Spatial–Temporal Changes in Shallow Groundwater Quality with Human Health Risk Assessment in the Luxi Plain (China)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Location and Climate
2.1.2. Geology and Hydrogeology
2.2. Sample Collection and Analysis
2.3. Entropy Water Quality Index
2.4. Human Health Risk Assessment
2.5. Statistical Analysis
3. Results and Discussion
3.1. Changes in Hydrochemical Characteristics of Groundwater
3.2. Sources of Ions and Controlling Factors
3.3. Groundwater Quality Assessment
3.4. Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, P.; He, X.; Li, Y.; Xiang, G. Occurrence and health implication of fluoride in groundwater of loess aquifer in the Chinese Loess Plateau: A case study of Tongchuan, northwest China. Expo. Health 2019, 11, 95–107. [Google Scholar] [CrossRef]
- Mthembu, P.P.; Elumalai, V.; Senthilkumar, M.; Wu, J. Investigation of geochemical characterization and groundwater quality with special emphasis on health risk assessment in alluvial aquifers, South Africa. Int. J. Environ. Sci. Technol. 2021, 18, 3711–3730. [Google Scholar] [CrossRef]
- He, X.; Wu, J.; Guo, W. Karst spring protection for the sustainable and healthy living: The examples of Niangziguan spring and Shuishentang spring in Shanxi, China. Expo. Health 2019, 11, 153–165. [Google Scholar] [CrossRef]
- Wang, Y.; Li, P. Appraisal of shallow groundwater quality with human health risk assessment in different seasons in rural areas of the Guanzhong Plain (China). Environ. Res. 2022, 207, 112210. [Google Scholar] [CrossRef]
- Wang, D.; Wu, J.; Wang, Y.; Ji, Y. Finding high-quality groundwater resources to reduce the hydatidosis incidence in the Shiqu County of Sichuan Province, China: Analysis, assessment, and management. Expo. Health 2020, 12, 307–322. [Google Scholar] [CrossRef]
- Su, F.; Wu, J.; He, S. Set pair analysis-Markov chain model for groundwater quality assessment and prediction: A case study of Xi’an city, China. Hum. Ecol. Risk Assess. 2019, 12, 343–354. [Google Scholar] [CrossRef]
- Farzaneh, G.; Khorasani, N.; Ghodousi, J.; Panahi, M. Assessment of surface and groundwater resources quality close to municipal solid waste landfill using multiple indicators and multivariate statistical methods. Int. J. Environ. Res. 2021, 15, 383–394. [Google Scholar] [CrossRef]
- Ustaoğlu, F.; Tepe, Y.; Taş, B. Assessment of stream quality and health risk in a subtropical Turkey river system: A combined approach using statistical analysis and water quality index. Ecol. Indic. 2019, 113, 105815. [Google Scholar] [CrossRef]
- Elham, F.; Sahar, M. Assessment of hydrochemical characteristics and groundwater suitability for drinking and irrigation purposes in Garmsar Plain, Iran. Geopersia 2023, 13, 83–102. [Google Scholar]
- Mansi, T.; Sunil, K.S. Allocation of weights using factor analysis for development of a novel water quality index. Ecotoxicol. Environ. Saf. 2019, 183, 109510. [Google Scholar]
