Occurrence and Sources of Polycyclic Aromatic Hydrocarbons and Factors Influencing Their Accumulation in Surface Sediment of a Deep-Sea Depression, Namely, the Tatar Trough (Tatar Strait, the Sea of Japan)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling of the Sediments
2.2. Analyses of the Grain-Size and the Organic Carbon
2.3. PAH’s Sample Pretreatment and Analysis
Recovery Test
2.4. Aerobic Hydrocarbon Degradation Genes
2.5. Ecological Risk Assessment
2.6. Data Analysis
3. Results and Discussion
3.1. PAH Level and Comparison with Background
3.2. Ecological Risk Assessment
3.3. Spatial PAH Distribution
3.4. Grain Size
3.5. Organic Carbon
3.6. The PAH Sources Identification
3.6.1. Compositional Profile
3.6.2. PAH Isomer Ratio
3.6.3. Principal Component Analysis
3.7. The Sediment Degradation Potential
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Honda, M.; Suzuki, N. Toxicities of Polycyclic Aromatic Hydrocarbons for Aquatic Animals. Int. J. Environ. Res. Public Health 2020, 17, 1363. [Google Scholar] [CrossRef] [PubMed]
- Readman, J.W.; Mantoura, R.F.C.; Rhead, M.M. The Physico-Chemical Speciation of Polycyclic Aromatic Hydrocarbons (PAH) in Aquatic Systems. Fresenius Zeitschrift Anal. Chemie 1984, 319, 126–131. [Google Scholar] [CrossRef]
- Simcik, M.F.; Eisenreich, S.J.; Golden, K.A.; Llu, S.P.; Lipiatou, E.; Swackhamer, D.L.; Long, D.T. Atmospheric Loading of Polycyclic Aromatic Hydrocarbons to Lake Michigan as Recorded in the Sediments. Environ. Sci. Technol. 1996, 30, 3039–3046. [Google Scholar] [CrossRef]
- Abrajano, T.A.; Yan, B.; O’Malley, V. High Molecular Weight Petrogenic and Pyrogenic Hydrocarbons in Aquatic Environments, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; Volume 9, ISBN 9780080983004. [Google Scholar]
- Hites, R.A. Sedimentary Polycyclic Aromatic Hydrocarbons: The Historical Record. Science 1977, 198, 829–831. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y. Eutrophication-Induced Regime Shifts Reduced Sediment Burial Ability for Polycyclic Aromatic Hydrocarbons: Evidence from Lake Taihu in China. Chemosphere 2021, 271, 129709. [Google Scholar] [CrossRef]
- Guigue, C.; Tedetti, M.; Dang, D.H.; Mullot, J.U.; Garnier, C.; Goutx, M. Remobilization of Polycyclic Aromatic Hydrocarbons and Organic Matter in Seawater during Sediment Resuspension Experiments from a Polluted Coastal Environment: Insights from Toulon Bay (France). Environ. Pollut. 2017, 229, 627–638. [Google Scholar] [CrossRef]
- Ghosal, D.; Ghosh, S.; Dutta, T.K.; Ahn, Y. Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review. Front. Microbiol. 2016, 7, 1369. [Google Scholar] [CrossRef]
- Donahue, W.F.; Allen, E.W.; Schindler, D.W. Impacts of Coal-Fired Power Plants on Trace Metals and Polycyclic Aromatic Hydrocarbons (PAHs) in Lake Sediments in Central Alberta, Canada. J. Paleolimnol. 2006, 35, 111–128. [Google Scholar] [CrossRef]
- McGowin, A.E. Polycyclic Aromatic Hydrocarbons. In Chromatographic Analysis of the Environment; Routledge: Abingdon, UK, 2006; pp. 556–616. ISBN 9780824726294. [Google Scholar]
- Gregoris, E.; Barbaro, E.; Morabito, E.; Toscano, G.; Donateo, A.; Cesari, D.; Contini, D.; Gambaro, A. Impact of Maritime Traffic on Polycyclic Aromatic Hydrocarbons, Metals and Particulate Matter in Venice Air. Environ. Sci. Pollut. Res. 2016, 23, 6951–6959. [Google Scholar] [CrossRef]
