Development of the Chrono-Systemic Timeline as a Tool for Cross-Sectional Analysis of Droughts—Application in Wallonia
Abstract
:1. Introduction
1.1. Context and Purposes
1.2. Drought Complexity
- Meteorological (or atmospheric) drought, linked to atmospheric conditions and characterized by an abnormal shortfall in rainfall;
- Agricultural (or pedological) drought, resulting from a lack of water available in the surface layers of the soil for natural vegetation or agricultural crops; high temperatures and sustained winds favor the occurrence of this type of drought by increasing evapotranspiration;
- Hydrological drought, defined as a deficit in surface and groundwater reserves compared with a normal situation;
- Socio-economic drought, which occurs when the demand for water as an economic good or service is greater than the amount of water available.
2. Materials and Methods
2.1. Analysis Tool: Chrono-Systemic Timeline
2.2. Case Study
2.3. Data Acquisition
2.4. Methodology
3. Results and Discussion
3.1. Environmental Conditions
- Temperatures consistently higher than normal, with January, April, May, and July experiencing deviations more than two degrees above average;
- Below-normal rainfall for much of the year, with lower rainfall totals (around 20–40% less precipitation) in June, August, and September, and much lower totals (over 40% less precipitation) in February, July, October, and November.
3.2. Economic and Social Context
3.3. Political and Administrative Decisions
3.4. Dynamic Links and Sequencing
3.5. Study Limitations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Date of Meeting | Author(s) | Version of the Minutes |
---|---|---|
19 April 2018 | C. Régnier | Version 20/04/18 |
25 July 2018 | P. Racot | Version 04/08/18 |
6 August 2018 | P. Racot et C. Régnier | Version 10/08/18 |
14 August 2018 | P. Racot et C. Régnier | Version 17/08/18 |
30 August 2018 | P. Racot et C. Régnier | Version 03/09/18 |
19 September 2018 | C. Régnier | Version 21/09/18 |
2 October 2018 | P. Racot | Version 04/10/18 |
19 Octobre 2018 | C. Régnier | Version 23/10/18 |
25 October 2018 | P. Racot | Version 05/11/18 |
30 October 2018 | C. Régnier et V. Lucas | Version 06/11/18 |
26 November 2018 | V. Lucas | Version 30/11/18 |
14 November 2018 | V. Lucas | Version 14/12/18 |
References
- Jacquemin, I.; Verbeiren, B.; Uljee, I.; Engelen, G.; Huysmans, M.; Tychon, B. Evaluation de la vulnérabilité et du risque associés à la sécheresse des nappes phréatiques en Belgique: Simulation de la recharge au niveau des zones agricoles avec le modèle B-CGMS. In Proceedings of the XXVIIIe Colloque de l’Association Internationale de Climatologie, Liège, Belgium, 2 July 2015; pp. 349–354. [Google Scholar]
- Kreienkamp, F.; Philip, S.Y.; Tradowsky, J.S.; Kew, S.F.; Lorenz, P.; Arrighi, J.; Belleflamme, A.; Bettmann, T.; Caluwaerts, S.; Chan, S.C.; et al. Rapid Attribution of Heavy Rainfall Events Leading to the Severe Flooding in Western Europe during July 2021; World Weather Atribution: London, UK, 2021. [Google Scholar]
- Guns, A.; Perrin, D. Les changements climatiques. In Rapport Analytique sur L’état de L’environnement Wallon 2006–2007; MRW-DGRNE: Namur, Belgium, 2006; pp. 298–315. [Google Scholar]
- Commission Nationale Climat. Plan National d’adaptation Pour La Belgique 2017–2020; Service Public Fédéral Santé Publique, Sécurité de la Chaîne Alimentaire et Environnement: Bruxelles, Belgium, 2016. [Google Scholar]
