Propagation Modeling of Rainfall-Induced Landslides: A Case Study of the Shaziba Landslide in Enshi, China
Abstract
:1. Introduction
2. Study Areas
2.1. Overview of the Landslide Area
2.2. Geological Condition
2.3. Rainfall Characteristics
2.4. Landslide Dam
2.5. Failure Process of the Shaziba Landslide
3. Methodology
3.1. PFC Theory
3.2. Model Establishment
3.3. Calibration of Parameters
4. Results
4.1. Kinetic Process of the Shaziba Landslide
4.2. Landslide Runout Behavior
4.3. The Morphology of the Landslide Deposits
5. Discussion
5.1. Mechanism of the Landslide
5.2. Influence of the Effective Modulus on Landslide Propagation
5.3. Limitations of the Modeling Approach
6. Conclusions
- (1)
- The Shaziba landslide is located in an area of Silurian strata, which is prone to landslides. Due the continuous heavy rainfall, the precipitation infiltration caused slope failure and triggered the large-scale landslide. After the landslide occurred, a steep scarp was formed on the trailing edge of the landslide. The sliding mass rushed into the Qingjiang River channel. Finally, a landslide dam formed, causing significant damage to the surroundings.
- (2)
- The simulation results show that the whole process of the Shaziba landslide took approximately 1000 s. It can be divided into five stages: early accelerated deformation, disintegration at the trailing edge of the slide, runout along the main sliding surface, decelerated movement and final deposition stage. The average velocity of the landslide could reach up to 7.5 m/s, and the average displacement was approximately 1000 m. The landslide piled up along the Qingjiang River valley after the movement stopped. The thickness of the landslide deposits gradually decreased from the center to the sides. The maximum height of the landslide deposits was about 19 m. The length and width were approximately 108–127 m and 328–386 m, which is in good agreement with the field investigations.
- (3)
- The runout behavior of a landslide and the morphology of landslide deposits are closely related to the effective modulus in the contact model of the PFC3D. As the effective modulus increases, the distribution of particles becomes more concentrated, and the height of the final landslide deposits increases. However, the velocity of the landslide significantly reduces.
- (4)
- The results achieved in this study show that the PFC3D model can provide an effective tool for investigating the dynamic features of flow-like landslides and a means for mapping hazardous areas and estimating hazard intensity.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Evans, S.G.; Degraff, J.V. Catastrophic Landslides; Geological Society of America: Boulder, CO, USA, 2002. [Google Scholar]
- Iverson, R.M. Landslide triggering by rain infiltration. Water Resour. Res. 2000, 36, 1897–1910. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.P.; Cheng, Y.; Liang, J.; Wang, W. Heavy-rainfall-induced catastrophic rockslide debris flow at Sanxicun, Dujiangyan, after the Wenchuan Ms 8.0 earthquake. Landslides 2015, 13, 9–23. [Google Scholar] [CrossRef]
- Gao, Y.; Li, B.; Gao, H.; Chen, L.; Wang, Y. Dynamic characteristics of high-elevation and long-runout landslides in the Emeishan basalt area: A case study of the Shuicheng “7.23” landslide in Guizhou, China. Landslides 2020, 17, 1663–1677. [Google Scholar] [CrossRef]
