Climate Change Impacts on Agricultural and Industrial Water Demands in the Beijing–Tianjin–Hebei Region Using Statistical Downscaling Model (SDSM)
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Sources
3. Methodology
3.1. Statistical Downscaling Model
3.2. Agricultural Water Demand Model
3.3. Industrial Water Demand Model
4. Results and Discussion
4.1. SDSM in the BTH Region
4.2. Daily Maximum and Minimum Temperatures under Future Climate Scenarios
4.3. Evapotranspiration under Future Climate Scenarios
4.4. Industrial Water Consumption under Future Climate Scenarios
4.5. Uncertainty Analysis
5. Conclusions
- (1)
- During the forecast period (2020–2035), the ET0 growth rates in the Beijing, Tianjin and Hebei areas under the RCP2.6 scenario are 1.438 mm·a−1, 1.393 mm·a−1 and 2.059 mm·a−1, respectively. Under the RCP4.5 scenario, they are 2.252 mm·a−1, 2.310 mm·a−1 and 2.827 mm·a−1, respectively. Under the RCP8.5 scenario, they are 3.123 mm·a−1, 2.310 mm·a−1 and 2.141 mm·a−1, respectively. Under each climate scenario, the increase in evapotranspiration in the Hebei area is the largest, followed by that in the Tianjin area, and that in the Beijing area is the smallest. The order of increase in evapotranspiration in all three areas under the different climate scenarios is RCP8.5 > RCP4.5 > RCP2.6.
- (2)
- During the forecast period (2020–2035), under the three different climate scenarios, the water consumption per CNY 10,000 of industrial added value in the Beijing area shows a downward trend, with rates of 0.158, 0.153 and 0.110, respectively. The water consumption per CNY 10,000 of industrial added value in the Tianjin area shows an upward trend, with upward tendency rates of 0.170, 0.087 and 0.071 under the three climate scenarios, respectively. The water consumption per CNY 10,000 of industrial added value in the Hebei area also shows an upward trend, with upward tendency rates of 0.254, 0.071 and 0.036 under the three climate scenarios, respectively. The results of this study provide a statistical method of assessing the impact of climate change on industrial water demand in the BTH region.
- (3)
- In the context of future climate change, with the increase in temperature, the agricultural demand for water will increase significantly, and the industrial demand for water will be less affected, but will also rise. Therefore, in the future allocation process of agricultural and industrial water resources in the Beijing–Tianjin–Hebei region, on the one hand, targeted measures should be proposed to deal with the negative effects of climate change based on the development status and water use characteristics of each region, and on the other hand, the water use structure of each region should be fully considered to allow the strategic cooperative relationship between the city clusters to develop. Through the rational distribution of water resources in the different regions, the constraints of water supply and demand on social and economic development can be solved, so as to promote the healthy and sustainable development of the study region.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BTH | Beijing–Tianjin–Hebei |
SDSM | Statistical downscaling model |
CMIP5 | Coupled Model Intercomparison Project Phase 5 |
RCP | Representative Concentration Pathway |
SPSS | Statistical Product and Service Solutions |
NCEP | National Centers for Environmental Prediction |
IPCC | Intergovernmental Panel on Climate Change |
References
- Zhao, R.; Sun, H.; Xing, L.; Li, R.; Li, M. Effects of anthropogenic climate change on the drought characteristics in China: From frequency, duration, intensity, and affected area. J. Hydrol. 2023, 617, 129008. [Google Scholar] [CrossRef]
