The Predictability of the 30 October 2020 İzmir-Samos Tsunami Hydrodynamics and Enhancement of Its Early Warning Time by LSTM Deep Learning Network
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Review of the LSTM
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artifical Intelligence |
DART | Deep-ocean Assessment and Reporting of Tsunami |
DL | Deep Learning |
FFT | Fast Fourier Transform |
GMT | Greenwich Mean Time |
IFFT | Inverse Fast Fourier Transform |
KOERI | Boğaziçi University Kandilli Observatory and Earthquake Research Institute |
LSTM | Long-short term memory |
NOAA | National Oceanic and Atmospheric Administration |
RMSE | Root Mean Square Error |
RNN | Recurrent Neural Networks |
UTC | Universal Time Coordinated |
References
- Ward, S.N. Tsunamis. Encycl. Phys. Sci. Technol. 2001, 17, 175–191. [Google Scholar]
- Chapman, C. The Asian tsunami in Sri Lanka: A personal experience. EOS Trans. Am. Geophys. Union 2005, 86, 13–14. [Google Scholar] [CrossRef]
- Berry, M.V. Tsunami asymptotics. New J. Phys. 2005, 7, 129. [Google Scholar] [CrossRef]
- Röbke, B.; Vött, A. The tsunami phenomenon. Prog. Oceanogr. 2017, 159, 296–322. [Google Scholar] [CrossRef]
- Ishihara, M.; Tadono, T. Land cover changes induced by the great east Japan earthquake in 2011. Sci. Rep. 2017, 7, 45769. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, G.; Burkhard, B.; Römer, H.; Sangkaew, S.; Graterol, R.; Haitook, T.; Sterr, H.; Sakuna-Schwartz, D. Mapping tsunami impacts on land cover and related ecosystem service supply in Phang Nga, Thailand. Nat. Hazards Earth Syst. Sci. 2013, 13, 3095–3111. [Google Scholar] [CrossRef]
- Richmond, B.; Szczuciński, W.; Chagué-Goff, C.; Goto, K.; Sugawara, D.; Witter, R.; Tappin, D.R.; Jaffe, B.; Fujino, S.; Nishimura, Y.; et al. Erosion, deposition and landscape change on the Sendai coastal plain, Japan, resulting from the March 11, 2011 Tohoku-oki tsunami. Sediment. Geol. 2012, 282, 27–39. [Google Scholar] [CrossRef]
- Tappin, D.R.; Evans, H.M.; Jordan, C.J.; Richmond, B.; Sugawara, D.; Goto, K. Coastal changes in the Sendai area from the impact of the 2011 Tōhoku-oki tsunami: Interpretations of time series satellite images, helicopter-borne video footage and field observations. Sediment. Geol. 2012, 282, 151–174. [Google Scholar] [CrossRef]
- Bayındır, C. Analysis of tsunami and tsunami-structure interaction parameters by compressive sensing. In Proceedings of the ICAME’21, Balıkesir, Turkey, 1–3 September 2021; p. 25. [Google Scholar]
- Sambah, A.B.; Miura, F. Remote sensing, GIS, and AHP for assessing physical vulnerability to tsunami hazard. Int. J. Environ. Ecol. Eng. 2013, 7, 671–679. [Google Scholar] [CrossRef]
- Yamazaki, F.; Matsuoka, M. Remote sensing technologies in post-disaster damage assessment. J. Earthq. Tsunami 2007, 1, 193–210. [Google Scholar] [CrossRef]
- Dogan, G.G.; Yalciner, A.C.; Yuksel, Y.; Ulutas, E.; Polat, O.; Guler, I.; Sahin, C.; Tarih, A.; Kanoglu, U. The 30 October 2020 Aegean Sea Tsunami: Post-Event Field Survey Along Turkish Coast. Pure Appl. Geophys. 2021, 178, 785–812. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllou, I.; Gogou, M.; Mavroulis, S.; Lekkas, E.; Papadopoulos, G.A.; Thravalos, M. The tsunami caused by the 30 October 2020 Samos (Aegean Sea) Mw7.0 earthquake: Hydrodynamic features, source properties and impact assessment from post-event field survey and video records. J. Mar. Sci. Eng. 2021, 9, 68. [Google Scholar] [CrossRef]
- Evelpidou, N.; Karkani, A.; Kampolis, I. Relative sea level changes and morphotectonic implications triggered by the Samos earthquake of 30th October 2020. J. Mar. Sci. Eng. 2020, 9, 40. [Google Scholar] [CrossRef]
