Study on Calculating Appropriate Impact Assessment for LID Facility Using A-I-R Curve
Abstract
:1. Introduction
2. Materials and Methods
2.1. SWMM-LID Facility
2.2. Study Area and LID Facilities
3. Results
3.1. Calibration for SWMM-LID Installation
3.2. Derivation and Utilization of A-I-R Curve for Each LID Facility
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grimmond, S. Urbanization and global environmental change: Local effects of urban warming. Geogr. J. 2007, 173, 83–88. [Google Scholar] [CrossRef]
- Damodaram, C.; Giacomoni, M.H.; Prakash Khedun, C.; Holmes, H.; Ryan, A.; Saour, W.; Zechman, E.M. Simulation of combined best management practices and low impact development for sustainable stormwater management 1. JAWRA J. Am. Water Resour. Assoc. 2010, 46, 907–918. [Google Scholar] [CrossRef]
- Dietz, M.E. Low impact development practices: A review of current research and recommendations for future directions. Water Air Soil Pollut. 2007, 186, 351–363. [Google Scholar] [CrossRef]
- Yu, Z.; Aguayo, M.; Montalto, F.; Piasecki, M.; Behr, C. Developments in LIDRA 2.0: A Planning Level Assessment of the Cost-Effectiveness of Low Impact Development. In World Environmental and Water Resources Congress 2010: Challenges of Change, Rhode Island, United States of America; ASCE: Reston, VA, USA, 2010; pp. 3261–3270. [Google Scholar]
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of low impact development practices: Literature review and suggestions for future research. Water Air Soil Pollut. 2012, 223, 4253–4273. [Google Scholar] [CrossRef]
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of low impact development practices in two urbanized watersheds: Retrofitting with rain barrel/cistern and porous pavement. J. Environ. Manag. 2013, 119, 151–161. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agnecy. Storm Water Management Model User’s Manual Version 5.1. 2015. Available online: https://www.epa.gov/sites/default/files/2019-02/documents/epaswmm5_1_manual_master_8-2-15.pdf (accessed on 1 September 2015).
- Kim, J.; Choi, S.; Joo, J. EPA SWMM-LID Modeling for Low Impact Development. J. Korean Soc. Hazard. Mitig. 2017, 17, 415–424. [Google Scholar] [CrossRef]
- Kim, J.; Joo, J. A Study on the Performance Comparison of the Low Impact Development Facilities for Long-term Stormwater Reduction. J. Korean Soc. Hazard. Mitig. 2017, 17, 337–344. [Google Scholar] [CrossRef]
- Dietz, M.E.; Clausen, J.C. Stormwater runoff and export changes with development in a traditional and low impact subdivision. J. Environ. Manag. 2008, 87, 560–566. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, M.R.; Montalto, F.A.; Spatari, S. Using life cycle assessment to evaluate green and grey combined sewer overflow control strategies. J. Ind. Ecol. 2012, 16, 901–913. [Google Scholar] [CrossRef]
- Eckart, K.; McPhee, Z.; Bolisetti, T. Performance and implementation of low impact development—A review. Sci. Total Environ. 2017, 607, 413–432. [Google Scholar] [CrossRef]
- Ministry of Environment. Manual of Installation, Management and Operation of the Non-Point Pollutant Source Reduction Facility. 2014. Available online: https://t1.daumcdn.net/cfile/tistory/2221424D58D8445923.pdf (accessed on 1 April 2014).
- Lee, J.-M. Study on the Introduction Plan of Low Impact Development Technique in Pyeongtaek-Godeok New Town (Ⅱ). Land &Housing Institute, 2017. Available online: https://www.codil.or.kr/filebank/original/RK/OTKCRK170411/OTKCRK170411.pdf (accessed on 26 September 2016).