- Beans, E.W. A heat transfer model for global warming. Case Stud. Therm. Eng. 2023, 43, 102677. [Google Scholar] [CrossRef]
- Shao, W.; Liu, H.; Wang, H.-f.; Liu, J.; Yan, D.; Li, W.; Zhou, J.; Wang, H. Evaluation of regional water security in China and recommendations for counter measures. Arab. J. Geosci. 2020, 13, 107. [Google Scholar] [CrossRef]
- Xiang, M.; Zhang, S.-H.; Ruan, Q.; Tang, C.-H.; Zhao, Y. Definition and calculation of hierarchical ecological water requirement in areas with substantial human activity—A case study of the Beijing–Tianjin-Hebei region. Ecol. Indic. 2022, 138, 108740. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, X.; Pan, X.; Shi, Y.; Qiu, Z.; Li, X.; Xing, X.; Bai, J. Prediction of daily reference crop evapotranspiration in different Chinese climate zones: Combined application of key meteorological factors and Elman algorithm. J. Hydrol. 2022, 610, 127822. [Google Scholar] [CrossRef]
- Xu, C.Y.; Singh, V.P. Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions. J. Hydrol. 2005, 308, 105–121. [Google Scholar] [CrossRef]
- Wu, H.; Zhu, W.; Huang, B. Seasonal variation of evapotranspiration, Priestley-Taylor coefficient and crop coefficient in diverse landscapes. Geogr. Sustain. 2021, 2, 224–233. [Google Scholar] [CrossRef]
- de Moura Neto, A.; Tavares Fernandes, G.S.; Rafaelly de Almeida Lopes, J.; de Araujo Lima, E.; Marcos de Oliveira Lopes, P.; Rodrigues, L.S.; da Silva Gonçalves Juniora, A. Changes in land use and cover and their consequences on the spatial distribution of evapotranspiration and climatic elements in southwest Piauí, MATOPIBA. J. S. Am. Earth Sci. 2022, 120, 104084. [Google Scholar] [CrossRef]
- Ladlani, I.; Houichi, L.; Djemili, L.; Heddam, S.; Belouz, K. Estimation of Daily Reference Evapotranspiration (ET0) in the North of Algeria Using Adaptive Neuro-Fuzzy Inference System (ANFIS) and Multiple Linear Regression (MLR) Models: A Comparative Study. Arab. J. Sci. Eng. 2014, 39, 5959–5969. [Google Scholar] [CrossRef]
- Zitouna-Chebbi, R.; Jacob, F.; Prévot, L.; Voltz, M. Documenting evapotranspiration and surface energy fluxes over rainfed annual crops within a Mediterranean hilly agrosystem. Agric. Water Manag. 2023, 277, 108117. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO: Rome, Italy, 1998. [Google Scholar]
- Chen, H.; Sun, J. Changes in Drought Characteristics over China Using the Standardized Precipitation Evapotranspiration Index. J. Clim. 2015, 28, 5430–5447. [Google Scholar] [CrossRef]
- Gonçalves, I.Z.; Ruhoff, A.; Laipelt, L.; Bispo, R.C.; Hernandez, F.B.T.; Neale, C.M.U.; Teixeira, A.H.C.; Marin, F.R. Remote sensing-based evapotranspiration modeling using geeSEBAL for sugarcane irrigation management in Brazil. Agric. Water Manag. 2022, 274, 107965. [Google Scholar] [CrossRef]
- Feng, X.; Liu, H.; Feng, D.; Tang, X.; Li, L.; Chang, J.; Tanny, J.; Liu, R. Quantifying winter wheat evapotranspiration and crop coefficients under sprinkler irrigation using eddy covariance technology in the North China Plain. Agric. Water Manag. 2023, 277, 108131. [Google Scholar] [CrossRef]
- Li, C.; Wu, P.T.; Li, X.L.; Zhou, T.W.; Sun, S.K.; Wang, Y.B.; Luan, X.B.; Yu, X. Spatial and temporal evolution of climatic factors and its impacts on potential evapotranspiration in Loess Plateau of Northern Shaanxi, China. Sci. Total Environ. 2017, 589, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Lei, H. Climate and management impacts on crop growth and evapotranspiration in the North China Plain based on long-term eddy covariance observation. Agric. For. Meteorol. 2022, 325, 109147. [Google Scholar] [CrossRef]
