Cross-Linked Cationic Starch Microgranules for Removal of Diclofenac from Aqueous Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Cross-Linked Cationic Starches
2.3. Kinetic and Equilibrium Adsorption Studies
2.4. Thermodynamic Studies
2.5. Formation and Characterization of Diclofenac and Cross-Linked Cationic Starch Complexes
2.6. Diclofenac Release Studies
2.7. Adsorbent Regeneration Studies
3. Results and Discussion
3.1. Kinetic and Equilibrium Adsorption Studies of Diclofenac on the Granules of Starch Derivatives
3.2. Characterization of Diclofenac and Cross-Linked Cationic Starch Complexes
3.3. Regeneration of Adsorbents
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Martín, J.; Santos, J.L.; Aparicio, I.; Alonso, E. Pharmaceutically active compounds in sludge stabilization treatments: Anaerobic and aerobic digestion, wastewater stabilization ponds and composting. Sci. Total Environ. 2015, 503–504, 97–104. [Google Scholar] [CrossRef]
- Biswas, P.; Vellanki, B.P. Occurrence of emerging contaminants in highly anthropogenic ally influenced river Yamuna in India. Sci. Total Environ. 2021, 782, 146741. [Google Scholar] [CrossRef]
- Biel-Maeso, M.; Corada-Fernández, C.; Lara-Martín, P.A. Monitoring the occurrence of pharmaceuticals in soils irrigated with reclaimed wastewater. Environ. Pollut. 2018, 235, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Li, J.; Chen, P.; Ding, R.; Zhang, P.; Li, X. Occurrence of antibiotics and antibiotic resistances in soils from wastewater irrigation areas in Beijing and Tianjin, China. Environ. Pollut. 2014, 193, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.L.; Martín, J.; Mejías, C.; Aparicio, I.; Alonso, E. Pharmaceuticals and Their Metabolites in Sewage Sludge and Soils: Distribution and Environmental Risk Assessment. In Emerging Pollutants in Sewage Sludge and Soils; Núñez-Delgado, A., Arias-Estévez, M., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2023; pp. 19–36. [Google Scholar]
- Ibáñez, M.; Bijlsma, L.; Pitarch, E.; López, F.J.; Hernández, F. Occurrence of pharmaceutical metabolites and transformation products in the aquatic environment of the Mediterranean area. Trends. Environ. Anal. Chem. 2021, 29, 00118. [Google Scholar] [CrossRef]
- Chaturvedi, P.; Shukla, P.; Giri, B.S.; Chowdhary, P.; Chandra, R.; Gupta, P.; Pandey, A. Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: A review on emerging contaminants. Environ. Res. 2021, 194, 110664. [Google Scholar] [CrossRef] [PubMed]
- Mejías, C.; Martín, J.; Santos, J.L.; Aparicio, I.; Alonso, E. Occurrence of pharmaceuticals and their metabolites in sewage sludge and soil: A review on their distribution and environmental risk assessment. Trends. Environ. Anal. Chem. 2021, 30, e00125. [Google Scholar] [CrossRef]
- Alessandretti, I.; Rigueto, C.V.T.; Nazari, M.T.; Rosseto, M.; Dettmer, A. Removal of diclofenac from wastewater: A comprehensive review of detection, characteristics and tertiary treatment techniques. J. Environ. Chem. Eng. 2021, 9, 106743. [Google Scholar] [CrossRef]
- Rosset, M.; Sfreddo, L.W.; Hidalgo, G.E.N.; Perez-Lopez, O.W.; Férisa, L.A. Adsorbents derived from hydrotalcites for the removal of diclofenac in wastewater. Appl. Clay Sci. 2019, 175, 150–158. [Google Scholar] [CrossRef]