- Chen, G.Q.; Xia, M.Y.; Thuy, D.T.; Zhang, Y.B. A possible mechanism of earthquake-induced landslides focusing on pulse-like ground motions. Landslides 2021, 18, 1641–1657. [Google Scholar] [CrossRef]
- Liu, B.; Hu, X.; He, K.; Li, G.; Liu, X.; Luo, G.; Xi, C.J.; Zhou, R.C. Preliminary analyses of the Tiejiangwan landslide occurred on April 5, 2021 in Hongya County, Sichuan Province, China. Landslides 2022, 19, 2047–2051. [Google Scholar] [CrossRef]
- Dai, Z.L.; Huang, Y.; Cheng, H.L.; Xu, Q. 3D numerical modeling using smoothed particle hydrodynamics of flow-like landslide propagation triggered by the 2008 Wenchuan earthquake. Eng. Geol. 2014, 180, 21–33. [Google Scholar] [CrossRef]
- Pastor, M.; Haddad, B.; Sorbino, G.; Cuomo, S.; Drempetic, V. A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int. J. Numer. Anal. Methods Geomech. 2009, 33, 143–172. [Google Scholar] [CrossRef]
- Muceku, Y.; Korini, O. Landslide and slope stability evaluation in the historical town of Kruja, Albania. Nat. Hazards Earth Syst. Sci. 2014, 14, 545–556. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.M.; Xu, Q.; Scaringi, G.; Dai, L.X.; Li, W.L.; Dong, X.J.; Zhu, X.; Pei, X.J.; Dai, K.R.; Havenith, H.B. Failure mechanism and kinematics of the deadly June 24th 2017 Xinmo landslide, Maoxian, Sichuan, China. Landslides 2017, 14, 2129–2146. [Google Scholar] [CrossRef]
- Xin, P.; Liang, C.; Wu, S.; Liu, Z.; Shi, J. Kinematic characteristics and dynamic mechanisms of large-scale landslides in a loess plateau a case study for the north bank of the Baoji stream segment of the Wei River, China. Bull. Eng. Geol. Environ. 2016, 75, 659–671. [Google Scholar] [CrossRef]
- Zhou, J.W.; Cui, P.; Hao, M.H. Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet, China. Landslides 2015, 13, 39–54. [Google Scholar] [CrossRef]
- Ma, J.; Tang, H.; Hu, X.; Bobet, A.; Yong, R.; Ez Eldin, A.M. Model testing of the spatial–temporal evolution of a landslide failure. Bull. Eng. Geol. Environ. 2016, 76, 323–339. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, T.; Wu, S.; Tang, H.; Liang, C. Investigation of dormant landslides in earthquake conditions using a physical model. Landslides 2017, 14, 1181–1193. [Google Scholar] [CrossRef]
- Pei, X.; Guo, B.; Cui, S.; Wang, D.; Xu, Q.; Li, T. On the initiation, movement and deposition of a large landslide in Maoxian County, China. J. Mt. Sci. 2018, 15, 1319–1330. [Google Scholar] [CrossRef]
- Shen, D.Y.; Shi, Z.M.; Peng, M.; Zhang, L.M.; Zhu, Y. Preliminary analysis of a rainfall-induced landslide hazard chain in Enshi City, Hubei Province, China in July 2020. Landslides 2021, 4, 509–512. [Google Scholar] [CrossRef]
- Zhou, J.W.; Huang, K.X.; Shi, C.; Hao, M.H.; Guo, C.X. Discrete element modelling of the mass movement and loose material supplying the gully process of a debris avalanche in the Bayi Gully, Southwest China. J. Asian Earth Sci. 2015, 99, 95–111. [Google Scholar] [CrossRef]
- Wei, J.; Zhao, Z.; Xu, C.; Wen, Q. Numerical investigation of landslide kinetics for the recent Mabian landslide (Sichuan, China). Landslides 2019, 16, 2287–2298. [Google Scholar] [CrossRef]
- Deng, Q.; Gong, L.; Zhang, L.; Yuan, R.; Xue, Y.; Geng, X.; Hu, S. Simulating dynamic processes and hypermobility mechanisms of the Wenjiagou rock avalanche triggered by the 2008 Wenchuan earthquake using discrete element modelling. Bull. Eng. Geol. Environ. 2017, 76, 923–936. [Google Scholar] [CrossRef]