- De Ridder, K.; Couderé, K.; Depoorter, M.; Liekens, I.; Pourria, X.; Steinmetz, D.; Vanuytrecht, E.; Verhaegen, K.; Wouters, H. Evaluation de L’impact Socio-Économique Du Changement Climatique En Belgique. Résumé à L’intention des Décideurs; VITO: Mol, Belgium, 2020; p. 13. [Google Scholar]
- Institut Royal Météorologique. Rapport Climatique 2020. De L’information aux Services Climatiques; Institut Royal Météorologique: Uccle, Belgium, 2021; p. 92. [Google Scholar]
- Elahi, E.; Khalid, Z.; Zhang, Z. Understanding Farmers’ Intention and Willingness to Install Renewable Energy Technology: A Solution to Reduce the Environmental Emissions of Agriculture. Appl. Energy 2022, 309, 118459. [Google Scholar] [CrossRef]
- Abbas, A.; Zhao, C.; Waseem, M.; Ahmed Khan, K.; Ahmad, R. Analysis of Energy Input–Output of Farms and Assessment of Greenhouse Gas Emissions: A Case Study of Cotton Growers. Front. Environ. Sci. 2022, 9, 826838. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Gregor, L.; Hauck, J.; Le Quéré, C.; Luijkx, I.T.; Olsen, A.; Peters, G.P.; et al. Global Carbon Budget 2022. Earth Syst. Sci. Data 2022, 14, 4811–4900. [Google Scholar] [CrossRef]
- Chancel, L. Global Carbon Inequality over 1990–2019. Nat. Sustain. 2022, 5, 931–938. [Google Scholar] [CrossRef]
- IPCC Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021.
- De Longueville, F.; Horion, S.; Tychon, B.; Ozer, P. Analyse de la campagne agricole 2003 en terme de stress hydrique. Bull. Société Géographique Liège 2004, 44, 97–103. [Google Scholar]
- Sciensano Une Surmortalité Importante Durant la Canicule du Mois D’août. 2020. Available online: https://www.sciensano.be/fr/coin-presse/une-surmortalite-importante-durant-la-canicule-du-mois-daout-2020 (accessed on 10 March 2022).
- Thibaut, K.; Schiffino, N.; Ozer, P. Sécheresse: Urgence Climatique Ou Urgence de La Planification? Perception Du Management de Crise En Belgique. Verigo 2023, in press. [Google Scholar]
- Thiry, A.; Glesner, C.; Fallon, C. Projet Retex/Retac—Apprentissage de la Situation D’urgence: Construction D’un Cadre de Retour D’expérience pour la Province de Liège. Analyse de L’enquête Mesydel; Université de Liège: Liège, Belgium, 2019. [Google Scholar]
- Fallon, C.; Thiry, A.; Brunet, S. Planification d’urgence et gestion de crise sanitaire. La Belgique face à la pandémie de COVID-19. In Courrier hebdomadaire; CRISP: Bruxelles, Belgium, 2020; pp. 5–68. [Google Scholar]
- Wilhite, D.A. Chapter 1 Drought as a Natural Hazard: Concepts and Definitions. Drought Mitig. Cent. Fac. Publ. 2000, 1, 3–18. [Google Scholar]
- Itier, B.; Seguin, B. La sécheresse: Caractérisation et occurrence, en lien avec le climat et l’hydrologie. Fourrages 2007, 190, 147–162. [Google Scholar]
- Koç, S.; Curnel, Y. Sécheresse en Wallonie, quels impacts sur nos cultures? In Lettre de la Plateforme Wallonne pour le GIEC; PwG: Louvain-la-Neuve, Belgium, 2020; pp. 9–13. [Google Scholar]
- Wade, C.T. Aridité et Semi-Aridité: Acceptions, Contenus et Évolutions. In Agridape; IED Afrique: Dakar, Senegal, 2016; pp. 44–47. [Google Scholar]
- Canovas, I. Modélisation de la Montée vers un État Critique de la Situation de Basses Eaux Sous Forçages Naturel et Anthropique en Région Méditerranéenne. Ph.D. Thesis, Université d’Avignon, Avignon, France, 2016. [Google Scholar]