- Kim, M. LID Evaluation of the Stormwater Management Planning for LID Adoption-Case Studies of Apartment Complex in Jeonju City, South Korea. Master’s Thesis, Chonbuk National University, Jeonbuk, Republic of Korea, 2013. [Google Scholar]
- Perez-Pedini, C.; Limbrunner, J.F.; Vogel, R.M. Optimal location of infiltration-based best management practices for storm water management. J. Water Resour. Plan. Manag. 2005, 131, 441–448. [Google Scholar] [CrossRef]
- Joo, J.; Yoo, D.; Kim, J. Determination of design capacity for NPS pollutant treatment facilities by long-term simulation in urban areas. J. Korean Soc. Water Environ. 2011, 27, 841–847. [Google Scholar]
- James, R. Modelling LIDs Using PCSWMM and EPA SWMM5. 2012, pp. 69–131. Available online: https://www.pcswmm.com/Downloads/USEPASWMM (accessed on 22 July 2018).
- Shamsi, S. CSO reduction using green infrastructure. In Proceedings of the 13th Annual River Wet Weather Sewer Conference on Rivers Wet Weather Demonstration Program, Monroeville, PA, USA, 4–5 October 2011. [Google Scholar]
- Joo, J.G.; Lee, Y.H.; Cho, H.J.; Kim, J.H. Analysis of long-term runoff reduction effects by installation of street tree box. J. Korean Soc. Hazard Mitig. 2012, 12, 193–198. [Google Scholar] [CrossRef]
- Qin, H.-p.; Li, Z.-x.; Fu, G. The effects of low impact development on urban flooding under different rainfall characteristics. J. Environ. Manag. 2013, 129, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Zahmatkesh, Z.; Burian, S.J.; Karamouz, M.; Tavakol-Davani, H.; Goharian, E. Low-impact development practices to mitigate climate change effects on urban stormwater runoff: Case study of New York City. J. Irrig. Drain. Eng. 2015, 141, 04014043. [Google Scholar] [CrossRef]
- Shafique, M.; Kim, R. Low impact development practices: a review of current research and recommendations for future directions. Ecol. Chem. Eng. S 2015, 22, 543–563. [Google Scholar] [CrossRef]
- Montalto, F.; Behr, C.; Alfredo, K.; Wolf, M.; Arye, M.; Walsh, M. Rapid assessment of the cost-effectiveness of low impact development for CSO control. Landsc. Urban Plan. 2007, 82, 117–131. [Google Scholar] [CrossRef]
- Pyke, C.; Warren, M.P.; Johnson, T.; LaGro Jr, J.; Scharfenberg, J.; Groth, P.; Freed, R.; Schroeer, W.; Main, E. Assessment of low impact development for managing stormwater with changing precipitation due to climate change. Landsc. Urban Plan. 2011, 103, 166–173. [Google Scholar] [CrossRef]
- Damodaram, C.; Zechman, E.M. Simulation-optimization approach to design low impact development for managing peak flow alterations in urbanizing watersheds. J. Water Resour. Plan. Manag. 2013, 139, 290–298. [Google Scholar] [CrossRef]
- Wadhwa, A.; Pavan Kumar, K. Selection of best stormwater management alternative based on storm control measures (SCM) efficiency indices. Water Policy 2020, 22, 702–715. [Google Scholar] [CrossRef]
- Yang, W.; Brüggemann, K.; Seguya, K.D.; Ahmed, E.; Kaeseberg, T.; Dai, H.; Hua, P.; Zhang, J.; Krebs, P. Measuring performance of low impact development practices for the surface runoff management. Environ. Sci. Ecotechnol. 2020, 1, 100010. [Google Scholar] [CrossRef] [PubMed]
- Rong, G.; Hu, L.; Wang, X.; Jiang, H.; Gan, D.; Li, S. Simulation and evaluation of low-impact development practices in university construction: A case study of Anhui University of Science and Technology. J. Clean. Prod. 2021, 294, 126232. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, H.; Yang, B.; Zhang, X.; Mahmud, S.; Zhang, X.; Yu, B.; Zhu, Y. Permeable pavement design framework for urban stormwater management considering multiple criteria and uncertainty. J. Clean. Prod. 2021, 293, 126114. [Google Scholar] [CrossRef]