- Singh, G.; Rishi, M.S.; Herojeet, R.; Kaur, L.; Sharma, K. Evaluation of groundwater quality and human health risks from fluoride and nitrate in semi-arid region of northern India. Environ. Geochem. Health 2020, 42, 1833–1862. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Wu, J.; Wang, Y.; Elumalai, V.; Subramani, T. Seasonal variation of drinking water quality and human health risk assessment in Hancheng City of Guanzhong Plain, China. Expo. Health 2020, 12, 469–485. [Google Scholar] [CrossRef]
- Adimalla, N.; Qian, H. Groundwater quality evaluation using water quality index (WQI) for drinking purposes and human health risk (HHR) assessment in an agricultural region of Nanganur, south India. Ecotoxicol. Environ. Saf. 2019, 176, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Karunanidhi, D.; Subramani, T.; Deepali, M.; Aravinthasamy, P.; Bellows, B.C.; Li, P. Groundwater quality evolution based on geochemical modeling and aptness testing for ingestion using entropy water quality and total hazard indexes in an urban-industrial area (Tiruppur) of southern India. Environ. Sci. Pollut. Res. 2021, 28, 18523–18538. [Google Scholar] [CrossRef] [PubMed]
- Liaocheng Water Resources Bureau. Water Resources Bulletin of Liaocheng; Liaocheng Water Resources Bureau: Liaocheng, China, 2021. (In Chinese) [Google Scholar]
- Li, Y.; Liu, S.M.; Yu, J.; Hu, Z.F.; Shao, L.J. Study on water quality characteristics and causes of shallow groundwater in suburbs of Liaocheng City. Environ. Sci. Manag. 2020, 6, 57–62. (In Chinese) [Google Scholar]
- Wu, J.; Sun, Z. Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, mid-west China. Expo. Health 2016, 8, 311–329. [Google Scholar] [CrossRef]
- Yu, H.C.; Liu, X.Z.; Zhang, G.Y. Exploration and management of shallow groundwater over-exploitation area in Luxi Plain. Groundwater 2010, 4, 24–25. (In Chinese) [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1999. [Google Scholar]
- Domenico, P.A.; Schwartz, F.W. Physical and Chemical Hydrogeology; Wiley: New York, NY, USA, 1990. [Google Scholar]
- Li, P.; He, X.; Guo, W. Spatial groundwater quality and potential health risks due to nitrate ingestion through drinking water: A case study in Yan’an City on the Loess Plateau of northwest China. Hum. Ecol. Risk Assess. 2019, 25, 11–31. [Google Scholar] [CrossRef]
- Adimalla, N.; Sanda, R. Spatial distribution and seasonal variation in fluoride enrichment in groundwater and its associated human health risk assessment in Telangana State, South India. Hum. Ecol. Risk Assess. 2018, 24, 2119–2132. [Google Scholar]
- Chen, J.; Wu, H.; Qian, H. Groundwater nitrate contamination and associated health risk for the rural communities in an agricultural area of Ningxia, northwest China. Expo. Health 2016, 8, 349–359. [Google Scholar] [CrossRef]
- USEPA, (US Environmental Protection Agency). Baseline Human Health Risk Assessment; Vasquez Boulevard and I-70 Superfund Site; USEPA: Denver, CO, USA, 2001. [Google Scholar]
- USEPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E); USEPA: Denver, CO, USA, 2004. [Google Scholar]
- Adimalla, N.; Li, P. Occurrence, health risks, and geochemical mechanisms of fluoride and nitrate in groundwater of the rock-dominant semi-arid region, Telangana State, India. Hum. Ecol. Risk Assess. Int. J. 2018, 25, 81–103. [Google Scholar] [CrossRef]
- GB/T 14848–2017; Standard for Groundwater Quality. Inspection and Quarantine of the P.R. China. China Standard Press: Beijing, China, 2017. (In Chinese)
- Subba Rao, N.; Marghade, D.; Dinakar, A.; Chandana, I.; Sunitha, B.; Ravindra, B.; Balaji, T. Geochemical characteristics and controlling factors of chemical composition of groundwater in a part of Guntur district, Andhra Pradesh, India. Environ. Earth Sci. 2017, 76, 747. [Google Scholar] [CrossRef]
- WHO (World Health Organisation). Guidelines for Drinking Water Quality; WHO: Geneva, Switzerland, 2011; Volume 92, pp. 15–18. [Google Scholar]
- CPCB (Central Pollution Control Board). Guidelines for Drinking Water Quality in India; CPCB: Delhi, India, 2018. [Google Scholar]
- Bai, F.; Zhou, J.; Zeng, Y. Hydrochemical characteristics and quality of groundwater in the plains of the Turpan Basin. Arid Zone Res. 2022, 39, 419–428. (In Chinese) [Google Scholar]
- Duraisamy, S.; Govindhaswamy, V.; Duraisamy, K.; Krishinargaj, S.; Balasubramanian, A.; Thirumalaisamy, S. Hydrogeochemical characterization and evaluation of groundwater quality in Kangayam taluk, Tirupur district, Tamil Nadu, India, using GIS techniques. Environ. Geochem. Health 2019, 41, 851–873. [Google Scholar] [CrossRef]
- Karakus, C.B. Evaluation of groundwater quality in Sivas province (Turkey) using water quality index and GIS-based analytic hierarchy process. Int. J. Environ. Health Res. 2019, 29, 500–519. [Google Scholar] [CrossRef]
- Li, P.; Wu, J.; Qian, H.; Lyu, X.; Liu, H. Origin and assessment of groundwater pollution and associated health risk: A case study in an industrial park, northwest China. Environ. Geochem. Health 2014, 36, 693–712. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, K.; Lin, X.; Gao, X.; Ni, R.; Wang, S.; Tian, X. Regional distribution of longevity population and chemical characteristics of natural water in Xinjiang, China. Sci. Total Environ. 2014, 473–474, 54–62. [Google Scholar] [CrossRef]
- Sawyer, C.N.; McCarty, P.L. Chemistry for Sanitary Engineers, 2nd ed.; McGraw Hill: New York, NY, USA, 1967. [Google Scholar]
- GB5749–2022; Standard for Groundwater Quality. State Administration for Market Regulation, Standardization Administration. China Standard Press: Beijing, China, 2022. (In Chinese)
- Zhang, Q.; Qian, H.; Xu, P.; Liu, R. Effect of hydrogeological conditions on groundwater nitrate pollution and human health risk assessment of nitrate in Jiaokou irrigation district. J. Clean. Prod. 2021, 298, 126783. [Google Scholar] [CrossRef]