- Sarwar, A.N.; Waseem, M.; Azam, M.; Abbas, A.; Ahmad, I.; Lee, J.E.; Haq, F.U. Shifting of Meteorological to Hydrological Drought Risk at Regional Scale. Appl. Sci. 2022, 12, 5560. [Google Scholar] [CrossRef]
- Hannaford, J.; Collins, K.; Haines, S.; Barker, L.J. Enhancing Drought Monitoring and Early Warning for the United Kingdom through Stakeholder Coinquiries. Weather Clim. Soc. 2019, 11, 49–63. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Glantz, M.H. Understanding: The Drought Phenomenon: The Role of Definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef]
- Organisation Météorologique Mondiale. Suivi de La Sécheresse et Alerte Précoce: Principes, Progrès et Enjeux Futurs; OMM: Genève, Switzerland, 2006; ISBN 978-92-63-21006-7. [Google Scholar]
- Abbas, A.; Waseem, M.; Ullah, W.; Zhao, C.; Zhu, J. Spatiotemporal Analysis of Meteorological and Hydrological Droughts and Their Propagations. Water 2021, 13, 2237. [Google Scholar] [CrossRef]
- Organisation Météorologique Mondiale; Global Water Partnership. Manuel Des Indicateurs et Indices de Sécheresse; OMM: Genève, Switzerland, 2016; ISBN 978-92-63-21173-6. [Google Scholar]
- Thibaut, K.; Ozer, P. Les Sécheresses En Wallonie, Un Nouveau Défi Du Changement Climatique? Quelques Pistes Pour Améliorer La Gestion de Ce Phénomène. Geo-Eco-Trop 2021, 45, 517–527. [Google Scholar]
- Dauphiné, A.; Provitolo, D. Risques et Catastrophes: Observer, Spatialiser, Comprendre, Gérer, 2nd ed.; Armand Colin: Malakoff, France, 2013; ISBN 978-2-200-28877-8. [Google Scholar]
- Sultan, B.; Djellouli, Y. Sécheresse et Canicule: Incidence et Prise En Compte. In Le Développement Durable à Découvert; Euzen, A., Eymard, L., Gaill, F., Eds.; À découvert; CNRS Éditions: Paris, France, 2013; pp. 218–219. ISBN 978-2-271-11913-1. [Google Scholar]
- Stahl, K.; Kohn, I.; Blauhut, V.; Urquijo, J.; De Stefano, L.; Acácio, V.; Dias, S.; Stagge, J.H.; Tallaksen, L.M.; Kampragou, E.; et al. Impacts of European Drought Events: Insights from an International Database of Text-Based Reports. Nat. Hazards Earth Syst. Sci. 2016, 16, 801–819. [Google Scholar] [CrossRef]
- American Planning Association. Falling Dominoes: A Planner’s Guide to Drought and Cascading Impacts; American Planning Association: Chicago, IL, USA, 2019. [Google Scholar]
- Thibaut, K. Les Sécheresses en Belgique (Wallonie): Analyse d’un Épisode Récent (2018) et Perception du Phénomène Dans le Cadre du Système de Planification D’urgence et de Gestion de Crise; Mémoire; Université de Liège: Liège, Belgium; Université Catholique de Louvain: Ottignies-Louvain-la-Neuve, Belgium, 2020. [Google Scholar]
- Bergeret, A.; George, E.; Delannoy, J.-J.; Piazza-Morel, D. L’outil-Frise: Une Expérimentation Interdisciplinaire. Comment Représenter des Processus de Changements en Territoires de Montagne? Les Carnets du LabEx ITEM; LabEX ITEM: Grenoble, France, 2015. [Google Scholar]
- Hassini, S. Serious Game et Gestion de Crise: Vers une Nouvelle Pédagogie pour Anticiper le Risque Émergent. Application à la Construction d’une Simulation de Sécheresse en Territoire Cévenol Dans le Cadre du Programme HydroPop 2; Mémoire; Sciences PO Toulouse: Toulouse, France; IMT Mines Alès: Alès, France, 2019. [Google Scholar]
- Mievis, P. Bilan de L’année. 2018. Available online: https://www.meteobelgique.be/article/releves-et-analyses/annee-2018/2309-bilan-de-l-annee-2018 (accessed on 8 August 2020).
