E.; Hyman, M.R.; Peacock, A.D.; Bodour, A.; Anderson, R.H.; Mackay, D.M.; Goltz, M.N. Concurrent Treatment of 1,4-Dioxane and Chlorinated Aliphatics in a Groundwater Recirculation System Via Aerobic Cometabolism. Groundw. Monit. Remediat. 2018, 38, 53–64. [Google Scholar] [CrossRef]
- Interstate Technology Regulatory Council (ITRC). Remediation and Treatment Technologies: 1,4-Dioxane; The Interstate Technology & Regulatory Council Technical Resources for Addressing Environmental Releases of 1,4-Dioxane: Washington, DC, USA, 2020; Available online: https://14d-1.itrcweb.org/remediation-and-treatment-technologies/#gsc.tab=0 (accessed on 18 December 2021).
- Meza, L.A.S. Effect of Propane Grade on Growth and Activity of Gaseous Hydrocarbon-Oxidizing Bacteria (deg19920). Master’s Thesis, North Carolina State University, Raleigh, NC, USA, 2020. Available online: https://repository.lib.ncsu.edu/bitstream/handle/1840.20/37247/etd.pdf?sequence=1 (accessed on 21 January 2022).
- Horst, J.F.; Bell, C.H.; Lorenz, A.; Heintz, M.; Miao, Y.; Saling, J.; Favero, D.; Mahendra, S. Bioremediation of 1,4-Dioxane: Successful Demonstration of In Situ and Ex Situ Approaches. Groundw. Monit. Remediat. 2019, 39, 15–24. [Google Scholar] [CrossRef]
- Mahendra, S.; Grostern, A.; Alvarez-Cohen, L. The impact of chlorinated solvent co-contaminants on the biodegradation kinetics of 1,4-dioxane. Chemosphere 2013, 91, 88–92. [Google Scholar] [CrossRef]
- Zhang, S.; Gedalanga, P.B.; Mahendra, S. Advances in bioremediation of 1,4-dioxane-contaminated waters. J. Environ. Manag. 2017, 204, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Deng, D.; Li, F.; Wu, C.; Li, M. Synchronic Biotransformation of 1,4-Dioxane and 1,1-Dichloroethylene by a Gram-Negative Propanotroph Azoarcus sp. DD4. Environ. Sci. Technol. Lett. 2018, 5, 526–532. [Google Scholar] [CrossRef]
- Inoue, D.; Tsunoda, T.; Sawada, K.; Yamamoto, N.; Sei, K.; Ike, M. Stimulatory and inhibitory effects of metals on 1,4-dioxane degradation by four different 1,4-dioxane-degrading bacteria. Chemosphere 2020, 238, 124606. [Google Scholar] [CrossRef]
- Li, M.; Fiorenza, S.; Chatham, J.R.; Mahendra, S.; Alvarez, P.J.J. 1,4-Dioxane biodegradation at low temperatures in Arctic groundwater samples. Water Res. 2010, 44, 2894–2900. [Google Scholar] [CrossRef]
- Benz, S.A.; Bayer, P.; Blum, P. Global Patterns of Shallow Groundwater Temperatures. Environ. Res. Lett. 2017, 12, 034005. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (US EPA). Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites, Directive 9200.4-17P; 64 FR 25036; United States Environmental Protection Agency: Washington, DC, USA, 1999. Available online: https://www.govinfo.gov/content/pkg/FR-1999-05-10/pdf/99-11712.pdf (accessed on 18 September 2021).
- United States Environmental Protection Agency (US EPA). Bioremediation: Cometabolic Aerobic and Anaerobic Bioremediation. United States Environmental Protection Agency–Contaminated Site Clean Up Information. 2021. Available online: https://clu-in.org/techfocus/default.focus/sec/bioremediation/cat/Cometabolic_Aerobic_and_Anaerobic_Bioremediation/ (accessed on 18 September 2021).