- Dachs, J.; Bayona, J.M.; Raoux, C.; Albaigés, J. Spatial, Vertical Distribution and Budget of Polycyclic Aromatic Hydrocarbons in the Western Mediterranean Seawater. Environ. Sci. Technol. 1997, 31, 682–688. [Google Scholar] [CrossRef]
- Perra, G.; Renzi, M.; Guerranti, C.; Focardi, S.E. Polycyclic Aromatic Hydrocarbons Pollution in Sediments: Distribution and Sources in a Lagoon System (Orbetello, Central Italy). Transitional Waters Bull. 2009, 3, 45–58. [Google Scholar] [CrossRef]
- Wang, C.; Sun, H.; Chang, Y.; Song, Z.; Qin, X. PAHs Distribution in Sediments Associated with Gas Hydrate and Oil Seepage from the Gulf of Mexico. Mar. Pollut. Bull. 2011, 62, 2714–2723. [Google Scholar] [CrossRef]
- Wolska, L.; Mechlińska, A.; Rogowska, J.; Namieśnik, J. Sources and Fate of PAHs and PCBs in the Marine Environment. Crit. Rev. Environ. Sci. Technol. 2012, 42, 1172–1189. [Google Scholar] [CrossRef]
- Cai, M.; Liu, M.; Hong, Q.; Lin, J.; Huang, P.; Hong, J.; Wang, J.; Zhao, W.; Chen, M.; Cai, M.; et al. Fate of Polycyclic Aromatic Hydrocarbons in Seawater from the Western Pacific to the Southern Ocean (17.5°N to 69.2°S) and Their Inventories on the Antarctic Shelf. Environ. Sci. Technol. 2016, 50, 9161–9168. [Google Scholar] [CrossRef]
- Ma, Y.; Halsall, C.J.; Xie, Z.; Koetke, D.; Mi, W.; Ebinghaus, R.; Gao, G. Polycyclic Aromatic Hydrocarbons in Ocean Sediments from the North Pacific to the Arctic Ocean. Environ. Pollut. 2017, 227, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Lakhmanov, D.E.; Kozhevnikov, A.Y.; Pokryshkin, S.A.; Semiletov, I.P.; Kosyakov, D.S. Data of Polycyclic Aromatic Hydrocarbons Concentration in the Siberian Arctic Seas Sediments. Data Brief 2022, 45, 108606. [Google Scholar] [CrossRef]
- Dasgupta, S.; Peng, X.; Chen, S.; Li, J.; Du, M.; Zhou, Y.H.; Zhong, G.; Xu, H.; Ta, K. Toxic Anthropogenic Pollutants Reach the Deepest Ocean on Earth. Geochem. Perspect. Lett. 2018, 7, 22–26. [Google Scholar] [CrossRef]
- Sobek, A.; Abel, S.; Sanei, H.; Bonaglia, S.; Li, Z.; Horlitz, G.; Rudra, A.; Oguri, K.; Glud, R.N. Organic Matter Degradation Causes Enrichment of Organic Pollutants in Hadal Sediments. Nat. Commun. 2023, 14, 2012. [Google Scholar] [CrossRef]
- Lomtev, V.L. Gas Presence Signs and Cenozoic Cover Structure on the Western Side of Tatarsky Trough (Sea of Japan). Deep Oil 2014, II, 220–237. [Google Scholar]
- Nechayuk, A.E.; Obzhirov, A.I. Structures and Oil and Gas Content of the Tatarsky Strait Basins. Bull. Kamchatka Reg. Assoc. Educ. Sci. Cent. Earth Sci. 2010, 2, 27–34. [Google Scholar]
- Korshenko, A. (Ed.) Marine Water Pollution. Annual Report 2019; Nauka: Moscow, Russia, 2020; ISBN 9785950064678. [Google Scholar]
- Sattarova, V.V.; Aksentov, K.I. Geochemistry of Mercury in Surface Sediments of the Kuril Basin of the Sea of Okhotsk, Kuril-Kamchatka Trench and Adjacent Abyssal Plain and Northwest Part of the Bering Sea. Deep. Res. Part II Top. Stud. Oceanogr. 2018, 154, 24–31. [Google Scholar] [CrossRef]
- Shepard, F.P. Nomenclature Based on Sand-Silt-Clay Ratios. J. Sediment. Petrol. 1954, 14, 151–158. [Google Scholar] [CrossRef]
- Schlee, J. Atlantic Continental Shelf and Slope of the United States Sediment Texture of the Northeastern; Geological Survey Professional Paper 529-L; U.S. Geological Survey: Reston, VA, USA, 1973; p. 64. [Google Scholar]
- Gratzfeld-Huesgen, A.; Schuster, R.; Schulenberg-Schell, H. Polynuclear Aromatic Hydrocarbons by HPLC, HP Application Note 12-5091-7260 E. 1993.
