Real-Time Monitoring and Simultaneous Verification of Water Percolation Using Electrical Resistivity Tomography and Photography Techniques
Abstract
:1. Introduction
2. Method and Experiment
2.1. Method
2.2. Experiment
2.2.1. Materials
2.2.2. Design of Experiment
3. Data Processing
3.1. Effect of Glass Trough on Electrical Resistivity and Correction Equation
3.2. Numerical Simulation
3.3. Comparison and Analysis between Correction Laboratory Experimental Results and Numerical Simulation Results
4. Results
4.1. Analysis of Electrical Resistivity Profiles and Photos
4.2. Analysis of the Correction of Electrical Resistivity Profiles and Photographs
5. Discussion
6. Conclusions
- (1)
- The correction equation is suitable for mitigating the impact of the glass trough on the electrical resistivity value. The corrected electrical resistivity values exhibit a stronger alignment with reality, allowing for a more realistic representation of the sand soil’s electrical resistivity value.
- (2)
- An electrical resistivity contour line value can be used to delineate the water percolation area in the electrical resistivity profile and correct the electrical profile. The areas of relatively low electrical resistivity, delineated by the 2000 Ω·m or the 8000 Ω·m contour lines in the electrical resistivity profiles and the 160 Ω·m or the 120 Ω·m contour lines in the correction electrical resistivity profiles, exhibit a remarkable correspondence with the wetting area captured in the simultaneous photographs. While the values of 2000 Ω·m and 8000 Ω·m are influenced by the boundaries, the identified low-resistivity anomaly area, which changes over time, can reflect the process of water percolation.
- (3)
- The wetting pattern of point source water percolation in the sand was determined. The wetting area captured in the photograph exhibits a bulb-shaped pattern, while the low-resistivity anomaly detected using ERT has a half-ellipse shape.
- (4)
- The combined use of ERT and photography techniques allowed us to visualize and verify the water percolation process simultaneously. ERT enables one to visualize the water percolation process and identify both the temporal and spatial distribution of water percolation, while photography serves as a means of verification. This approach can be applied in order to physical model water percolation in agricultural irrigation, pollution studies, landslide assessments, etc.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chanasyk, D.S.; Naeth, M.A. Field measurement of soil moisture using neutron probes. Can. J. Soil Sci. 1996, 76, 317–323. [Google Scholar] [CrossRef]
- Evett, S.R.; Tolk, J.A.; Howell, T.A. A Depth Control Stand for Improved Accuracy with the Neutron Probe. Vadose Zone J. 2003, 2, 642–649. [Google Scholar] [CrossRef]
- Jakobi, J.; Huisman, J.A.; Schrön, M.; Fiedler, J.; Brogi, C.; Vereecken, H.; Bogena, H.R. Error estimation for soil moisture measurements with cosmic ray neutron sensing and implications for rover surveys. Front. Water 2020, 2, 1–10. [Google Scholar]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef]
- Topp, G.C.; Davis, J.L. Time-Domain Reflectometry (TDR) and Its Application to Irrigation Scheduling; Elsevier: Amsterdam, The Netherlands, 1985; Volume 3, pp. 107–127. [Google Scholar]
- Robert, Č. Time-domain reflectometry method and its application for measuring moisture content in porous materials: A review. Measurement 2009, 42, 329–336. [Google Scholar]
- Vanella, D.; Ramírez-Cuesta, J.M.; Sacco, A.; Longo-Minnolo, G.; Cirelli, G.L.; Consoli, S. Electrical resistivity imaging for monitoring soil water motion patterns under different drip irrigation scenarios. Irrig. Sci. 2021, 39, 145–157. [Google Scholar] [CrossRef]
- Vanella, D.; Peddinti, S.R.; Kisekka, I. Unravelling soil water dynamics in almond orchards characterized by soil-heterogeneity using electrical resistivity tomography. Agric. Water Manag. 2022, 269, 107652. [Google Scholar] [CrossRef]
- Andrew, B.; Susan, S.H.; Johan, A.H.; André, R.; David, A.R.; Kamini, S.; Lee, D.S. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour. Res. 2015, 51, 3837–3866. [Google Scholar]