- Hu, X.; Fan, X.; Tang, J. Accumulation characteristics and energy conversion of high-speed and long-distance landslide on the basis of DEM: A case study of Sanxicun landslide. J. Geomech. 2019, 25, 527–553. [Google Scholar]
- Lo, C.M.; Huang, W.K.; Lin, M.L. Earthquake-induced deep-seated landslide and landscape evolution process at Hungtsaiping, Nantou County, Taiwan. Environ. Earth Sci. 2016, 75, 645. [Google Scholar] [CrossRef]
- Fei, J.B.; Chen, T.L.; Jie, Y.X.; Zhang, B.Y.; Fu, X.D. A three-dimensional yield-criterion-based flow model for avalanches. Mech. Res. Commun. 2016, 73, 25–30. [Google Scholar] [CrossRef]
- Ozbay, A.; Cabalar, A.F. FEM and LEM stability analyses of the fatal Landslides at Collolar open-cast lignite mine in Elbistan, Turkey. Landslides 2016, 12, 155–163. [Google Scholar] [CrossRef]
- Moayedi, H.; Huat, B.B.K.; Ali, T.A.M.; Asadi, A.; Moayedi, F.; Mokhberi, M. Preventing landslides in times of rainfall: Case study and FEM analyses. Disaster Prev. Manag. Int. J. 2011, 20, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Maugeri, M.; Motta, E.; Raciti, E. Mathematical modelling of the landslide occurred at Gagliano Castelferrato (Italy). Nat. Hazards Earth Syst. Sci. 2006, 6, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Bozzano, F.; Lenti, L.; Martino, S.; Paciello, A.; Mugnozza, G.S. Self-excitation process due to local seismic amplification responsible for the reactivation of the Salcito landslide (Italy) on 31 October 2002. J. Geophys. Res. Solid Earth 2008, 113, B10312. [Google Scholar] [CrossRef] [Green Version]
- McDougall, S.; Hungr, O. A model for the analysis of rapid landslide motion across three-dimensional terrain. Can. Geotech. J. 2004, 41, 1084–1097. [Google Scholar] [CrossRef]
- Sitar, N.; MacLaughlin, M.M.; Doolin, D.M. Influence of kinematics on landslide mobility and failure mode. J. Geotech. Geoenviron. 2005, 131, 716–728. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, C. Simulation of flow slides in municipal solid waste dumps using a modified MPS method. Nat. Hazards 2014, 74, 491–508. [Google Scholar] [CrossRef]
- Mast, C.M.; Arduino, P.; Miller, G.R.; Mackenzie-Helnwein, P. Avalanche and landslide simulation using the material point method: Flow dynamics and force interaction with structures. Comput. Geosci. 2014, 18, 817–830. [Google Scholar] [CrossRef]
- Dai, Z.L.; Huang, Y.; Cheng, H.L.; Xu, Q. SPH model for fluid-structure interaction and its application to debris flow impact estimation. Landslides 2017, 14, 917–928. [Google Scholar] [CrossRef]
- Mao, Z.R.; Liu, G.R.; Huang, Y.; Bao, Y.J. A conservative and consistent Lagrangian gradient smoothing method for earthquake-induced landslide simulation. Eng. Geol. 2019, 260, 105226. [Google Scholar] [CrossRef]
- Wang, W.; Yin, K.L.; Chen, G.Q.; Chai, B.; Han, Z.; Zhou, J.W. Practical application of the coupled DDA-SPH method in dynamic modeling for the formation of landslide dam. Landslides 2019, 16, 1021–1032. [Google Scholar] [CrossRef]
- Yang, E.; Bui, H.H.; Sterck, H.D.; Nguyen, G.D.; Bouazza, A. A scalable parallel computing SPH framework for predictions of geophysical granular flows. Comput. Geotech. 2020, 121, 1–22. [Google Scholar] [CrossRef]
- Chen, L.; Yang, H.; Song, K.; Huang, W.; Ren, X.; Xu, H. Failure mechanisms and characteristics of the Zhongbao landslide at Liujing Village, Wulong, China. Landslides 2021, 18, 1445–1457. [Google Scholar] [CrossRef]