- Marmur, J. A Procedure for the Isolation of Deoxyribonucleic Acid from Micro-Organisms. J. Mol. Biol. 1961, 3, 208–218. [Google Scholar] [CrossRef]
- Tourova, T.P.; Sokolova, D.S.; Semenova, E.M.; Poltaraus, A.B.; Nazina, T.N. Diversity of the AlkB Genes of N-Alkane Biodegradation in Thermophilic Hydrocarbon-Oxidizing Bacteria of the Genera Geobacillus, Parageobacillus, and Aeribacillus. Microbiology 2018, 87, 301–307. [Google Scholar] [CrossRef]
- Eaton, R.W.; Chapman, P.J. Bacterial Metabolism of Naphthalene: Construction and Use of Recombinant Bacteria to Study Ring Cleavage of 1,2-Dihydroxynaphthalene and Subsequent Reactions. J. Bacteriol. 1992, 174, 7542–7554. [Google Scholar] [CrossRef] [PubMed]
- Pathak, A.; Chauhan, A.; Blom, J.; Indest, K.J.; Jung, C.M.; Stothard, P.; Bera, G.; Green, S.J.; Ogram, A. Comparative Genomics and Metabolic Analysis Reveals Peculiar Characteristics of Rhodococcus Opacus Strain M213 Particularly for Naphthalene Degradation. PLoS ONE 2016, 11, 1–32. [Google Scholar] [CrossRef]
- Wang, J.Z.; Zhu, C.Z.; Chen, T.H. PAHs in the Chinese Environment: Levels, Inventory Mass, Source and Toxic Potency Assessment. Environ. Sci. Process. Impacts 2013, 15, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Nemirovskaya, I.A. Hydrocarbons of Water, Suspension, and Bottom Sediments of the Sea of Okhotsk (Distribution, Migration Forms, and Genesis). In Kompleksnye Issledovaniya Ekosistemy Okhotskogo Morya (Complex Studies of the Ecosystem of the Sea of Okhotsk); VNIRO: Moscow, Russia, 1997; pp. 172–178. [Google Scholar]
- Nemirovskaya, I.A. Concentration and Composition of Hydrocarbons in Bottom Sediments from the Sakhalin Shelf. Geochem. Int. 2008, 46, 378–385. [Google Scholar] [CrossRef]
- Chizhova, T.; Hayakawa, K.; Tishchenko, P.; Nakase, H.; Koudryashova, Y. Distribution of PAHs in the Northwestern Part of the Japan Sea. Deep. Res. Part II Top. Stud. Oceanogr. 2013, 86–87, 19–24. [Google Scholar] [CrossRef]
- Mcgrath, J.A.; Joshua, N.; Bess, A.S.; Parkerton, T.F. Review of Polycyclic Aromatic Hydrocarbons (PAHs) Sediment Quality Guidelines for the Protection of Benthic Life. Integr. Environ. Assess. Manag. 2019, 15, 505–518. [Google Scholar] [CrossRef]
- IARC. Some Non-Heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; World Health Organization International Agency for Research on Cancer: Lyon, France, 2010; Volume 92. [Google Scholar]
- USEPA. 2018 Edition of the Drinking Water Standards and Health Advisories Tables; USEPA: Washington, DC, USA, 2018. [Google Scholar]
- USEPA. 2002 Edition of the Drinking Water Standards and Health Advisories; USEPA: Washington, DC, USA, 2002. [Google Scholar]
- Nisbet, I.C.T.; LaGoy, P.K. Toxic Equivalency Factors (TEFs) for Polycyclic Aromatic Hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 1992, 16, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Durant, J.L.; Busby, W.F.; Lafleur, A.L.; Penman, B.W.; Crespi, C.L. Human Cell Mutagenicity of Oxygenated, Nitrated and Unsubstituted Polycyclic Aromatic Hydrocarbons Associated with Urban Aerosols. Mutat. Res. Genet. Toxicol. 1996, 371, 123–157. [Google Scholar] [CrossRef] [PubMed]
- Montuori, P.; Aurino, S.; Garzonio, F.; Sarnacchiaro, P.; Nardone, A.; Triassi, M. Distribution, Sources and Ecological Risk Assessment of Polycyclic Aromatic Hydrocarbons in Water and Sediments from Tiber River and Estuary, Italy. Sci. Total Environ. 2016, 566–567, 1254–1267. [Google Scholar] [CrossRef] [PubMed]
- Ambade, B.; Shankar, S.; Kurwadkar, S.; Mishra, P. Accumulation of Polycyclic Aromatic Hydrocarbons (PAHs) in Surface Sediment Residues of Mahanadi River Estuary: Abundance, Source, and Risk Assessment. Mar. Pollut. Bull. 2022, 183, 114073. [Google Scholar] [CrossRef]