- Stasinakis, A.S. Review on the fate of emerging contaminants during sludge anaerobic digestion. Bioresour. Technol. 2012, 121, 432–440. [Google Scholar] [CrossRef]
- Tran, N.H.; Reinhard, M.; Gi, K.Y.-H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res. 2018, 133, 182–207. [Google Scholar] [CrossRef] [PubMed]
- Ivanová, L.; Mackuľak, T.; Grabic, R.; Golovko, O.; Koba, O.; Staňová, A.V.; Szabová, P.; Grenčíková, A.; Bodík, I. Pharmaceuticals and illicit drugs–a new threat to the application of sewage sludge in agriculture. Sci. Total Environ. 2018, 634, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Abbott, T.; Eskicioglu, C. Comparison of anaerobic, cycling aerobic/anoxic, and sequential anaerobic/aerobic/anoxic digestion to remove triclosan and triclosan metabolites from municipal biosolids. Sci. Total Environ. 2020, 745, 140953. [Google Scholar] [CrossRef] [PubMed]
- Malvar, J.L.; Santos, J.L.; Martín, J.; Aparicio, I.; Alonso, E. Occurrence of the main metabolites of pharmaceuticals and personal care products in sludge stabilization treatments. Waste Manag. 2020, 116, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Huynh, N.C.; Nguyen, T.T.T.; Nguyen, D.T.C.; Tran, T.V. Occurrence, toxicity, impact and removal of selected non-steroidal anti-inflammatory drugs (NSAIDs): A review. Sci. Total Environ. 2023, 898, 165317. [Google Scholar] [CrossRef] [PubMed]
- Swiacka, K.; Michnowska, A.; Maculewicz, J.; Caban, M.; Smolarz, K. Toxic effects of NSAIDs in non-target species: A review from the perspective of the aquatic environment. Environ. Pollut. 2021, 273, 115891. [Google Scholar] [CrossRef] [PubMed]
- Kołecka, K.; Gajewska, M.; Caban, M. From the pills to environment-Prediction and tracking of non-steroidal an-ti-inflammatory drug concentrations in wastewater. Sci. Total Environ. 2022, 825, 153611. [Google Scholar] [CrossRef]
- Madikizela, L.M.; Chimuka, L. Occurrence of naproxen, ibuprofen, and diclofenac residues in wastewater and river water of KwaZulu-Natal Province in South Africa. Environ. Monit. Assess. 2017, 189, 348–359. [Google Scholar] [CrossRef]
- Rivera-Jaimes, J.A.; Postigo, C.; Melgoza-Aleman, R.M.; Acena, J.; Barcelo, D.; Lopez de Alda, M. Study of pharmaceuticals in surface and wastewater from Cuernavaca, Morelos, Mexico: Occurrence and environmental risk assessment. Sci. Total Environ. 2018, 613–614, 1263–1274. [Google Scholar] [CrossRef]
- Sun, Q.; Li, M.; Ma, C.; Chen, X.; Xie, X.; Yu, C.-P. Seasonal and spatial variations of PPCP occurrence, removal and mass loading in three wastewater treatment plants located in different urbanization areas in Xiamen. China. Environ. Pollut. 2016, 208, 371–381. [Google Scholar] [CrossRef]
- Tran, N.H.; Gin, K.Y. Occurrence and removal of pharmaceuticals, hormones, personal care products, and endocrine dis-rupters in a full-scale water reclamation plant. Sci. Total Environ. 2017, 599–600, 1503–1516. [Google Scholar] [CrossRef]
- Tiwari, B.; Sellamuthu, B.; Ouarda, Y.; Drogui, P.; Tyagi, R.D.; Buelna, G. Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresour. Technol. 2017, 224, 1–12. [Google Scholar] [CrossRef]