- Department of Defense Environmental Security Technology Certification Program (ESTCP). Providing Additional Support for MNA by Including Quantitative Lines of Evidence for Abiotic Degradation and Co-metabolic Oxidation of Chlorinated Ethylenes; ESTCP Cost and Performance Report ER-201584; Department of Defense Environmental Security Technology Certification Program (ESTCP): Alexandria, VA, USA, 2017. [Google Scholar]
- Mills, I.V.; Wilson, J.C.; Wilson, J.T.; Wilson, B.H.; Wiedemeier, T.H.; Freedman, D.L. Quantification of TCE Co-Oxidation in Groundwater Using a 14C–Assay. Groundw. Monit. Remediat. 2018, 38, 57–67. [Google Scholar] [CrossRef]
- Yu, R.; Andrachek, R.G.; Lehmicke, L.G.; Freedman, D.L. Remediation of chlorinated ethenes in fractured sandstone by natural and enhanced biotic and abiotic processes: A crushed rock microcosm study. Sci. Total Environ. 2018, 626, 497–506. [Google Scholar] [CrossRef]
- Wilson, J.T.; Mills, J.C.; Wilson, B.H.; Wilson, B.H.; Ferrey, M.L.; Freedman, D.L.; Taggart, D. Using qPCR Assays to Predict Rates of Cometabolism of TCE in Aerobic Groundwater. Groundw. Monit. Remediat. 2019, 39, 53–63. [Google Scholar] [CrossRef]
- Adamson, D.T.; Wilson, J.T.; Freedman, D.L.; Ramos-García, A.A.; Lebrón, C.; Danko, A. Establishing the prevalence and relative rates of 1,4-dioxane biodegradation in groundwater to improve remedy evaluations. J. Hazard. Mater. 2022, 424, 127736. [Google Scholar] [CrossRef] [PubMed]
- García, Á.A.R.; Adamson, D.T.; Wilson, J.T.; Lebrón, C.; Danko, A.S.; Freedman, D.L. Evaluation of natural attenuation of 1,4-dioxane in groundwater using a 14C assay. J. Hazard. Mater. 2022, 424, 127540. [Google Scholar] [CrossRef] [PubMed]
- Interstate Technology Regulatory Council (ITRC). Environmental Molecular Diagnostics: New Site Characterization and Remediation Enhancement Tools; The Interstate Technology & Regulatory Council Environmental Molecular Diagnostics Team: Washington, DC, USA, 2013; Available online: https://itrcweb.org/teams/projects/environmental-molecular-diagnostics (accessed on 18 September 2021).
Microbe/Mixed Culture | Contaminant | Substrate | References |
---|---|---|---|
Azoarcus sp. strain DD4 | Dioxane, 1,1 DCE | Propane, Toluene, propanol | [25] |
Mycobacterium vaccae JOB5 | Dioxane, TCE, DCE, VC | Propane, butane, pentane, isobutane, isopentane, | [17,25] |
Mycobacterium sphagni ENV482 | Dioxane, TCE | Ethane | [26] |
Mycobacterium chubuense strain NBB4 | Dioxane, cis-DCE, 1,2-DCA, VC | C2-C4 alkenes, C2-C16 alkanes | [1] |
R. rhodochrous ATCC 21198 | Dioxane, TCA | 2-butanol, propane | [29] |
Arthrobacter sp. WN18 | Dioxane, VC | THF | [30] |
Burkholderia cepacia strain G4 | Dioxane, TCE | Toluene | [17,25] |
Pseudomonas mendocina strain KR-1 | Dioxane, TCE | Toluene | [17,25] |
R. ruber ENV 425 | Dioxane | Propane | [31] |
Mixed consortium of propanotrophs ENV487 | Dioxane | Propane | [31] |
Mycobacterium sp. ENV 421 | Dioxane | Propane | [28] |
Pseudonocardia sp. K1 | Dioxane | THF | [28] |
Pseudonocardia sp. ENV 478 | Dioxane | THF | [28] |
Methylosinus trichosporium strain OB3b | 1,1-DCE, TCE | Methane | [17,25] |
Pseudomonas stutzeri strain OX1 | 1,1-DCE, PCE | Toluene | [15,17,25] |
Factor | Stimulatory (a) or Optimal (b) | Inhibitory (c) or Suppressive (d) | References |
---|---|---|---|
oxygen | 4–11 mg/L (b) | <1.5 mg/L (d) | [35,36] |
Mn(II) | 0.001–0.1 mg/L (a) | [43] | |
Cu(II) | >2 mg/L (c) | [43] | |
Co(II) | >5 mg/L (c) | [43] | |
Fe(III) | 0.5–10 mg/L (a) | >50 mg/L (c) | [43] |
1,1-DCE | >2–0.5 mg/L (c) | [28] | |
TCE | >1–0.5 mg/L (c) | [28] | |
1,1,1-TCA | >2 mg/L (c) | [28] | |
Temperature | 20–30 °C (b) | <4 ℃ (d) | [44] |
Total Nitrogen | <50 ug/L (d) | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clark, C.; Rhea, L.K. Cometabolism of Chlorinated Volatile Organic Compounds and 1,4-Dioxane in Groundwater. Water 2023, 15, 3952. https://doi.org/10.3390/w15223952
Clark C, Rhea LK. Cometabolism of Chlorinated Volatile Organic Compounds and 1,4-Dioxane in Groundwater. Water. 2023; 15(22):3952. https://doi.org/10.3390/w15223952
Chicago/Turabian StyleClark, Catherine, and Lee K. Rhea. 2023. "Cometabolism of Chlorinated Volatile Organic Compounds and 1,4-Dioxane in Groundwater" Water 15, no. 22: 3952. https://doi.org/10.3390/w15223952
APA StyleClark, C., & Rhea, L. K. (2023). Cometabolism of Chlorinated Volatile Organic Compounds and 1,4-Dioxane in Groundwater. Water, 15(22), 3952. https://doi.org/10.3390/w15223952