- Politis, D.; Potirakis, S.; Contoyiannis, Y.; Biswas, S.; Sasmal, S.; Hayakawa, M. Statistical and criticality analysis of the lower ionosphere prior to the 30 October 2020 Samos (Greece) earthquake (M6.9), based on VLF electromagnetic propagation data as recorded by a new VLF/LF receiver installed in Athens (Greece). Entropy 2021, 23, 676. [Google Scholar] [CrossRef] [PubMed]
- Mase, H.; Yasuda, T.; Mori, N. Real-time prediction of tsunami magnitudes in Osaka Bay, Japan, using an artificial neural network. J. Waterw. Port Coast. Ocean. Eng. 2011, 137, 263–268. [Google Scholar] [CrossRef]
- Mitra, R.; Naruse, H.; Abe, T. Estimation of tsunami characteristics from deposits: Inverse modeling using a deep-learning neural network. J. Geophys. Res. Earth Surf. 2020, 125, e2020JF005583. [Google Scholar] [CrossRef]
- Makinoshima, F.; Oishi, Y.; Yamazaki, T.; Furumura, T.; Imamura, F. Early forecasting of tsunami inundation from tsunami and geodetic observation data with convolutional neural networks. Nat. Commun. 2021, 12, 2253. [Google Scholar] [CrossRef]
- Fauzi, A.; Mizutani, N. Machine learning algorithms for real-time tsunami inundation forecasting: A case study in Nankai region. Pure Appl. Geophys. 2020, 177, 1437–1450. [Google Scholar] [CrossRef]
- Mulia, I.E.; Ueda, N.; Miyoshi, T.; Gusman, A.R.; Satake, K. Machine learning-based tsunami inundation prediction derived from offshore observations. Nat. Commun. 2022, 13, 5489. [Google Scholar] [CrossRef]
- Wang, Y.; Imai, K.; Miyashita, T.; Ariyoshi, K.; Takahashi, N.; Satake, K. Coastal tsunami prediction in Tohoku region, Japan, based on S-net observations using artificial neural network. Earth Planets Space 2023, 75, 154. [Google Scholar] [CrossRef]
- Xu, H.; Wu, H. Accurate Tsunami Wave Prediction Using Long Short-term Memory Based Neural Networks. Ocean Model. 2023, 186, 102259. [Google Scholar] [CrossRef]
- Dharmawan, W.; Diana, M.; Tuntari, B.; Astawa, I.M.; Rahardjo, S.; Nambo, H. Tsunami tide prediction in shallow water using recurrent neural networks: Model implementation in the Indonesia Tsunami Early Warning System. J. Reliab. Intell. Environ. 2023. [Google Scholar] [CrossRef]
- Geiß, C.; Maier, J.; So, E.; Schoepfer, E.; Harig, S.; Gomez Zapata, J.C.; Zhu, Y. Anticipating a risky future: LSTM models for spatiotemporal extrapolation of population data in areas prone to earthquakes and tsunamis in Lima, Peru. EGUsphere 2023. [Google Scholar] [CrossRef]
- Kiratzi, A.; Papazachos, C.; Özacar, A.; Pinar, A.; Kkallas, C.; Sopaci, E. Characteristics of the 2020 Samos earthquake (Aegean Sea) using seismic data. Bull. Earthq. Eng. 2022, 20, 7713–7735. [Google Scholar] [CrossRef]
- Sboras, S.; Lazos, I.; Bitharis, S.; Pikridas, C.; Galanakis, D.; Fotiou, A.; Chatzipetros, A.; Pavlides, S. Source modelling and stress transfer scenarios of the October 30, 2020 Samos earthquake: Seismotectonic implications. Turk. J. Earth Sci. 2021, 30, 699–717. [Google Scholar] [CrossRef]
- Ren, C.; Yue, H.; Cao, B.; Zhu, Y.; Wang, T.; An, C.; Ge, Z.; Li, Z. Rupture process of the 2020 Mw = 6.9 Samos, Greece earthquake on a segmented fault system constrained from seismic, geodetic, and tsunami observations. Tectonophysics 2022, 839, 229497. [Google Scholar] [CrossRef]
- KOERI. Boğaziçi University Kandilli Observatory and Earthquake Research Institute, Regional Earthquake-Tsunami Monitoring and Evaluation Center 30 October 2020 Aegean Sea Earthquake Press Release. 2020. Available online: http://www.koeri.boun.edu.tr/sismo/2/wp-content/uploads/2020/10/20201030_izmir_V1.pdf (accessed on 10 October 2023).