- Cherik, D.D.; Benali, M.; Louhab, K. Occurrence, ecotoxicology, removal of diclofenac by adsorption on activated carbon and biodegradation and its effect on bacterial community: A review. WSN 2015, 16, 96–124. [Google Scholar]
- Zhang, H.; Tu, Y.-J.; Duan, Y.-P.; Liu, J.; Zhi, W.; Tang, Y.; Xiao, L.-S.; Meng, L. Production of biochar from waste sludge/leaf for fast and efficient removal of diclofenac. J. Mol. Liq. 2020, 299, 112193. [Google Scholar] [CrossRef]
- Angosto, J.M.; Roca, M.J.; Fernández-López, J.A. Removal of Diclofenac in Wastewater Using Biosorption and Advanced Oxidation Techniques: Comparative Results. Water 2020, 12, 3567. [Google Scholar] [CrossRef]
- Alobaidi, R.A.K.; Ulucan-Altuntas, K.; Mhemid, R.K.S.; Manav-Demir, N.; Cinar, O. Biodegradation of Emerging Pharmaceuticals from Domestic Wastewater by Membrane Bioreactor: The Effect of Solid Retention Time. Int. J. Environ. Res. Public Health 2021, 18, 3395. [Google Scholar] [CrossRef]
- Jabbari, F.; Eslami, A.; Mahmoudian, J. Degradation of Diclofenac in Water Using the O3/UV/S2O8 Advanced Oxidation Process. Health Scope 2020, 9, e99436. [Google Scholar] [CrossRef]
- Jiao, J.; Li, Y.; Song, Q.; Wang, L.; Luo, T.; Gao, C.; Liu, L.; Yang, S. Removal of Pharmaceuticals and Personal Care Products (PPCPs) by Free Radicals in Advanced Oxidation Processes. Materials 2022, 15, 8152. [Google Scholar] [CrossRef] [PubMed]
- Pizzichetti, R.; Reynolds, K.; Pablos, K.; Casado, C.; Moore, E.; Stanley, S.; Marugan, J. Removal of diclofenac by UV-B and UV-C light-emitting diodes (LEDs) driven advanced oxidation processes (AOPs): Wavelength dependence, kinetic modelling and energy consumption. Chem. Eng. 2023, 471, 144520. [Google Scholar] [CrossRef]
- Alfonso-Muniozguren, P.; Serna-Galvis, E.A.; Bussemaker, M.; Torres-Palma, R.A.; Lee, J. A review on pharmaceuticals re-moval from waters by single and combined biological, membrane filtration and ultrasound systems. Ultrason. Sonochem. 2021, 76, 105656. [Google Scholar] [CrossRef]
- Zahoor, M.; Ullah, A.; Alam, S.; Muhammad, M.; Hendroko Setyobudi, R.; Zekker, I.; Sohail, A. Novel Magnetite Nanocomposites (Fe3O4/C) for Efficient Immobilization of Ciprofloxacin from Aqueous Solutions through Adsorption Pretreatment and Membrane Processes. Water 2022, 14, 724. [Google Scholar] [CrossRef]
- Kwarciak-Kozłowska, A. Removal of pharmaceuticals and personal care products by ozonation, advance oxidation processes, and membrane separation. In Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology; Prasad, M.N.V., Vithanage, M., Kapley, A., Eds.; Butterworth-Heinemann: Oxford, UK, 2019; pp. 151–171. [Google Scholar] [CrossRef]
- Chopra, S.; Kumar, D. Ibuprofen as an emerging organic contaminant in environment, distribution and remediation. Heliyon 2020, 6, 04087. [Google Scholar] [CrossRef]
- Oba, S.N.; Ighalo, J.O.; Aniagor, C.O.; Igwegbe, C.A. Removal of ibuprofen from aqueous media by adsorption: A comprehensive review. Sci. Total Environ. 2021, 780, 146608. [Google Scholar] [CrossRef]
- Ali, I.; Al-Othman, Z.A.; Alwarthan, A.; Asim, M.; Khan, T.A. Removal of arsenic species from water by batch and column operations on bagasse fly ash. Env. Sci. Pollut. Res. 2014, 21, 3218. [Google Scholar] [CrossRef] [PubMed]