- Liaocheng Statistic Bureau. Liaocheng Statistical Yearbook; China Statistics Press: Beijing, China, 2022. (In Chinese) [Google Scholar]
- Peng, C.; He, J.T.; Wang, M.L.; Zhang, Z.G.; Wang, L. Identifying and assessing human activity impacts on groundwater quality through hydrogeochemical anomalies and NO3−, NH4+, and COD contamination: A case study of the Liujiang River Basin, Hebei Province, P.R. China. Environ. Sci. Pollut. Res. 2018, 25, 3539–3556. [Google Scholar] [CrossRef]
- Piper, A. A graphic procedure in the geochemical interpretation of water-analysis. Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar]
- He, S.; Li, P. A MATLAB based graphical user interface (GUI) for quickly producing widely used hydrogeochemical diagrams. Geochemistry 2020, 80, 125550. [Google Scholar] [CrossRef]
- Su, Z.; Wu, J.; He, X.; Elumalai, V. Temporal changes of groundwater quality within the groundwater depression cone and prediction of confined groundwater salinity using grey Markov model in Yinchuan area of northwest China. Expo. Health 2020, 12, 447–468. [Google Scholar] [CrossRef]
- Tu, C.; Yang, R.; Ma, Y.; Linghu, C.; Zhao, R.; He, C. Characteristics and driving factors of hydrochemical evolution in Tuochangjiang River Basin, western Guizhou Province. Environ. Sci. 2023, 44, 740–751. (In Chinese) [Google Scholar]
- Jiang, L.; Yao, Z.; Liu, Z.; Wang, R.; Wu, S. Hydrochemistry and its controlling factors of rivers in the source region of the Yangtze River on the Tibetan Plateau. J. Geochem. Explor. 2015, 155, 76–83. [Google Scholar] [CrossRef]
- Chen, J.; Wang, F.; Xia, X.; Zhang, L. Major element chemistry of the Changjiang (Yangtze River). Chem. Geol. 2002, 187, 231–255. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, X.; Wan, L. Hydrogeochemical characterization of groundwater flow systems in the discharge area of a river basin. J. Hydrol. 2015, 527, 433–441. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms controlling world water chemistry. Science 1970, 170, 795–840. [Google Scholar] [CrossRef] [PubMed]
- Maila, Y.A.; EI-Nahal, I.; Al-Agha, M.R. Seasonal variations and mechanisms of groundwater nitrate pollution in the Gaza Strip. Environ. Geol. 2004, 47, 84–90. [Google Scholar] [CrossRef]
- Biddau, R.; Dore, E.; Da Pelo, S.; Lorrai, M.; Botti, P.; Testa, M.; Cidu, R. Geochemistry, stable isotopes and statistic tools to estimate threshold and source of nitrate in groundwater (Sardinia, Italy). Water Res. 2023, 232, 119663. [Google Scholar] [CrossRef]
- Lv, X.; Liu, J.; Zhu, L.; Liu, J.; Liu, C. Distribution and source of Fe and Mn in groundwater of Lanzhou City. J. Arid Land Res. Environ. 2019, 33, 130–136. (In Chinese) [Google Scholar]
- Adimalla, N.; Li, P.; Qian, H. Evaluation of groundwater contamination for fluoride and nitrate in semi-arid region of Nirmal Province, South India: A special emphasis on human health risk assessment (HHRA). Hum. Ecol. Risk Assess. 2019, 25, 1107–1124. [Google Scholar] [CrossRef]