- Institut Royal Météorologique. Bilan Climatologique Annuel, 2018; Institut Royal Météorologique: Uccle, Belgium, 2019; p. 6. [Google Scholar]
- Hari, V.; Rakovec, O.; Markonis, Y.; Hanel, M.; Kumar, R. Increased Future Occurrences of the Exceptional 2018–2019 Central European Drought under Global Warming. Sci. Rep. 2020, 10, 12207. [Google Scholar] [CrossRef] [PubMed]
- SPW DGO3. Rapport Sur L’état de L’environnement Wallon 2017; Service Public de Wallonie Editions: Jambes, Belgium, 2017. [Google Scholar]
- SPW ARNE. Etat Des Nappes D’eau Souterraine de La Wallonie; Service Public de Wallonie Editions: Jambes, Belgium, 2020. [Google Scholar]
- Michel, G.; Remacle, L. L’eau Potable…un Produit d’exception. In Eco Karst; CWEPSS: Dion-Valmont, Belgium, 2017; pp. 1–3. [Google Scholar]
- Direction de l’Etat Environnemental Production D’eau de Distribution. Available online: http://etat.environnement.wallonie.be/contents/indicatorsheets/RESS%203.html (accessed on 9 March 2022).
- SPW DAEA. Evolution de L’économie Agricole et Horticole de La Wallonie; Service Public de Wallonie Editions: Jambes, Belgium, 2020. [Google Scholar]
- Lambert, R.; Van der Veeren, B.; Decamps, C.; Cremer, S.; De Toffoli, M.; Javaux, M. Production Fourragère et Sécheresse, Quelles Solutions Pour la Wallonie? AFPF: Paris, France, 2020. [Google Scholar]
- Riou-Nivert, P. Les dégâts subis par les forêts du fait de tempêtes ou de sécheresses. In Annales des Mines—Responsabilité et Environnement; Institut Mines-Télécom: Paris, France, 2009; pp. 82–88. [Google Scholar]
- Manise, T.; Vincke, C. Impact Du Climat et Des Déficits Hydriques Stationnels Sur La Croissance Radiale Du Hêtre, Du Chêne, de l’épicéa et Du Douglas En Wallonie. For. Wallonne 2014, 129, 48–57. [Google Scholar]
- Moniteur Belge. Arrêté du Gouvernement Wallon du 7 Mai 2020 Reconnaissant Comme Calamité Agricole la Sécheresse du 2 Juin au 6 Août 2018, Délimitant L’étendue Géographique de Cette Calamité et Déterminant L’indemnisation des Dommages; Moniteur Belge: Bruxelles, Belgium, 2020; pp. 34026–34031. [Google Scholar]
- Noiret, Y. Sécheresse Agricole de L’été 2018 Reconnue Calamité Agricole! Available online: http://www.cciwallonie.be/secheresse-agricole-de-lete-2018-reconnue-calamite-agricole/ (accessed on 22 September 2023).
Direct Impacts | →Indirect Impacts (1st Level) | →Indirect Impacts (2nd Level) | |
---|---|---|---|
Type of drought | Socio-economic and environmental drought | ||
←Meteorological drought |
| Air pollution (dust, fine particles, etc.) | Impacts on human and animal health |
extreme heat | Impacts on human and animal health | ||
Appearance or proliferation of new parasites and/or diseases | Impacts on human, animal, and plant health | ||
Psychological shock for disaster victims | Depression, suicide, etc. | ||
←Agricultural drought |
| Deterioration of crops and meadows | Reduced yields, financial losses |
Deterioration in livestock farming | Lack of food resources, use of winter fodder, financial losses | ||
Deterioration of forest ecosystems | Reduced tree growth, increased mortality and risk of disease or pest attack, financial losses, reduced CO2 sequestration by trees | ||
Deterioration of fragile and/or protected ecosystems | Loss of biodiversity | ||
Landslides, wind erosion of the soil | Increased risk of building instability | ||
Drying out of vegetation cover | Increased risk of fire, ban on access to natural areas, cessation of tourist activities, financial losses, etc. | ||
Hydrological drought |
| Shortage of mains water | Conflicts of use, restrictions on use, additional pressure on scarce renewable water reserves, alternative supplies (tanker trucks, aid from neighboring countries, etc.), reduction in the quality of the water distributed, increase in the cost of water, etc. |