- Han, J.; Wang, J.-h.; Zhao, Y.; Wang, Q.; Zhang, B.-C.; Li, H.; Zhai, J. Spatio-temporal variation of potential evapotranspiration and climatic drivers in the Jing-Jin-Ji region, North China. Agric. For. Meteorol. 2018, 256–257, 75–83. [Google Scholar] [CrossRef]
- Bakhshoodeh, R.; Ocampo, C.; Oldham, C. Evapotranspiration rates and evapotranspirative cooling of green façades under different irrigation scenarios. Energy Build. 2022, 270, 112223. [Google Scholar] [CrossRef]
- Zhang, K.-X.; Pan, S.-M.; Zhang, W.; Xu, Y.-H.; Cao, L.-G.; Hao, Y.-P.; Wang, Y. Influence of climate change on reference evapotranspiration and aridity index and their temporal-spatial variations in the Yellow River Basin, China, from 1961 to 2012. Quat. Int. 2015, 380–381, 75–82. [Google Scholar] [CrossRef]
- Shan, N.; Shi, Z.; Yang, X.; Gao, J.; Cai, D. Spatiotemporal trends of reference evapotranspiration and its driving factors in the Beijing–Tianjin Sand Source Control Project Region, China. Agric. For. Meteorol. 2015, 200, 322–333. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.y.; Shahid, S.; Bi, S.h.; Elmahdi, A.; Liao, C.-h.; Li, Y. Forecasting industrial water demand in Huaihe River Basin due to environmental changes. Mitig. Adapt. Strat. Gl 2018, 23, 469–483. [Google Scholar] [CrossRef]
- Yan, B.; Xu, Y. Evaluation and prediction of water resources carrying capacity in Jiangsu Province, China. Water Policy 2022, 24, 324–344. [Google Scholar] [CrossRef]
- Gulfam-E-Jannat, S.; Golui, D.; Islam, S.; Saha, B.; Rahman, S.M.; Bezbaruah, A.N.; Iskander, S.M. Industrial Water Demand and Wastewater Generation: Challenges for Bangladesh’s Water Industry. ACS ES&T Water 2023, 3, 1515–1526. [Google Scholar]
- Li, K.; Ma, T.; Wei, G.; Zhang, Y.; Feng, X. Urban Industrial Water Supply and Demand: System Dynamic Model and Simulation Based on Cobb–Douglas Function. Sustainability 2019, 11, 5893. [Google Scholar] [CrossRef]
- Gumbo, B.; Mlilo, S.; Broome, J.H.; Lumbroso, D.M. Industrial water demand management and cleaner production potential: A case of three industries in Bulawayo, Zimbabwe. Phys. Chem. Earth 2003, 28, 797–804. [Google Scholar] [CrossRef]
- Vásquez-Lavín, F.; Vargas, O.L.; Hernández, J.I.; Ponce Oliva, R.D. Water demand in the Chilean manufacturing industry: Analysis of the economic value of water and demand elasticities. Water Resour. Econ. 2020, 32, 100159. [Google Scholar] [CrossRef]
- Gracia-de-Rentería, P.; Barberán, R. Economic Determinants of Industrial Water Demand: A Review of the Applied Research Literature. Water 2021, 13, 1684. [Google Scholar] [CrossRef]
- Lyu, F.; Zhang, H.; Dang, C.; Gong, X. A novel framework for water accounting and auditing for efficient management of industrial water use. J. Clean. Prod. 2023, 395, 136458. [Google Scholar] [CrossRef]
- Ministry of Water Resources of the People’s Republic of China. China Water Resources Bulletin 2021. (In Chinese). Available online: http://www.mwr.gov.cn/sj/tjgb/szygb/202206/t20220615_1579315.html (accessed on 21 April 2023).
- Wilby, R.L.; Dawson, C.W.; Barrow, E.M. SDSM—A decision support tool for the assessment of regional climate change impacts. Environ. Model. Softw. 2002, 17, 145–157. [Google Scholar] [CrossRef]
- Wilby, R.L.; Whitehead, P.G.; Wade, A.J.; Butterfield, D.; Davis, R.J.; Watts, G. Integrated modelling of climate change impacts on water resources and quality in a lowland catchment: River Kennet, UK. J. Hydrol. 2006, 330, 204–220. [Google Scholar] [CrossRef]
- Her, Y.; Yoo, S.H.; Cho, J.-P.; Hwang, S.; Jeong, J.; Seong, C. Uncertainty in hydrological analysis of climate change: Multi-parameter vs. multi-GCM ensemble predictions. Sci. Rep. 2019, 9, 4974. [Google Scholar] [CrossRef]