- Zafeiraki, E.; Moulas, E.; Kasiotis, K.M.; Bakeas, E.; Dassenakis, E. Polycyclic Aromatic Hydrocarbons (PAHs) in Surface Sediments from Greece: Occurrence, Sources and Risk Assessment. Mar. Pollut. Bull. 2023, 197, 115715. [Google Scholar] [CrossRef]
- Neira, C.; Cossaboon, J.; Mendoza, G.; Hoh, E.; Levin, L.A. Occurrence and Distribution of Polycyclic Aromatic Hydrocarbons in Surface Sediments of San Diego Bay Marinas. Mar. Pollut. Bull. 2017, 114, 466–479. [Google Scholar] [CrossRef]
- Mehr, M.R.; Keshavarzi, B.; Moore, F.; Fooladivanda, S.; Sorooshian, A.; Biester, H. Spatial Distribution, Environmental Risk and Sources of Heavy Metals and Polycyclic Aromatic Hydrocarbons (PAHs) in Surface Sediments-Northwest of Persian Gulf. Cont. Shelf Res. 2019, 193, 104036. [Google Scholar] [CrossRef]
- Li, J.; Dong, H.; Zhang, D.; Han, B.; Zhu, C.; Liu, S.; Liu, X.; Ma, Q.; Li, X. Sources and Ecological Risk Assessment of PAHs in Surface Sediments from Bohai Sea and Northern Part of the Yellow Sea, China. Mar. Pollut. Bull. 2015, 96, 485–490. [Google Scholar] [CrossRef]
- Sany, S.B.T.; Hashim, R.; Salleh, A.; Rezayi, M.; Mehdinia, A.; Safari, O. Polycyclic Aromatic Hydrocarbons in Coastal Sediment of Klang Strait, Malaysia: Distribution Pattern, Risk Assessment and Sources. PLoS ONE 2014, 9, e105925. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Z.; Xu, K.; Mayer, L.M.; Zhang, Z.; Kolker, A.S.; Wu, W. Concentrations and Sources of Polycyclic Aromatic Hydrocarbons in Surface Coastal Sediments of the Northern Gulf of Mexico. Geochem. Trans. 2014, 15, 2. [Google Scholar] [CrossRef]
- Li, Y.; Duan, X. Polycyclic Aromatic Hydrocarbons in Sediments of China Sea. Environ. Sci. Pollut. Res. 2015, 22, 15432–15442. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Mi, W.; Xie, Z.; Tang, J.; Joerss, H.; Ebinghaus, R.; Zhang, Q. Overall Comparison and Source Identification of PAHs in the Sediments of European Baltic and North Seas, Chinese Bohai and Yellow Seas. Sci. Total Environ. 2020, 737, 139535. [Google Scholar] [CrossRef] [PubMed]
- Likht, F.R.; Derkachev, A.N.; Botsul, A.I. Lithodynamic Differentiation of Bottom Deposits in the Sedimentary Basins of the Varied Mor Phostructural Types (the Tatar Strait as an Example). In Conditions for Formation of bottom sediments and Associated Mineral Resources in Marginal Seas; Likht, F.R., Botsul, A.I., Nikolaeva, N.A., Utkin, I.V., Eds.; Dalnauka: Vladivostok, Russia, 2002; pp. 5–24. [Google Scholar]
- Passega, R. Texture as Characteristic of Clastic Deposition. Bull. Am. Assoc. Pet. Geol. 1984, 41, 1952–1984. [Google Scholar]
- Stanley, D.J. Turbidity Current Transport of Organic-Rich Sediments: Alpine and Mediterranean Examples. Mar. Geol. 1986, 70, 85–101. [Google Scholar] [CrossRef]
- Pohl, F.; Eggenhuisen, J.T.; Kane, I.A.; Clare, M.A. Transport and Burial of Microplastics in Deep-Marine Sediments by Turbidity Currents. Environ. Sci. Technol. 2020, 54, 4180–4189. [Google Scholar] [CrossRef]
- Wang, X.C.; Zhang, Y.X.; Chen, R.F. Distribution and Partitioning of Polycyclic Aromatic Hydrocarbons (PAHs) in Different Size Fractions in Sediments from Boston Harbor, United States. Mar. Pollut. Bull. 2001, 42, 1139–1149. [Google Scholar] [CrossRef]
- Hung, C.C.; Gong, G.C.; Ko, F.C.; Lee, H.J.; Chen, H.Y.; Wu, J.M.; Hsu, M.L.; Peng, S.C.; Nan, F.H.; Santschi, P.H. Polycyclic Aromatic Hydrocarbons in Surface Sediments of the East China Sea and Their Relationship with Carbonaceous Materials. Mar. Pollut. Bull. 2011, 63, 464–470. [Google Scholar] [CrossRef]