- Ciriminna, D.; Ferreri, G.B.; Noto, L.V.; Celauro, C. Numerical comparison of the hydrological response of different permeable pavements in urban area. Sustainability 2022, 14, 5704. [Google Scholar] [CrossRef]
- Su, J.; Li, J.; Gao, X.; Yao, Y.; Jiang, C. Comprehensive analysis of waterlogging control and carbon emission reduction for optimal LID layout: A case study in campus. Environ. Sci. Pollut. Res. 2022, 29, 87802–87816. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, T.; Li, J.; Zhang, L.; Feng, P. Numerical simulation study of urban hydrological effects under low impact development with a physical experimental basis. J. Hydrol. 2023, 618, 129191. [Google Scholar] [CrossRef]
- De Paola, F.; Giugni, M.; Pugliese, F.; Romano, P. Optimal design of LIDs in urban stormwater systems using a harmony-search decision support system. Water Resour. Manag. 2018, 32, 4933–4951. [Google Scholar] [CrossRef]
- Kong, F.; Ban, Y.; Yin, H.; James, P.; Dronova, I. Modeling stormwater management at the city district level in response to changes in land use and low impact development. Environ. Model. Softw. 2017, 95, 132–142. [Google Scholar] [CrossRef]
- Pons, V.; Abdalla, E.M.H.; Tscheikner-Gratl, F.; Alfredsen, K.; Sivertsen, E.; Bertrand-Krajewski, J.-L.; Muthanna, T.M. Practice makes the model: A critical review of stormwater green infrastructure modelling practice. Water Res. 2023, 236, 119958. [Google Scholar] [CrossRef]
- Huber, J. Low Impact Development. A Design Manual for Urban Areas; UACDC: Fayetteville, AK, USA, 2010. [Google Scholar]
- Tian, H. Evaluating Low Impact Development Performance on the Site in Grand Rapids; Michigan State University: East Lansing, MI, USA, 2016. [Google Scholar]
- Martin, P. Sustainable Urban Drainage Systems: Design Manual for England and Wales; Ciria: Peter Tavy, UK, 2000. [Google Scholar]
- Coffman, L.S.; Goo, R.; Frederick, R. Low-impact development: An innovative alternative approach to stormwater management. In WRPMD’99: Preparing for the 21st Century, Maryland, United States of America; ASCE: Reston, VA, USA, 1999; pp. 1–10. [Google Scholar]
- Ahmed, F.; James, W. The Needs of Stormwater Management Planning in Ontario: Is BMPPlanner a Useful Tool? J. Water Manag. Model. 1995. Available online: https://web.archive.org/web/20180721112435id_/https://www.chijournal.org/Content/Files/R183-03.pdf (accessed on 15 February 2015).
- County, P.G.S. Design Manual for Use of Bioretention in Stormwater Management; Prince George’s County (MD) Government Department of Environmental Protection; Watershed Protection Branch: Landover, MD, USA, 1993. [Google Scholar]
- Shaver, E. Low Impact Design Manual for the Auckland Region; Auckland Regional Council: Auckland, New Zealand, 2000. [Google Scholar]
- Barco, J.; Wong, K.M.; Stenstrom, M.K. Automatic calibration of the US EPA SWMM model for a large urban catchment. J. Hydraul. Eng. 2008, 134, 466–474. [Google Scholar] [CrossRef]
- Abi Aad, M.P.; Suidan, M.T.; Shuster, W.D. Modeling techniques of best management practices: Rain barrels and rain gardens using EPA SWMM-5. J. Hydrol. Eng. 2010, 15, 434–443. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Korea Environment Corporation (KEC). A Pilot Project to Develop a Complex for Zeroising Storm Water Runoff in Ochang; Korea Environment Corporation, KEC: Sejong, Republic of Korea, 2014.