- Wehrer, M.; Binley, A.; Slater, L.D. Characterization of reactive transport by 3-D electrical resistivity tomography (ERT) under unsaturated conditions. Water Resour. Res. 2016, 52, 8295–8316. [Google Scholar] [CrossRef]
- Giorgio, C.; Jacopo, B.; Daniela, V.; Maria, T.P.; Simona, C. Monitoring and modelling of soil–plant interactions: The joint use of ERT, sap flow and eddy covariance data to characterize the volume of an orange tree root zone. Hydrol. Earth Syst. Sci. 2015, 19, 2213–2225. [Google Scholar]
- Michot, D.; Benderitter, Y.; Dorigny, A.; Nicoullaud, B.; King, D.; Tabbagh, A. Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resour. Res. 2003, 39, 1138. [Google Scholar] [CrossRef]
- Zhou, Q.Y.; Shimada, J.; Sato, A. Three-dimensional spatial and temporal monitoring of soil water content using electrical resistivity tomography. Water Resour. Res. 2001, 37, 273–285. [Google Scholar] [CrossRef]
- Doolittle, J.A.; Collins, M.E. Use of soil information to determine application of ground penetrating radar. J. Appl. Geophys. 1995, 33, 101–108. [Google Scholar] [CrossRef]
- Huisman, J.A.; Hubbard, S.S.; Redman, J.D.; Annan, A.P. Measuring soil water content with ground penetrating radar: A review. Vadose Zone J. 2003, 2, 476–491. [Google Scholar] [CrossRef]
- Saintenoy, A.; Schneider, S.; Tucholka, P. Evaluating ground penetrating radar use for water percolation monitoring. Vadose Zone J. 2008, 7, 208–214. [Google Scholar] [CrossRef]
- Klotzsche, A.; Jonard, F.; Looms, M.C.; van der Kruk, J.; Huisman, J.A. Measuring soil water content with ground penetrating radar: A decade of progress. Vadose Zone J. 2018, 17, 1–9. [Google Scholar] [CrossRef]
- Staub, M.J.; Gourc, J.; Laurent, J.; Kintzuger, C.; Oxarango, L.; Benbelkacem, H.; Bayard, R.; Morra, C. Long-term moisture measurements in large-scale bioreactor cells using TDR and neutron probes. J. Hazard. Mater. 2010, 180, 165–172. [Google Scholar] [CrossRef]
- Chung, C.; Lin, C.; Yang, S.; Lin, J.; Lin, C. Investigation of non-unique relationship between soil electrical conductivity and water content due to drying-wetting rate using TDR. Eng. Geol. 2019, 252, 54–64. [Google Scholar] [CrossRef]
- Wehrer, M.; Lissner, H.; Bloem, E.; French, H.; Totsche, K.U. Electrical resistivity tomography as monitoring tool for unsaturated zone transport: An example of preferential transport of deicing chemicals. Environ. Sci. Pollut. Res. 2014, 21, 8964–8980. [Google Scholar] [CrossRef]
- Xu, Q.; Yang, H.; Tang, M.; Li, S.; Li, H.; Xiao, X.; Alonso-Rodriguez, A.; Cai, G. Variability of permeability and seepage characteristics in soil landslides: A test case in the Three Gorges Reservoir Area, China. Water Supply 2019, 19, 2453–2463. [Google Scholar] [CrossRef]
- Strelec, S.; Mesec, J.; Grabar, K.; Jug, J. Implementation of in-situ and geophysical investigation methods (ERT & MASW) with the purpose to determine 2D profile of landslide. Acta Montan. Slovaca 2017, 22, 345–358. [Google Scholar]
- Du, J.M.; Qian, F.; Xiang, L. The present and development trend of physical simulation experiment technology for transparent soils. Sci. Technol. Eng. 2021, 21, 852–861. [Google Scholar]
- Sui, W.H.; Yue, G.; Li, J.Y. Status and prospect of transparent soil experimental technique. J. China Coal Soc. 2021, 36, 577–582. [Google Scholar]
- Lo, H.; Tabe, K.; Iskander, M.; Yoon, S.H. Modeling of multi-phase flow and surfactant flushing using transparent aquabeads. In GeoCongress 2008: Characterization, Monitoring, and Modeling of GeoSystems; American Society of Civil Engineers: Reston, VA, USA, 2008; pp. 846–853. [Google Scholar]
- Liu, J.; Iskander, M.G. Modelling capacity of transparent soil. Can. Geotech. J. 2010, 47, 451–460. [Google Scholar] [CrossRef]
- Sanvitale, N.; Zhao, B.D.; Bowman, E.T.; O’Sullivan, C. Particle-scale observation of seepage flow in granular soils using PIV and CFD. Géotechnique 2023, 73, 71–88. [Google Scholar] [CrossRef]