Deterioration of aquatic ecosystems and water quality, increase in water temperature | Loss of biodiversity, fish mortality, reduction in fish farming yields, financial losses, proliferation of bacteria | ||
Stopping hydroelectric production, limiting thermal discharges, restricting water abstraction | Electricity shortages, higher energy costs, disruption to water-using industrial processes, financial losses for operators | ||
Restrictions on navigation (shallower draught, grouping together at locks, etc.) | Reduction in river freight transport, longer journey times | ||
Stopping tourist activities (kayaking and other leisure craft, fishing, swimming, etc.) | Fewer tourist visits, financial losses, job losses | ||
Limiting water abstraction for irrigation | Increased agricultural drought |
Categories | Subsystems | Axes | Data Sources * | |
---|---|---|---|---|
Data Reporters | Data Producers | |||
Environmental conditions | Weather conditions | Temperatures | IRM | IRM |
Precipitation | IRM | IRM | ||
Hydrological conditions | Underground water | CRC-W | SPW: groundwater direction | |
Surface water | CRC-W | SPW: dams’ direction, hydrological management direction, direction of non-navigable waterways | ||
Water quality | CRC-W | SPW: surface water direction | ||
Economic and social context | Production/distribution of drinking water | - | CRC-W | Aquawal + water producers |
Agriculture, livestock, and fish farming | - | CRC-W | SPW: agriculture, natural resources, and environment | |
Forests and natural environments | - | CRC-W | SPW: Department of Nature and Forests | |
Energy | - | CRC-W | Engie | |
Navigation and tourism | - | CRC-W | SPW: General Commissariat for Tourism, direction of non-navigable waterways | |
Political and administrative decisions | Regional level | - | CRC-W | Regional authorities + SPW |
Provincial level | - | CRC-W | Provincial Governor | |
Municipal level | - | CRC-W | Municipal authorities |
Monthly Indicators 2018 | J | F | M | A | M | J | J | A | S | O | N | D |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Average temperature (°C, Uccle) | 6 | 0.8 | 5.4 | 13 | 16.3 | 18.1 | 22 | 19.4 | 15.4 | 12.6 | 7.4 | 5.8 |
Mean/normal temperature difference (°C, Uccle) + classification | +2.7 | −2.9 | −1.4 | +3.2 | +2.7 | +1.9 | +3.6 | +1.4 | +0.5 | +1.5 | +0.6 | +1.9 |
>+2° | <−2° | <−1° | >+3° | >+2° | >+1° | >+3° | >+1° | ≈ n | >+1° | ≈ n | >+1° | |
Cumulative rainfall/normal deviation (%, Wallonia) + classification | 130.2 | 37.7 | 103.8 | 102.2 | 104.8 | 63.6 | 18.8 | 71.6 | 81 | 55.7 | 55.1 | 115.3 |
>n | <<n | ≈n | ≈n | ≈n | <n | <<n | <n | <n | <<n | <<n | >n |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thibaut, K.; Ayral, P.-A.; Ozer, P. Development of the Chrono-Systemic Timeline as a Tool for Cross-Sectional Analysis of Droughts—Application in Wallonia. Water 2023, 15, 4150. https://doi.org/10.3390/w15234150
Thibaut K, Ayral P-A, Ozer P. Development of the Chrono-Systemic Timeline as a Tool for Cross-Sectional Analysis of Droughts—Application in Wallonia. Water. 2023; 15(23):4150. https://doi.org/10.3390/w15234150
Chicago/Turabian StyleThibaut, Kevin, Pierre-Alain Ayral, and Pierre Ozer. 2023. "Development of the Chrono-Systemic Timeline as a Tool for Cross-Sectional Analysis of Droughts—Application in Wallonia" Water 15, no. 23: 4150. https://doi.org/10.3390/w15234150
APA StyleThibaut, K., Ayral, P. -A., & Ozer, P. (2023). Development of the Chrono-Systemic Timeline as a Tool for Cross-Sectional Analysis of Droughts—Application in Wallonia. Water, 15(23), 4150. https://doi.org/10.3390/w15234150