- Giacalone, A.; Gianguzza, A.; Mannino, M.R.; Orecchio, S.; Piazzese, D. Polycyclic Aromatic Hydrocarbons in Sediments of Marine Coastal Lagoons in Messina, Italy: Extraction and GC/MS Analysis, Distribution and Sources in sediments of marine coastal. Polycycl. Aromat. Compd. 2004, 24, 135–149. [Google Scholar] [CrossRef]
- Parinos, C.; Gogou, A.; Bouloubassi, I.; Stavrakakis, S.; Plakidi, E.; Hatzianestis, I. Sources and Downward Fluxes of Polycyclic Aromatic Hydrocarbons in the Open Southwestern Black Sea. Org. Geochem. 2013, 57, 65–75. [Google Scholar] [CrossRef]
- LeBoeuf, E.J.; Weber, W.J.J. A Distributed Reactivity Model for Sorption by Soils and Sediments. 8. Sorbent Organic Domains: Discovery of a Humic Acid Glass Transition and an Argument for a Polymer-Based Model. Environ. Sci. Technol. 1997, 31, 1697–1702. [Google Scholar] [CrossRef]
- Nybom, I.; Horlitz, G.; Gilbert, D.; Berrojalbiz, N.; Martens, J.; Arp, H.P.H.; Sobek, A. Effects of Organic Carbon Origin on Hydrophobic Organic Contaminant Fate in the Baltic Sea. Environ. Sci. Technol. 2021, 55, 13061–13071. [Google Scholar] [CrossRef] [PubMed]
- Oen, A.M.P.; Cornelissen, G.; Breedveld, G.D. Relation between PAH and Black Carbon Contents in Size Fractions of Norwegian Harbor Sediments. Environ. Pollut. 2006, 141, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Montuori, P.; De Rosa, E.; Di Duca, F.; De Simone, B.; Scippa, S.; Russo, I.; Sarnacchiaro, P.; Triassi, M. Polycyclic Aromatic Hydrocarbons (PAHs) in the Dissolved Phase, Particulate Matter, and Sediment of the Sele River, Southern Italy: A Focus on Distribution, Risk Assessment, and Sources. Toxics 2022, 10, 401. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.P. Polycyclic Aromatic Hydrocarbons in the Sediments of the South China Sea. Environ. Pollut. 2000, 108, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Semenov, M.Y.; Marinaite, I.I.; Silaev, A.V.; Begunova, L.A. Composition, Concentration and Origin of Polycyclic Aromatic Hydrocarbons in Waters and Bottom Sediments of Lake Baikal and Its Tributaries. Water 2023, 15, 2324. [Google Scholar] [CrossRef]
- Koudryashova, Y.; Chizhova, T.; Inoue, M.; Hayakawa, K.; Nagao, S.; Marina, E.; Mundo, R. Deep Water PAH Cycling in the Japan Basin (the Sea of Japan). J. Mar. Sci. Eng. 2022, 10, 2015. [Google Scholar] [CrossRef]
- Chizhova, T.L.; Tishchenko, P.Y.; Kondratyeva, L.M.; Koudryashova, Y.V.; Kavanishi, T. Polycyclic Aromatic Hydrocarbons in the Amur River Estuary. Water Chem. Ecol. 2013, 10, 14–22. [Google Scholar]
- ATSDR. Toxicological Profile for Naphthalene, 1-Methylnaphthalene, and 2-Methylnaphthalene; U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2005. [Google Scholar]
- Andreev, A.G. Impact of the Amur River Discharge and Coastal Upwelling on the Water Circulation in the Tartar Strait (the Japan Sea). Vestn. Far East. Branch Russ. Acad. Sci. 2020, 1, 120–126. [Google Scholar] [CrossRef]
- Andreev, A.G. Peculiarities of Water Circulation in the Southern Tatar Strait. Izv. Atmos. Ocean Phys. 2018, 54, 1050–1056. [Google Scholar] [CrossRef]
- Matsunaka, T.; Nagao, S.; Inoue, M.; Mundo, R.; Tanaka, S.; Tang, N.; Yoshida, M.; Nishizaki, M.; Morita, M.; Takikawa, T.; et al. Seasonal Variations in Marine Polycyclic Aromatic Hydrocarbons off Oki Island, Sea of Japan, during 2015–2019. Mar. Pollut. Bull. 2022, 180, 113749. [Google Scholar] [CrossRef]
- Tobiszewski, M.; Namieśnik, J. PAH Diagnostic Ratios for the Identification of Pollution Emission Sources. Environ. Pollut. 2012, 162, 110–119. [Google Scholar] [CrossRef]