- Zhou, T.; Wu, P.; Sun, S.; Li, X.; Wang, Y.; Luan, X. Impact of Future Climate Change on Regional Crop Water Requirement—A Case Study of Hetao Irrigation District, China. Water 2017, 9, 429. [Google Scholar] [CrossRef]
- Eingrüber, N.; Korres, W. Climate change simulation and trend analysis of extreme precipitation and floods in the mesoscale Rur catchment in western Germany until 2099 using Statistical Downscaling Model (SDSM) and the Soil & Water Assessment Tool (SWAT model). Sci. Total. Environ 2022, 838, 155775. [Google Scholar] [PubMed]
- Mahmood, R.; Babel, M.S. Future changes in extreme temperature events using the statistical downscaling model (SDSM) in the trans-boundary region of the Jhelum river basin. Weather Clim. Extremes 2014, 5, 56–66. [Google Scholar] [CrossRef]
- Jia, K.; Yang, Y.; Dong, G.; Zhang, C.; Lang, T. Variation and determining factor of winter wheat water requirements under climate change. Agric. Water Manag. 2021, 254, 106967. [Google Scholar] [CrossRef]
- Ding, R.; Kang, S.; Zhang, Y.; Hao, X.; Tong, L.; Du, T. Partitioning evapotranspiration into soil evaporation and transpiration using a modified dual crop coefficient model in irrigated maize field with ground-mulching. Agric. Water Manag. 2013, 127, 85–96. [Google Scholar] [CrossRef]
- Gavilán, P.; Lorite, I.J.; Tornero, S.; Berengena, J. Regional calibration of Hargreaves equation for estimating reference ET in a semiarid environment. Agric. Water Manag. 2006, 81, 257–281. [Google Scholar] [CrossRef]
- Feng, Y.; Yue, J.; Cui, N.; Zhao, L.; Chen, L.; Gong, D. Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China. Agric. Water Manag. 2017, 181, 1–9. [Google Scholar] [CrossRef]
- Gentilucci, M.; Bufalini, M.; Materazzi, M.; Barbieri, M.; Aringoli, D.; Farabollini, P.; Pambianchi, G. Calculation of Potential Evapotranspiration and Calibration of the Hargreaves Equation Using Geostatistical Methods over the Last 10 Years in Central Italy. Geosciences 2021, 11, 348. [Google Scholar] [CrossRef]
- George, H.H.; Zohrab, A.S. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Li, K.; Hajar, S.; Ding, Z.; Dooling, T.; Wei, G.; Hu, C.; Zhang, Y.; Zhang, K. Dynamic optimization of input production factors for urban industrial water supply and demand management. J. Environ. Manag. 2020, 270, 110807. [Google Scholar] [CrossRef]
- Chen, Y.; Jin, B.; Jin, J.; Wang, G.; Cao, M. System dynamics model-based water demand prediction under changing environment with consideration of physical mechanism. Hydro-Sci. Eng. 2021, 15, 84–95. (In Chinese) [Google Scholar]
Meteorological Station | Tmax | Tmin | P |
---|---|---|---|
Beijing, Miyun, Baoding | plth p1zh p5_z p500 p5zh temp | p1zh p5_z p500 shum temp | p1_f p1zh p500 p8_f prcp s850 |
Tianjin, Binhai, Tanggu | p1_u p1zh p5zh p500p8zh shum temp | p1zh p5_z p500 shum temp | p5_f p8_f p8_v prcp s500 s850 |
Chengde, Fengning, Weichang | p1_v p1zh p5_z p5zh p8zh temp | p1zh p5_z prcp s500 shum temp | p1_f p1zh p500 p8_f prcp s500 |
Tangshan, Zunhua, Leting | p1_u p1zh p5_z p500 p5zh temp | p1zh p5_z p500 s500 shum temp | p1_f p1zh p8_v prcp s500 s850 |
Qinglong | p1_u p5zh p8th p8zh temp | p1zh p5_z prcp s500 shum temp | p1_f p1zh p8_v prcp s500 s850 |
Shijiazhuang, Nangong, Xingtai, Cangzhou | p1_u p1th p500 p5zh p8zh shum temp | p1th p1zh p5_z p500 shum temp | p1zh p5_v p8_v prcp s500 s850 |
Huailai, Weixian, Zhangjiakou | p1zh p5_z p500 p5zh p8_u p8zh temp | p1zh p5_z prcp s500 shum temp | p1_f p1zh p500 prcp s500 s850 |
Climate Scenario | Assumed Development Path |
---|---|