- Bonilla-Petriciolet, A.; Mendoza-Castillo, D.I.; Reynel-Avila, H.E. Adsorption Processes for Water Treatment and Purification; Springer: Cham, Switzerland, 2017; p. 256. [Google Scholar]
- Alam, S.; Khan, M.S.; Umar, A.; Khattak, R.; Rahman, N.u.; Zekker, I.; Burlakovs, J.; Rubin, S.S.d; Ghangrekar, M.M.; Bhowmick, G.D.; et al. Preparation of Pd–Ni Nanoparticles Supported on Activated Carbon for Efficient Removal of Basic Blue 3 from Water. Water 2021, 13, 1211. [Google Scholar] [CrossRef]
- Baccar, R.; Sarrà, M.; Bouzid, J.; Feki, M.; Blánquez, P. Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. J. Chem. Eng. 2012, 211–212, 310–317. [Google Scholar] [CrossRef]
- Nayl, A.E.A.; Elkhashab, R.A.; El Malah, T.; Yakout, S.M.; El-Khateeb, M.A.; Ali, M.M.S.; Ali, H.M. Adsorption studies on the removal of COD and BOD from treated sewage using activated carbon prepared from date palm waste. Environ. Sci. Pollut. Res. 2017, 24, 22284–22293. [Google Scholar] [CrossRef]
- Bhadra, B.N.; Seo, P.W.; Jhung, S.H. Adsorption of diclofenac sodium from water using oxidized activated carbon. Chem. Eng. J. 2016, 301, 27–34. [Google Scholar] [CrossRef]
- Gil, A.; Santamaría, L.; Korili, S.A. Removal of Caffeine and Diclofenac from Aqueous Solution by Adsorption on Multiwalled Carbon Nanotubes. Colloids Interface Sci. Commun. 2018, 22, 25–28. [Google Scholar] [CrossRef]
- Mabrouki, H.; Akretche, D.E. Diclofenac potassium removal from water by adsorption on natural and pillared clay. Desalin. Water Treat. 2016, 57, 6033–6043. [Google Scholar] [CrossRef]
- Chelu, M.; Popa, M.; Calderon Moreno, J.; Leonties, A.R.; Ozon, E.A.; Pandele Cusu, J.; Surdu, V.A.; Aricov, L.; Musuc, A.M. Green Synthesis of Hydrogel-Based Adsorbent Material for the Effective Removal of Diclofenac Sodium from Wastewater. Gels 2023, 9, 454. [Google Scholar] [CrossRef] [PubMed]
- Karami, A.; Sabouni, R.; Ghommem, M. Experimental investigation of competitive co-adsorption of naproxen and diclofenac from water by an aluminum-based metal-organic framework. J. Mol. Liq. 2020, 305, 112808. [Google Scholar] [CrossRef]
- Sánchez, N.C.; Palomino, G.T.; Cabello, C.P. Sulfonic-functionalized MIL-100-Fe MOF for the removal of diclofenac from water. Microporous Mesoporous Mater. 2023, 348, 112398. [Google Scholar] [CrossRef]
- Fakhri, V.; Jafari, A.; Vahed, F.L.; Su, C.-H.; Pirouzfar, V. Polysaccharides as eco-friendly bio-adsorbents for wastewater remediation: Current state and future perspective. J. Water Process. Eng. 2023, 54, 103980. [Google Scholar] [CrossRef]
- Bouhadjra, K.; Lemlikchi, W.; Ferhati, A.; Mignard, S. Enhancing removal efficiency of anionic dye (Cibacron blue) using waste potato peels powder. Sci. Rep. 2021, 11, 2090. [Google Scholar] [CrossRef] [PubMed]
- Navikaite-Snipaitiene, V.; Rosliuk, D.; Almonaityte, K.; Rutkaite, R.; Vaskeliene, V.; Raisutis, R. Ultrasound-activated modified starch microgranules for removal of ibuprofen from aqueous media. Starch 2022, 74, 2100261. [Google Scholar] [CrossRef]
- Almonaityte, K.; Bendoraitiene, J.; Navikaite-Snipaitiene, V.; Rutkaite, R. Modified wheat starch granules for ibuprofen adsorption in aqueous solution. Water Air Soil Pollut. 2023, 234, 1–13. [Google Scholar] [CrossRef]