- Ding, X.; Wang, X.M.; Xie, Z.Q.; Xiang, C.H.; Mai, B.X.; Sun, L.G.; Zheng, M.; Sheng, G.Y.; Fu, J.M.; Pöschl, U. Atmospheric Polycyclic Aromatic Hydrocarbons Observed over the North Pacific Ocean and the Arctic Area: Spatial Distribution and Source Identification. Atmos. Environ. 2007, 41, 2061–2072. [Google Scholar] [CrossRef]
- Pandey, P.K.; Patel, K.S.; Lenicek, J. Polycyclic Aromatic Hydrocarbons: Need for Assessment of Health Risks in India? Environ. Monit. Assess. 1999, 59, 287–319. [Google Scholar] [CrossRef]
- Achten, C.; Hofmann, T. Native Polycyclic Aromatic Hydrocarbons (PAH) in Coals—A Hardly Recognized Source of Environmental Contamination. Sci. Total Environ. 2009, 407, 2461–2473. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Liu, G.; Zhang, J.; Chou, C.L.; Liu, J. Abundances of Polycyclic Aromatic Hydrocarbons (PAHs) in 14 Chinese and American Coals and Their Relation to Coal Rank and Weathering. Energy Fuels 2010, 24, 6061–6066. [Google Scholar] [CrossRef]
- Fabiańska, M.; Kozielska, B.; Konieczyński, J. Differences in the Occurrence of Polycyclic Aromatic Hydrocarbons and Geochemical Markers in the Dust Emitted from Various Coal-Fired Boilers. Energy Fuels 2017, 31, 2585–2595. [Google Scholar] [CrossRef]
- Mackay, D.; Ying Shiu, W.; Ma, K.-C.; Chi Lee, S. Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, 2nd ed.; Taylor Francis: Abingdon, UK, 2006; Volume I–IV. [Google Scholar]
- Buzoleva, L.S.; Bogatyrenko, E.A.; Repina, M.A.; Belkova, N.L. Oil-Oxidizing Activity of Bacteria Isolated from South Sakhalin Coastal Waters. Microbiology 2017, 86, 338–345. [Google Scholar] [CrossRef]
- Bogatyrenko, E.A.; Kim, A.V.; Dunkai, T.I.; Ponomareva, A.L.; Es’kova, A.I.; Sidorenko, M.L.; Okulov, A.K. Taxonomic Diversity of Culturable Hydrocarbon-Oxidizing Bacteria in the Sea of Japan. Russ. J. Mar. Biol. 2021, 47, 232–239. [Google Scholar] [CrossRef]
- Ahn, Y.; Sanseverino, J.; Sayler, G.S. Analyses of Polycyclic Aromatic Hydrocarbon-Degrading Bacteria Isolated from Contaminated Soils. Biodegradation 1999, 10, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.; Chen, B.; Qing, Q.; Zou, S.; Wang, X.; Luan, T. Polycyclic Aromatic Hydrocarbons (PAHs) Enrich Their Degrading Genera and Genes in Human-Impacted Aquatic Environments. Environ. Pollut. 2017, 230, 936–944. [Google Scholar] [CrossRef]
- Yu, S.H.; Ke, L.; Wong, Y.S.; Tam, N.F.Y. Degradation of Polycyclic Aromatic Hydrocarbons by a Bacterial Consortium Enriched from Mangrove Sediments. Environ. Int. 2005, 31, 149–154. [Google Scholar] [CrossRef]
- Hilyard, E.J.; Jones-Meehan, J.M.; Spargo, B.J.; Hill, R.T. Enrichment, Isolation, and Phylogenetic Identification of Polycyclic Aromatic Hydrocarbon-Degrading Bacteria from Elizabeth River Sediments. Appl. Environ. Microbiol. 2008, 74, 1176–1182. [Google Scholar] [CrossRef]
- Dong, C.; Bai, X.; Sheng, H.; Jiao, L.; Zhou, H.; Shao, Z. Distribution of PAHs and the PAH-Degrading Bacteria in the Deep-Sea Sediments of the High-Latitude Arctic Ocean. Biogeosciences 2015, 12, 2163–2177. [Google Scholar] [CrossRef]
- Bogatyrenko, E.A.; Kim, A.V.; Polonik, N.S.; Dunkai, T.I.; Ponomareva, A.L.; Dashkov, D.V. Psychrotrophic Hydrocarbon-Oxidizing Bacteria Isolated from Bottom Sediments of Peter the Great Bay, Sea of Japan. Oceanology 2022, 62, 379–389. [Google Scholar] [CrossRef]
- Ukalska-Jaruga, A.; Smreczak, B. The Impact of Organic Matter on Polycyclic Aromatic Hydrocarbon (PAH) Availability and Persistence in Soils. Molecules 2020, 25, 2470. [Google Scholar] [CrossRef] [PubMed]
- Dhar, K.; Subashchandrabose, S.R.; Venkateswarlu, K.; Krishnan, K.; Megharaj, M. Contents Anaerobic Microbial Degradation of Polycyclic Aromatic Hydrocarbons: A Comprehensive Review. In Reviews of Environmental Contamination and Toxicology; Springer: Berlin/Heidelberg, Germany, 2019; p. 84. [Google Scholar]