- Adimalla, N.; Wu, J. Groundwater quality and associated health risks in a semiarid region of south India: Implication to sustainable groundwater management. Hum. Ecol. Risk Assess. 2019, 25, 191–216. [Google Scholar] [CrossRef]
- Jalali, M. Nitrate pollution of groundwater in Toyserkan, western Iran. Environ. Earth Sci. 2011, 62, 907–913. [Google Scholar] [CrossRef]
Parameters | pH | TDS | TH | Na+ | Mn2+ | SO42− | Cl− | NO3− | F− | NO2− | COD | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Chinese Standards [27]. | - | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | |
6.5~8.5 | 1000 | 450 | 200 | 0.1 | 250 | 250 | 20 | 1 | 1 | 3 | ||
2018 | Min | 6.91 | 613.0 | 323.0 | 33.5 | 0.01 | 29.1 | 43.6 | 0.40 | 0.31 | 0.003 | 0.05 |
Max | 7.76 | 7680.0 | 2450.0 | 1420.0 | 1.48 | 1790.0 | 1920.0 | 177.00 | 2.27 | 4.04 | 4.16 | |
Mean | 7.39 | 2088.9 | 761.0 | 296.8 | 0.53 | 313.1 | 318.5 | 23.40 | 0.84 | 0.24 | 1.44 | |
Std | 0.20 | 1058.7 | 391.4 | 254.7 | 0.33 | 331.3 | 348.5 | 39.30 | 0.45 | 0.79 | 0.87 | |
CV (%) | 2.7 | 50.7 | 51.4 | 85.8 | 62.3 | 105.8 | 109.4 | 168.0 | 53.6 | 329.2 | 60.4 | |
2019 | Min | 7.10 | 490.0 | 341.0 | 29.7 | 0.05 | 17.9 | 36.3 | 0.10 | 0.12 | 0 | 0.71 |
Max | 8.10 | 6184.0 | 2289.0 | 961.0 | 1.07 | 1795.0 | 1712.0 | 77.20 | 1.57 | 0.96 | 8.39 | |
Mean | 7.46 | 1797.0 | 785.3 | 271.0 | 0.41 | 324.7 | 339.2 | 7.93 | 0.57 | 0.1 | 1.68 | |
Std | 0.20 | 1186.5 | 364.4 | 205.7 | 0.28 | 326.6 | 339.7 | 17.10 | 0.36 | 0.25 | 1.41 | |
CV (%) | 2.7 | 66.0 | 46.4 | 75.9 | 68.3 | 100.6 | 100.2 | 215.6 | 63.2 | 250.0 | 83.9 | |
2020 | Min | 7.20 | 214.0 | 125.0 | 19.2 | 0.05 | 20.8 | 31.3 | 2.54 | 0.14 | 0 | 0.81 |
Max | 8.10 | 6836.0 | 2363.0 | 901.0 | 0.99 | 1921.0 | 1654.0 | 78.40 | 1.40 | 0.51 | 7.26 | |
Mean | 7.60 | 1664.2 | 738.4 | 215.4 | 0.28 | 330.2 | 317.9 | 9.88 | 0.58 | 0.06 | 1.85 | |
Std | 0.21 | 1209.1 | 368.4 | 178.2 | 0.27 | 340.4 | 331.7 | 12.36 | 0.31 | 0.15 | 1.05 | |
CV (%) | 2.8 | 72.7 | 49.9 | 82.8 | 96.4 | 103.1 | 104.3 | 125.1 | 53.5 | 250.0 | 56.8 |
Items | Years | pH | TH | COD | Cl− | SO42− | Na+ | NO3− | F− | Mn2+ | NO2− | TDS |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 0.02 | 0.05 | 0.03 | 0.10 | 0.09 | 0.06 | 0.21 | 0.06 | 0.03 | 0.32 | 0.04 | |
Wj | 2019 | 0.02 | 0.04 | 0.11 | 0.07 | 0.07 | 0.05 | 0.26 | 0.08 | 0.04 | 0.21 | 0.05 |
2020 | 0.03 | 0.03 | 0.08 | 0.10 | 0.10 | 0.07 | 0.15 | 0.05 | 0.08 | 0.26 | 0.05 | |
2018 | 0.44 | 8.28 | 1.47 | 12.15 | 11.05 | 9.02 | 48.18 | 4.90 | 17.95 | 7.71 | 8.38 | |
Wj × qj | 2019 | 0.73 | 7.21 | 6.26 | 9.81 | 8.93 | 6.47 | 20.96 | 4.26 | 14.81 | 2.12 | 8.92 |
2020 | 1.16 | 5.04 | 4.94 | 12.32 | 12.58 | 7.52 | 13.93 | 3.10 | 14.52 | 1.70 | 8.78 |
Value Range | Rank | 2018 (51) | Mean | 2019 (60) | Mean | 2020 (60) | Mean |
---|---|---|---|---|---|---|---|
EWQI < 25 | 1 | 0 | 1 | 3 | |||
25 ≤ EWQI < 50 | 2 | 10 | 18 | 9 | |||
50 ≤ EWQI < 100 | 3 | 23 | 27 | 90.5 | 26 | 94.0 | |