Type | LID Facility | Surface | Soil | Storage | Pavement |
---|---|---|---|---|---|
(a) | Bio-Retention Cell | O | O | O | - |
(b) | Rain Garden | O | O | - | - |
(c) | Green Roof | O | O | - | - |
(d) | Infiltration Trench | O | - | O | - |
(e) | Permeable Pavement | O | O | O | O |
(f) | Rain Barrel | - | - | O | - |
(g) | Rooftop Disconnection | O | - | - | - |
(h) | Vegetative Swale | O | - | - | - |
Zone | Element of LID Technique | LID Facility Catchment Area (m2) | LID Facility Surface Area (m2) | Count |
---|---|---|---|---|
A | Watershed Area | 180,003 | - | - |
Facility Area | 46,984 | 182 | ||
Tree Filter Box | 22,777 | 94 | 7 | |
Garden Plant Pot | 24,207 | 88 | 6 | |
Infiltration Ditch | - | - | - | |
Rain Barrel | - | - | - | |
B | Watershed Area | 231,180 | - | - |
Facility Area | 94,704 | 253 | - | |
Tree Filter Box | 62,733 | 70 | 10 | |
Garden Plant Pot | 23,418 | 46 | 4 | |
Infiltration Ditch | 8474 | 136 | 2 | |
Rain Barrel | 79 | 1 | 2 |
Rainfall Events (dd/mm/yyyy) | Number of Antecedent Days with no Rain (Day) | Total Rainfall (mm) | Duration (Hour) | Mean Intensity (mm/h) |
---|---|---|---|---|
12 July 2015 | 3 | 9.2 | 17 | 0.5 |
29 July 2015 | 4 | 8.3 | 4 | 2.1 |
25 August 2015 | 2 | 24.1 | 18 | 1.3 |
1 October 2015 | 18 | 34.1 | 18 | 1.9 |
27 October 2015 | 15 | 27.7 | 8 | 3.5 |
Zone | Impervious (%) | Slope (%) | Width of Overland Flow Path (m) | Manning (n) |
---|---|---|---|---|
A | 81.53 | 2.89 | 20–50 | 0.013 |
B | 86.61 | 2.71 | 50 | 0.013 |
Error Indices | A | B |
---|---|---|
Correlation Coefficient (CC) | 0.80 | 0.84 |
Nash–Sutcliffe Efficiency Coefficient (NSE) | 0.64 | 0.43 |
Bias(B) | 0.96 | 0.74 |
Percent Bias (PBIAS) | −4.40 | −35.6 |
RMSE-observations Standard Deviation Ratio (RSR) | 0.60 | 0.75 |
Root-mean-square Error (RMSE) | 0.03 | 0.04 |
R-squared | 0.65 | 0.71 |
Parameter | Case | Total | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Area ratio (%) | 0.1% | 0.2% | 0.3% | 0.4% | 0.5% | 0.6% | 0.7% | 0.8% | 0.9% | 1.0% | 19 case |
2.0% | 3.0% | 4.0% | 5.0% | 6.0% | 7.0% | 8.0% | 9.0% | 10.0% | - | ||
Rainfall intensity (mm/h) | 5 mm/h | 10 mm/h | 20 mm/h | 30 mm/h | 40 mm/h | 50 mm/h | 11 case | ||||
60 mm/h | 70 mm/h | 80 mm/h | 90 mm/h | 100 mm/h | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Park, Y.; Park, M.; Joo, J. Study on Calculating Appropriate Impact Assessment for LID Facility Using A-I-R Curve. Water 2023, 15, 4198. https://doi.org/10.3390/w15234198
Song Y, Park Y, Park M, Joo J. Study on Calculating Appropriate Impact Assessment for LID Facility Using A-I-R Curve. Water. 2023; 15(23):4198. https://doi.org/10.3390/w15234198
Chicago/Turabian StyleSong, Youngseok, Yoonkyung Park, Moojong Park, and Jingul Joo. 2023. "Study on Calculating Appropriate Impact Assessment for LID Facility Using A-I-R Curve" Water 15, no. 23: 4198. https://doi.org/10.3390/w15234198
APA StyleSong, Y., Park, Y., Park, M., & Joo, J. (2023). Study on Calculating Appropriate Impact Assessment for LID Facility Using A-I-R Curve. Water, 15(23), 4198. https://doi.org/10.3390/w15234198