- Ponomareva, A.L.; Eskova, A.I.; Shakirov, R.B.; Syrbu, N.S.; Legkodimov, A.A.; Grigorov, R.A. Groups of Geomicrobiological Indicators Are Spread across Gas-Hydrate and Non-Gas-Hydrate Areas in the Northern Part of the Sea of Japan. Biology 2022, 11, 1802. [Google Scholar] [CrossRef] [PubMed]
- Jiao, W.; Wang, T.; Khim, J.S.; Luo, W.; Hu, W.; Naile, J.E.; Giesy, J.P.; Lu, Y. PAHs in Surface Sediments from Coastal and Estuarine Areas of the Northern Bohai and Yellow Seas, China. Environ. Geochem. Health 2012, 34, 445–456. [Google Scholar] [CrossRef]
- Zrafi, I.; Hizem, L.; Chalghmi, H.; Ghrabi, A.; Rouabhia, M.; Saidane-Mosbahi, D. Aliphatic and Aromatic Biomarkers for Petroleum Hydrocarbon Investigation in Marine Sediment. J. Pet. Sci. Res. 2013, 2, 145. [Google Scholar] [CrossRef]
- Adeniji, A.O.; Okoh, O.O.; Okoh, A.I. Distribution Pattern and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons in the Water and Sediment of Algoa Bay, South Africa. Environ. Geochem. Health 2018, 41, 1303–1320. [Google Scholar] [CrossRef]
- Mandić, J.; Tronczyński, J.; Kušpilić, G. Polycyclic Aromatic Hydrocarbons in Surface Sediments of the Mid-Adriatic and along the Croatian Coast: Levels, Distributions and Sources. Environ. Pollut. 2018, 242, 519–527. [Google Scholar] [CrossRef]
- Habibullah-Al-Mamun, M.; Kawser Ahmed, M.; Hossain, A.; Masunaga, S. Distribution, Source Apportionment, and Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in the Surficial Sediments from the Coastal Areas of Bangladesh. Arch. Environ. Contam. Toxicol. 2019, 76, 178–190. [Google Scholar] [CrossRef]
- Pérez-Fernández, B.; Viñas, L.; Bargiela, J. New Values to Assess Polycyclic Aromatic Hydrocarbons Pollution: Proposed Background Concentrations in Marine Sediment Cores from the Atlantic Spanish Coast. Ecol. Indic. 2019, 101, 702–709. [Google Scholar] [CrossRef]
- Nakata, H.; Uehara, K.; Goto, Y.; Fukumura, M.; Shimasaki, H.; Takikawa, K.; Miyawaki, T. Polycyclic Aromatic Hydrocarbons in Oysters and Sediments from the Yatsushiro Sea, Japan: Comparison of Potential Risks among PAHs, Dioxins and Dioxin-like Compounds in Benthic Organisms. Ecotoxicol. Environ. Saf. 2014, 99, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, H.; Jadoon, W.A.; Nunome, Y.; Yamazaki, H.; Asaoka, S.; Takeda, K.; Sakugawa, H. Distribution and Source Estimation of Polycyclic Aromatic Hydrocarbons in Coastal Sediments from Seto Inland Sea, Japan. Environ. Chem. 2020, 17, 488–497. [Google Scholar] [CrossRef]
- Hatzianestis, I.; Parinos, C.; Bouloubassi, I.; Gogou, A. Polycyclic Aromatic Hydrocarbons in Surface Sediments of the Aegean Sea (Eastern Mediterranean Sea). Mar. Pollut. Bull. 2020, 153, 111030. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Qin, R.; Luo, W. Polycyclic Aromatic Hydrocarbons (PAHs) in the Bohai Sea: A Review of Their Distribution, Sources, and Risks. Integr. Environ. Assess. Manag. 2022, 18, 1705–1721. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Xu, M.; Liu, Q.; Xie, S. Polycyclic Aromatic Hydrocarbons in Seawater, Surface Sediment, and Marine Organisms of Haizhou Bay in Yellow Sea, China: Distribution, Source Apportionment, and Health Risk Assessment. Mar. Pollut. Bull. 2022, 174, 113280. [Google Scholar] [CrossRef]
- Viñas, L.; Pérez-Fernandez, B.; Besada, V.; Gago, J.; McHugh, B.; Parra, S. PAHs and Trace Metals in Marine Surficial Sediments from the Porcupine Bank (NE Atlantic): A Contribution to Establishing Background Concentrations. Sci. Total Environ. 2023, 856, 159189. [Google Scholar] [CrossRef]
Station No | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 28 |
Depth, m | 177 | 463 | 796 | 1046 | 1252 | 1412 | 1390 | 804 | 1420 |