- Almonaityte, K.; Bendoraitiene, J.; Liudvinaviciute, D.; Rutkaite, R. Peculiarities of Ibuprofen Adsorption on Modifed Potato Starch Granules in Aqueous Medium. J. Polym. Environ. 2023, 31, 1116–1128. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-second-order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Langmuir, I. Adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Über die Adsorption in Lösungen. Z. Phys. Chem. 1906, 7, 385–470. [Google Scholar] [CrossRef]
- Dubinin, M.M. Modern theory of volumetric filling of micropores adsorbents during adsorption of gases and steams on carbon. Zhurnal Fiz. Khimii 1965, 39, 1305–1317. [Google Scholar]
- Khan, A.A.; Singh, R.P. Adsorption thermodynamics of carbofuran on SN(IV) arsenosilicate in H+, Na+ and Ca+ forms. Colloids Surf. 1987, 24, 33–42. [Google Scholar] [CrossRef]
- Sellier, S.; Khaska, S.; Le Gal La Salle, C. Assessment of the occurrence of 455 pharmaceutical compounds in sludge according to their physical and chemical properties: A review. J. Hazard. Mater. 2022, 426, 128104. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Wang, J.; Zheng, G. Synthesis of cross-linking cationic starch and its adsorption properties for reactive dyes. IOP Conference Series. Conf. Ser. Earth Environ. Sci. 2019, 227, 062034. [Google Scholar] [CrossRef]
- Kavaliauskaite, R.; Klimaviciute, R.; Zemaitaitis, A. Factors influencing production of cationic starches. Carbohydr. Polym. 2008, 73, 665. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhu, S.; Xia, M.; Wang, F. Rapid and efficient removal of diclofenac sodium from aqueous solution via ternary core-shell CS@PANI@LDH composite: Experimental and adsorption mechanism study. J. Hazard. Mater. 2021, 402, 123815. [Google Scholar] [CrossRef]
- Viotti, P.V.; Moreira, W.M.; Santos, O.A.A.; Bergamasco, R.; Vieira, A.M.S.; Vieira, M.F. Diclofenac removal from water by adsorption on Moringa oleifera pods and activated carbon: Mechanism, kinetic and equilibrium study. J. Clean. Prod. 2019, 219, 517–809. [Google Scholar] [CrossRef]
- Younes, H.A.; Taha, M.; Mahmoud, R.; Mahmoud, H.M.; Abdelhameed, R.J. High adsorption of sodium diclofenac on post-synthetic modified zirconium-based metal-organic frameworks: Experimental and theoretical studies. J. Colloid Interface Sci. 2022, 607, 334–346. [Google Scholar] [CrossRef]
- Li, H.-Z.; Yang, C.; Qian, H.-L.; Yan, X.-P. Room-temperature synthesis of ionic covalent organic frameworks for efficient removal of diclofenac sodium from aqueous solution. Sep. Purif. 2023, 306, 122704. [Google Scholar] [CrossRef]
- Pal, T.; Paul, S.; Sa, B. Polymethylmethacrylate coated alginate matrix microcapsules for controlled release of diclofenac sodium. Pharm. Pharmacol. 2011, 2, 56–66. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, W. Synthesis of cationic starch with a high degree of substitution in an ionic liquid. Carbohydr. Polym. 2010, 80, 1172–1177. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, X.; Zhang, R.; Wu, Y.; Farid, M.U.; Huang, H. Comparison of chemical, ultrasonic and thermal regeneration of carbon nanotubes for acetaminophen, ibuprofen, and triclosan adsorption. RSC Adv. 2017, 7, 52719. [Google Scholar] [CrossRef]