- UNESCO/IOC. UNESCO Intergovernmental Oceanographic Commission Sea Level Station Monitoring Facility. 2020. Available online: https://www.ioc-sealevelmonitoring.org/station.php?code=stationcode (accessed on 10 October 2023).
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Olah, C. Understanding LSTM Networks. 2015. Available online: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ (accessed on 10 October 2023).
- Bayındır, C.; Altintas, A.A.; Ozaydin, F. Self-localized solitons of a q-deformed quantum system. Commun. Nonlinear Sci. Numer. Simul. 2021, 92, 105474. [Google Scholar] [CrossRef]
- Srinivasa Kumar, T.; Manneela, S. A review of the progress, challenges and future trends in tsunami early warning systems. J. Geol. Soc. India 2021, 97, 1533–1544. [Google Scholar] [CrossRef]
- González, F.I.; Milburn, H.; Bernard, E.; Newman, J. Deep-Ocean Assessment and Reporting of Tsunamis (DART): Brief Overview and Status Report; Technical Report; National Data Buoy Center: Bay Saint Louis, MS, USA, 2003. [Google Scholar]
- Meinig, C.; Eble, M.C.; Stalin, S.E. System Development and Performance of the Deep-Ocean Assessment and Reporting of Tsunamis (DART) System from 1997–2001; Technical Report; NOAA Pacific Marine Environmental Laboratory: Seattle, WA, USA, 2001. [Google Scholar]
- Bayındır, C.; Namli, B. Efficient sensing of Von Karman vortices using compressive sensing. Comput. Fluids 2021, 226, 104975. [Google Scholar] [CrossRef]
- Bayındır, C. Compressive spectral renormalization method. TWMS J. Appl. Eng. Math. 2018, 8, 425–437. [Google Scholar]
- Bueler-Faudree, T.; Sam, D.; Dutykh, D.; Rybkin, A.; Suleimani, A. Fast shallow water-wave solver for plane inclined beaches. SoftwareX 2021, 17, 100983. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alan, A.R.; Bayındır, C.; Ozaydin, F.; Altintas, A.A. The Predictability of the 30 October 2020 İzmir-Samos Tsunami Hydrodynamics and Enhancement of Its Early Warning Time by LSTM Deep Learning Network. Water 2023, 15, 4195. https://doi.org/10.3390/w15234195
Alan AR, Bayındır C, Ozaydin F, Altintas AA. The Predictability of the 30 October 2020 İzmir-Samos Tsunami Hydrodynamics and Enhancement of Its Early Warning Time by LSTM Deep Learning Network. Water. 2023; 15(23):4195. https://doi.org/10.3390/w15234195
Chicago/Turabian StyleAlan, Ali Rıza, Cihan Bayındır, Fatih Ozaydin, and Azmi Ali Altintas. 2023. "The Predictability of the 30 October 2020 İzmir-Samos Tsunami Hydrodynamics and Enhancement of Its Early Warning Time by LSTM Deep Learning Network" Water 15, no. 23: 4195. https://doi.org/10.3390/w15234195
APA StyleAlan, A. R., Bayındır, C., Ozaydin, F., & Altintas, A. A. (2023). The Predictability of the 30 October 2020 İzmir-Samos Tsunami Hydrodynamics and Enhancement of Its Early Warning Time by LSTM Deep Learning Network. Water, 15(23), 4195. https://doi.org/10.3390/w15234195