Station No | 29 | 30 | 31 | 32 | 35 | 37 | 43 | 44 | |
Depth, m | 1290 | 1176 | 1022 | 726 | 1492 | 756 | 780 | 1289 |
Nap | Ace | Fle | Phe | Ant | Flu | Pyr | BaA | Chr | BbF | BkF | BaP | DBA | BgPe | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | 0.015 | 0.004 | 0.004 | 0.004 | 0.0008 | 0.015 | 0.015 | 0.004 | 0.002 | 0.004 | 0.0008 | 0.0008 | 0.004 | 0.004 |
C2 | 0.06 | 0.016 | 0.016 | 0.016 | 0.0032 | 0.06 | 0.06 | 0.016 | 0.008 | 0.016 | 0.0032 | 0.0032 | 0.016 | 0.016 |
C3 | 0.15 | 0.04 | 0.04 | 0.04 | 0.008 | 0.15 | 0.15 | 0.04 | 0.02 | 0.04 | 0.008 | 0.008 | 0.04 | 0.04 |
Nap | Ace + Fle | Phe | Ant | Flu | Pyr | BaA | Chr | BbF | BkF | BaP | DBA | BgPe | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Recovery ± SD, % | 69.7 ± 9.5 | 75.2 ± 10 | 84.8 ± 10 | 71.4 ± 4.5 | 92.2 ± 7.5 | 72.4 ± 6.5 | 77.3 ± 2.2 | 75.7 ± 0.5 | 73.3 ± 2.1 | 73.0 ± 6.0 | 59.09 ± 9.1 | 74.7 ± 3.3 | 65.5 ± 5.0 |
Target Compound | Gene | Sequence | Reaction Protocol | Reference |
---|---|---|---|---|
Indicator of linear hydrocarbon destruction | alkBB | 5′-GGTACGGSCAYTTCTACRTCGA-3′; 3′-CGGRTTCGCGTGRTGRT-5′ | Initial denaturation, 5 min at 94 °C; 35 cycles of 30 s at 94 °C; 30 s at 60 °C; 30 s at 72 °C; final elongation, 8 min at 72 °C. | [29] |
Indicator of PAH destruction | nahA1 | 5′-GCCAGATGACCAAGAA ATGGAG TTCC–3′5′-GGCATCGGCATAAATATGTTCGGG–3′ | Initial denaturation, 5 min at 94 °C; 35 cycles of denaturing 92 °C for 1 min; annealing 40 °C for 30 s and extension 70 °C; final elongation, 8 min at 72 °C. | [30] |
Indicator of PAH destruction | narAa | 5′-TACCTCGGCGACCTGAAGTTCTA-3′ 5′-AGTTCTCGGCGTCGTCCTGTTCGAA-3′ | Initial denaturing step at 95 °C for 3 min, followed by 40 cycles of 94 °C for 40 s, 55 °C for 30 s, and 72 °C for 60 s. | [31] |
TEF | MEF | TEFPAHi | MEFPAHi | |
---|---|---|---|---|
BaA | 0.1 | 0.082 | 2.05 ± 0.84 | 1.68 ± 0.69 |
Chr | 0.01 | 0.017 | 0.49 ± 0.20 | 0.83 ± 0.33 |
BbF | 0.1 | 0.25 | 0.51 ± 0.22 | 1.27 ± 0.55 |
BkF | 0.1 | 0.11 | 0.09 ± 0.09 | 0.10 ± 0.10 |
BaP | 1 | 1 | 5.15 ± 6.27 | 0.10 ± 0.10 |
DBA | 1 | 0.29 | 2.41 ± 1.16 | 0.70 ± 0.34 |
BgPe | 0.01 | 0.19 | 0.20 ± 0.09 | 3.79 ± 1.69 |
Σ7PAH | 10.90 ± 8.05 | 13.52 ± 8.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koudryashova, Y.; Chizhova, T.; Zadorozhny, P.; Ponomareva, A.; Eskova, A. Occurrence and Sources of Polycyclic Aromatic Hydrocarbons and Factors Influencing Their Accumulation in Surface Sediment of a Deep-Sea Depression, Namely, the Tatar Trough (Tatar Strait, the Sea of Japan). Water 2023, 15, 4151. https://doi.org/10.3390/w15234151
Koudryashova Y, Chizhova T, Zadorozhny P, Ponomareva A, Eskova A. Occurrence and Sources of Polycyclic Aromatic Hydrocarbons and Factors Influencing Their Accumulation in Surface Sediment of a Deep-Sea Depression, Namely, the Tatar Trough (Tatar Strait, the Sea of Japan). Water. 2023; 15(23):4151. https://doi.org/10.3390/w15234151
Chicago/Turabian StyleKoudryashova, Yuliya, Tatiana Chizhova, Pavel Zadorozhny, Anna Ponomareva, and Alena Eskova. 2023. "Occurrence and Sources of Polycyclic Aromatic Hydrocarbons and Factors Influencing Their Accumulation in Surface Sediment of a Deep-Sea Depression, Namely, the Tatar Trough (Tatar Strait, the Sea of Japan)" Water 15, no. 23: 4151. https://doi.org/10.3390/w15234151
APA StyleKoudryashova, Y., Chizhova, T., Zadorozhny, P., Ponomareva, A., & Eskova, A. (2023). Occurrence and Sources of Polycyclic Aromatic Hydrocarbons and Factors Influencing Their Accumulation in Surface Sediment of a Deep-Sea Depression, Namely, the Tatar Trough (Tatar Strait, the Sea of Japan). Water, 15(23), 4151. https://doi.org/10.3390/w15234151