- Zeng, F.; Guo, Z.; Wang, L.; Gao, Y.; Liu, Z. Experimental investigation on macro-mesoscopic characteristics of seepage flow in transparent porous media. Appl. Ocean Res. 2020, 105, 102424. [Google Scholar] [CrossRef]
- Iskander, M.G.; Lai, J.; Oswald, C.J.; Mannheimer, R.J. Development of a transparent material to model the geotechnical properties of soils. Geotech. Test. J. 1994, 17, 425–433. [Google Scholar]
- Iskander, M.; Bathurst, R.J.; Omidvar, M. Past, present, and future of transparent soils. Geotech. Test. J. 2015, 38, 557–573. [Google Scholar] [CrossRef]
- Iskander, M. Transparent soils turn 25: Past, present, and future. In Physical Modelling in Geotechnics; CRC Press: Boca Raton, FL, USA, 2018; pp. 389–394. [Google Scholar]
- Archie, G.E. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME 1942, 146, 54–62. [Google Scholar] [CrossRef]
- Al-Ogaidi, A.A.; Wayayok, A.; Rowshon, M.K.; Abdullah, A.F. Wetting patterns estimation under drip irrigation systems using an enhanced empirical model. Agric. Water Manag. 2016, 176, 203–213. [Google Scholar] [CrossRef]
- Schwartz, B.F.; Schreiber, M.E.; Yan, T. Quantifying field-scale soil moisture using electrical resistivity imaging. J. Hydrol. 2008, 362, 234–246. [Google Scholar] [CrossRef]
- Hardie, M.; Ridges, J.; Swarts, N.; Close, D. Drip irrigation wetting patterns and nitrate distribution: Comparison between electrical resistivity (ERI), dye tracer, and 2D soil–water modelling approaches. Irrig. Sci. 2018, 36, 97–110. [Google Scholar] [CrossRef]
- Yao, W.W.; Ma, X.Y.; Li, J.; Parkes, M. Simulation of point source wetting pattern of subsurface drip irrigation. Irrig. Sci. 2011, 29, 331–339. [Google Scholar] [CrossRef]
- Wang, H.; Wang, N.; Quan, H.; Zhang, F.; Fan, J.; Feng, H.; Cheng, M.; Liao, Z.; Wang, X.; Xiang, Y. Yield and water productivity of crops, vegetables and fruits under subsurface drip irrigation: A global meta-analysis. Agric. Water Manag. 2022, 269, 107645. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, F.; Zou, J. Numerical Simulation of Gas Extraction in Coal Seam Strengthened by Static Blasting. Sustainability 2022, 14, 12484. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, R.; Wang, Z.; Zhang, X. Research on the fire extinguishing performance of new gel foam for preventing and controlling the spontaneous combustion of coal gangue. Environ. Sci. Pollut. Res. 2023, 30, 88548–88562. [Google Scholar] [CrossRef]
- Jones, D.G.; Barkwith, A.; Hannis, S.; Lister, T.R.; Gal, F.; Graziani, S.; Beaubien, S.E.; Widory, D. Monitoring of near surface gas seepage from a shallow injection experiment at the CO2 Field Lab, Norway. Int. J. Greenh. Gas Control 2014, 28, 300–317. [Google Scholar] [CrossRef]
- Wan, F.; Jiang, Z. Seepage and Heat Transfer Characteristics of Gas Leakage under the Condition of CAES Air Reservoir Cracking. Geofluids 2021, 2021, 1–18. [Google Scholar] [CrossRef]
Media Diameter (mm) | Mass Percent (%) |
---|---|
>5 | 0.4 |
2 | 7.8 |
0.5 | 51.2 |
0.45 | 32.1 |
0.074 | 7.6 |
<0.074 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, L.; Dou, J.; Mizunaga, H.; Zong, Z.; Zhu, W.; Dong, X.; Wu, W. Real-Time Monitoring and Simultaneous Verification of Water Percolation Using Electrical Resistivity Tomography and Photography Techniques. Water 2023, 15, 3999. https://doi.org/10.3390/w15223999
Du L, Dou J, Mizunaga H, Zong Z, Zhu W, Dong X, Wu W. Real-Time Monitoring and Simultaneous Verification of Water Percolation Using Electrical Resistivity Tomography and Photography Techniques. Water. 2023; 15(22):3999. https://doi.org/10.3390/w15223999
Chicago/Turabian StyleDu, Liang, Jie Dou, Hideki Mizunaga, Zhongling Zong, Wenjin Zhu, Xiaotian Dong, and Wenbo Wu. 2023. "Real-Time Monitoring and Simultaneous Verification of Water Percolation Using Electrical Resistivity Tomography and Photography Techniques" Water 15, no. 22: 3999. https://doi.org/10.3390/w15223999
APA StyleDu, L., Dou, J., Mizunaga, H., Zong, Z., Zhu, W., Dong, X., & Wu, W. (2023). Real-Time Monitoring and Simultaneous Verification of Water Percolation Using Electrical Resistivity Tomography and Photography Techniques. Water, 15(22), 3999. https://doi.org/10.3390/w15223999