100 ≤ EWQI < 150 | 4 | 5 | 129.5 | 6 | 13 | ||
150 ≤ EWQI | 5 | 13 | 8 | 9 |
Demographic | Min | Max | Mean | Median | Percentage of HI > 1 | ||
---|---|---|---|---|---|---|---|
2018 | Adults | HQoral | 0.34 | 3.65 | 1.01 | 0.75 | |
HQdermal | 0.00 | 0.01 | 0.00 | 0.00 | |||
HI | 0.35 | 3.65 | 1.02 | 0.75 | 19 (37.3%) | ||
Children | HQoral | 0.64 | 6.81 | 1.89 | 1.40 | ||
HQdermal | 0.00 | 0.03 | 0.01 | 0.01 | |||
HI | 0.64 | 6.84 | 1.90 | 1.40 | 45 (88.2%) | ||
2019 | Adults | HQoral | 0.12 | 1.93 | 0.49 | 0.44 | |
HQdermal | 0.00 | 0.01 | 0.00 | 0.00 | |||
HI | 0.12 | 1.94 | 0.50 | 0.44 | 4 (6.7%) | ||
Children | HQoral | 0.22 | 3.60 | 0.92 | 0.82 | ||
HQdermal | 0.00 | 0.01 | 0.00 | 0.00 | |||
HI | 0.23 | 3.61 | 0.93 | 0.83 | 18 (30.0%) | ||
2020 | Adults | HQoral | 0.18 | 1.66 | 0.58 | 0.55 | |
HQdermal | 0.00 | 0.01 | 0.00 | 0.00 | |||
HI | 0.18 | 1.66 | 0.58 | 0.55 | 2 (3.3%) | ||
Children | HQoral | 0.34 | 3.09 | 1.08 | 1.02 | ||
HQdermal | 0.00 | 0.01 | 0.00 | 0.00 | |||
HI | 0.34 | 3.10 | 1.08 | 1.02 | 34 (56.7%) |
Demographic | Mn2+ | F− | NO3− | NO2− | HI | ||
---|---|---|---|---|---|---|---|
2018 | Adults | Min | 0.00 | 0.19 | 0.01 | 0.00 | 0.34 |
Max | 0.26 | 1.43 | 2.77 | 1.01 | 3.65 | ||
Mean | 0.09 | 0.53 | 0.34 | 0.06 | 1.02 | ||
Children | Min | 0.00 | 0.36 | 0.01 | 0.00 | 0.64 | |
Max | 0.50 | 2.66 | 5.18 | 1.89 | 6.84 | ||
Mean | 0.17 | 0.98 | 0.63 | 0.11 | 1.90 | ||
2019 | Adults | Min | 0.01 | 0.06 | 0.00 | 0.00 | 0.12 |
Max | 0.19 | 0.99 | 1.21 | 0.24 | 1.94 | ||
Mean | 0.07 | 0.31 | 0.09 | 0.03 | 0.50 | ||
Children | Min | 0.02 | 0.12 | 0.00 | 0.00 | 0.23 | |
Max | 0.36 | 1.84 | 2.26 | 0.45 | 3.61 | ||
Mean | 0.13 | 0.58 | 0.16 | 0.05 | 0.93 | ||
2020 | Adults | Min | 0.01 | 0.00 | 0.04 | 0.00 | 0.18 |
Max | 0.18 | 0.88 | 1.23 | 0.13 | 1.66 | ||
Mean | 0.05 | 0.36 | 0.16 | 0.02 | 0.58 | ||
Children | Min | 0.02 | 0.00 | 0.07 | 0.00 | 0.34 | |
Max | 0.33 | 1.64 | 2.30 | 0.24 | 3.10 | ||
Mean | 0.09 | 0.67 | 0.29 | 0.03 | 1.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, N.; Lv, Y.; Liu, G.; Zhuang, F.; Wang, Q. Spatial–Temporal Changes in Shallow Groundwater Quality with Human Health Risk Assessment in the Luxi Plain (China). Water 2023, 15, 4120. https://doi.org/10.3390/w15234120
Yu N, Lv Y, Liu G, Zhuang F, Wang Q. Spatial–Temporal Changes in Shallow Groundwater Quality with Human Health Risk Assessment in the Luxi Plain (China). Water. 2023; 15(23):4120. https://doi.org/10.3390/w15234120
Chicago/Turabian StyleYu, Na, Yufeng Lv, Guang Liu, Fulei Zhuang, and Qian Wang. 2023. "Spatial–Temporal Changes in Shallow Groundwater Quality with Human Health Risk Assessment in the Luxi Plain (China)" Water 15, no. 23: 4120. https://doi.org/10.3390/w15234120
APA StyleYu, N., Lv, Y., Liu, G., Zhuang, F., & Wang, Q. (2023). Spatial–Temporal Changes in Shallow Groundwater Quality with Human Health Risk Assessment in the Luxi Plain (China). Water, 15(23), 4120. https://doi.org/10.3390/w15234120