Adsorbent | qe * (mg/g) | Pseudo-Second-Order | ||
---|---|---|---|---|
qe (mg/g) | k2 (g/(mg min)) | R2 | ||
CLCS-0.21 | 45.90 ± 1.60 | 45.87 ± 1.61 | 0.2970 ± 0.010 | 0.9999 |
CLCS-0.33 | 46.83 ± 1.40 | 47.17 ± 1.42 | 0.0977 ± 0.003 | 1.0000 |
T (°C) | Langmuir Model | Freundlich Model | Dubinin–Radushkevich Model | |||
---|---|---|---|---|---|---|
QL (mg/g) | R2 | nF | R2 | EDR (kJ/mol) | R2 | |
CLCS-0.21 | ||||||
20 | 329 ± 4 | 0.9999 | 6.6 ± 0.1 | 0.8512 | 17.5 ± 0.3 | 0.8951 |
30 | 340 ± 5 | 0.9999 | 6.3 ± 0.1 | 0.8659 | 17.6 ± 0.3 | 0.9075 |
40 | 370 ± 7 | 0.9996 | 5.6 ± 0.1 | 0.9200 | 17.3 ± 0.4 | 0.9512 |
CLCS-0.33 | ||||||
20 | 597 ± 6 | 0.9997 | 4.6 ± 0.1 | 0.8380 | 15.0 ± 0.3 | 0.8874 |
30 | 629 ± 8 | 0.9996 | 4.3 ± 0.1 | 0.8669 | 15.1 ± 0.3 | 0.9111 |
40 | 684 ± 7 | 0.9994 | 3.9 ± 0.1 | 0.8839 | 14.9 ± 0.2 | 0.9244 |
T (K) | ∆G (kJ/mol) | R2 | ∆H (kJ/mol) | ∆S (J/mol·K) | R2 |
---|---|---|---|---|---|
CLCS-0.21 | |||||
293 | −15.17 ± 0.3 | 0.9846 | −28.38 ± 0.6 | −44.63 ± 0.9 | 0.9737 |
303 | −14.99 ± 0.3 | 0.9913 | |||
313 | −14.28 ± 0.2 | 0.9925 | |||
CLCS-0.33 | |||||
293 | −12.64 ± 0.3 | 0.9911 | −17.30 ± 0.3 | −15.72 ± 0.3 | 0.9673 |
303 | −12.66 ± 0.3 | 0.9880 | |||
313 | −12.32 ± 0.3 | 0.9898 |
Adsorbent | Langmuir Model | Freundlich Model | Dubinin–Radushkevich Model | |||
---|---|---|---|---|---|---|
QL (mg/g) | R2 | nF | R2 | EDR (kJ/mol) | R2 | |
CLCS-0.21 | 365 ± 10 | 0.9975 | 1.40 ± 0.04 | 0.9947 | 9.1 ± 0.3 | 0.9970 |
CLCS-0.33 | 406 ± 11 | 0.9972 | 1.30 ± 0.04 | 0.9938 | 10.0 ± 0.3 | 0.9968 |
Medium | Release of Diclofenac | |||
---|---|---|---|---|
CLCS-0.21-DI | CLCS-0.33-DI | |||
mg/L | % * | mg/L | % * | |
0.05 mol/L of NaCl | 304.9 ± 12.2 | 72.2 ± 2.9 | 245.9 ± 7.4 | 56.6 ± 1.7 |
0.1 mol/L of NaCl | 343.1 ± 13.7 | 81.3 ± 3.3 | 317.7 ± 9.5 | 73.2 ± 2.2 |
0.25 mol/L of NaCl | 379.0 ± 15.2 | 89.8 ± 3.6 | 374.4 ± 11.2 | 86.3 ± 2.6 |
0.5 mol/L of NaCl | 377.9 ± 15.1 | 89.5 ± 0.2 | 382.5 ± 11.5 | 88.1 ± 2.6 |
50% of ethanol | 19.4 ± 0.8 | 4.6 ± 0.0 | 17.4 ± 0.5 | 4.0 ± 0.1 |
Distilled water | 3.7 ± 0.1 | 0.8 ± 0.0 | 2.6 ± 0.1 | 0.6 ± 0.0 |
Acetone | 1.5 ± 0.1 | 0.4 ± 0.0 | 0.9 ± 0.0 | 0.2 ± 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navikaite-Snipaitiene, V.; Andriunaite, P.; Rosliuk, D.; Rutkaite, R. Cross-Linked Cationic Starch Microgranules for Removal of Diclofenac from Aqueous Systems. Water 2023, 15, 4237. https://doi.org/10.3390/w15244237
Navikaite-Snipaitiene V, Andriunaite P, Rosliuk D, Rutkaite R. Cross-Linked Cationic Starch Microgranules for Removal of Diclofenac from Aqueous Systems. Water. 2023; 15(24):4237. https://doi.org/10.3390/w15244237
Chicago/Turabian StyleNavikaite-Snipaitiene, Vesta, Paulina Andriunaite, Deimante Rosliuk, and Ramune Rutkaite. 2023. "Cross-Linked Cationic Starch Microgranules for Removal of Diclofenac from Aqueous Systems" Water 15, no. 24: 4237. https://doi.org/10.3390/w15244237
APA StyleNavikaite-Snipaitiene, V., Andriunaite, P., Rosliuk, D., & Rutkaite, R. (2023). Cross-Linked Cationic Starch Microgranules for Removal of Diclofenac from Aqueous Systems. Water, 15(24), 4237. https://doi.org/10.3390/w15244237