RCP2.6 | The lowest GHG emissions scenario. Emissions initially rise and then fall until reaching stability. |
RCP4.5 | Intermediate GHG emissions scenario with moderate emissions. This scenario is consistent with the requirements of future Chinese economic development planning. |
RCP8.5 | The highest GHG emissions scenario. Emissions continue to rise. |
Station | Tmax | Tmin | P | |||
---|---|---|---|---|---|---|
R2 | SE (°C) | R2 | SE (°C) | R2 | SE (°C) | |
Beijing | 0.559 | 2.640 | 0.702 | 1.670 | 0.445 | 0.260 |
Miyun | 0.610 | 2.430 | 0.699 | 1.620 | 0.410 | 0.290 |
Tianjin | 0.622 | 2.400 | 0.709 | 1.570 | 0.365 | 0.260 |
Binhai | 0.592 | 2.600 | 0.517 | 2.280 | 0.332 | 0.290 |
Tanggu | 0.579 | 2.500 | 0.623 | 1.910 | 0.362 | 0.240 |
Baoding | 0.593 | 2.600 | 0.707 | 1.580 | 0.483 | 0.320 |
Cangzhou | 0.627 | 2.480 | 0.732 | 1.600 | 0.533 | 0.170 |
Chengde | 0.695 | 2.300 | 0.73 | 1.780 | 0.536 | 0.200 |
Fengning | 0.66 | 2.600 | 0.683 | 2.140 | 0.480 | 0.220 |
Huailai | 0.69 | 2.400 | 0.713 | 1.790 | 0.562 | 0.150 |
Leting | 0.64 | 2.270 | 0.711 | 1.800 | 0.622 | 0.210 |
Qinglong | 0.655 | 2.370 | 0.736 | 1.860 | 0.627 | 0.220 |
Nangong | 0.668 | 2.430 | 0.699 | 1.610 | 0.429 | 0.150 |
Shijiazhuang | 0.625 | 2.610 | 0.688 | 1.670 | 0.411 | 0.230 |
Tangshan | 0.653 | 2.260 | 0.741 | 1.680 | 0.409 | 0.220 |
Weichang | 0.702 | 2.440 | 0.724 | 1.860 | 0.224 | 0.310 |
Weixian | 0.456 | 3.410 | 0.651 | 2.430 | 0.415 | 0.140 |
Xingtai | 0.661 | 2.530 | 0.691 | 1.650 | 0.329 | 0.180 |
Zhangjiakou | 0.705 | 2.420 | 0.759 | 1.680 | 0.614 | 0.140 |
Zunhua | 0.623 | 2.470 | 0.702 | 1.960 | 0.335 | 0.320 |
Climate Scenario | Average Daily Maximum Temperature (°C) | Average Daily Minimum Temperature (°C) | ||||
---|---|---|---|---|---|---|
Beijing | Tianjin | Hebei | Beijing | Tianjin | Hebei | |
RCP2.6 | 18.92 | 19.01 | 18.78 | 6.94 | 9.35 | 6.81 |
RCP4.5 | 18.29 | 18.79 | 17.95 | 6.59 | 9.00 | 6.43 |
RCP8.5 | 19.10 | 19.31 | 19.05 | 7.33 | 9.69 | 7.20 |
Average ET0 (mm, 2005–2019) | Average ET0 (mm, 2020–2035) | Growth Rate (mm·a−1, 2020–2035) | |||||
---|---|---|---|---|---|---|---|
RCP2.6 | RCP4.5 | RCP8.5 | RCP2.6 | RCP4.5 | RCP8.5 | ||
Beijing | 1203.747 | 1237.447 | 1242.986 | 1240.096 | 1.438 | 2.252 | 3.123 |
Tianjin | 1151.658 | 1189.936 | 1206.202 | 1213.139 | 1.393 | 2.310 | 2.310 |
Hebei | 1095.822 | 1224.169 | 1224.169 | 1240.621 | 2.059 | 2.827 | 2.141 |
Fluctuation Range (m3) | Growth Rate | |||
---|---|---|---|---|
RCP2.6 | RCP4.5 | RCP8.5 | ||
Beijing | 3.27–6.63 | −0.158 | −0.153 | −0.110 |
Tianjin | 13.82–28.28 | 0.170 | 0.087 | 0.071 |
Hebei | 12.45–17.89 | 0.254 | 0.071 | 0.036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Q.; Zhong, Y.; Chen, M.; Duan, W. Climate Change Impacts on Agricultural and Industrial Water Demands in the Beijing–Tianjin–Hebei Region Using Statistical Downscaling Model (SDSM). Water 2023, 15, 4225. https://doi.org/10.3390/w15244225
Zhou Q, Zhong Y, Chen M, Duan W. Climate Change Impacts on Agricultural and Industrial Water Demands in the Beijing–Tianjin–Hebei Region Using Statistical Downscaling Model (SDSM). Water. 2023; 15(24):4225. https://doi.org/10.3390/w15244225
Chicago/Turabian StyleZhou, Qian, Yating Zhong, Meijing Chen, and Weili Duan. 2023. "Climate Change Impacts on Agricultural and Industrial Water Demands in the Beijing–Tianjin–Hebei Region Using Statistical Downscaling Model (SDSM)" Water 15, no. 24: 4225. https://doi.org/10.3390/w15244225
APA StyleZhou, Q., Zhong, Y., Chen, M., & Duan, W. (2023). Climate Change Impacts on Agricultural and Industrial Water Demands in the Beijing–Tianjin–Hebei Region Using Statistical Downscaling Model (SDSM). Water, 15(24), 4225. https://doi.org/10.3390/w15244225