- Lin, C.H.; Lin, M.L. Evolution of the large landslide induced by Typhoon Morakot: A case study in the Butangbunasi River, southern Taiwan using the discrete element method. Eng. Geol. 2015, 197, 172–187. [Google Scholar] [CrossRef]
- Zou, Z.X.; Tang, H.M.; Xiong, C.R.; Su, A.; Criss, R.E. Kinetic characteristics of debris flows as exemplified by field investigations and discrete element simulation of the catastrophic Jiweishan rockslide, China. Geomorphology 2017, 295, 1–15. [Google Scholar] [CrossRef]
- Li, W.C.; Deng, G.; Cao, W.; Xu, C.; Chen, J.; Lee, M.L. Discrete element modeling of the Hongshiyan landslide triggered by the 2014 Ms 6.5 Ludian earthquake in Yunnan, China. Environ. Earth Sci. 2019, 78, 520. [Google Scholar] [CrossRef]
- Weng, M.C.; Lin, M.L.; Lo, C.M.; Lin, H.H.; Lin, C.H.; Lu, J.H.; Tsai, S.J. Evaluating failure mechanisms of dip slope using a multiscale investigation and discrete element modelling. Eng. Geol. 2019, 263, 105303. [Google Scholar] [CrossRef]
- Wu, T.R.; Huang, C.J.; Chuang, M.H.; Wang, C.Y.; Chu, C.R. Dynamic coupling of multi-phase fluids with a moving obstacle. J. Mar. Sci. Technol. 2011, 19, 643–650. [Google Scholar] [CrossRef]
- Ray, A.; Verma, H.; Bharati, A.K.; Rai, R.; Koner, R.; Singh, T.N. Numerical modelling of rheological properties of landslide debris. Nat. Hazards 2022, 110, 2303–2327. [Google Scholar] [CrossRef]
- Pan, T.F.; Zhu, S.Z.; Li, Z. Factors triggering the frequent occurrence of Landslides in Enshi Tujia-Miao Autonomous prefecture. Soil Eng. Found. 2012, 26, 73–75. (In Chinese) [Google Scholar]
- Peng, L.J.; Wu, Y.P.; Wang, F.; Li, Y.N. Development regularity of Landslides in Enshi area. Chin. J. Geol. Hazard Control 2017, 28, 1–9. (In Chinese) [Google Scholar]
- Miscevic, P.; Vlastelica, G. Impact of weathering on slope stability in soft rock mass. J. Rock Mech. Geotech. Eng. 2014, 6, 240–250. [Google Scholar] [CrossRef]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D. A discrete numerical model for granular assemblies. Geotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Poisel, R.; Roth, W. Runout models of rock slope failures. Felsbau 2004, 22, 46–50. [Google Scholar]
- Poisel, R.; Bednarik, M.; Holzer, R.; Liščák, P. Geomechanics of hazardous Landslides. J. Mt. Sci. 2005, 2, 211–217. [Google Scholar]
- Potyondy, D.O.; Cundall, P.A. A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 2004, 41, 1239–1364. [Google Scholar] [CrossRef]
- Itasca Consulting Group Inc. PFC3D (Particle Flow Code in 3 Dimensions) User’s Guide; Itasca Consulting Group: Minneapolis, MN, USA, 2008; pp. 1–18. [Google Scholar]
- Hungr, O. Numerical modelling of the motion of rapid, flow-like Landslides for hazard assessment. KSCE J. Civ. Eng. 2009, 13, 281–287. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, W.J.; Xu, Q.; Xie, P.; Hao, L. Run-out analysis of flow-like Landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics. Landslides 2012, 9, 275–283. [Google Scholar] [CrossRef]
- Li, B.; Gong, W.; Tang, H.; Zou, Z.; Bowa, V.M.; Juang, C.H. Probabilistic analysis of a discrete element modelling of the runout behavior of the Jiweishan landslide. Int. J. Numer. Anal. Methods Geomech. 2021, 45, 1120–1138. [Google Scholar] [CrossRef]
- Staron, L. Mobility of long-runout rock flows: A discrete numerical investigation. Geophys. J. Int. 2008, 172, 455–463. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.L.; Hu, J.C.; Lin, M.L.; Yuan, R.M.; Cheng, C.C. The mechanism of the 1941 Tsaoling landslide, Taiwan: Insight from a 2D discrete element simulation. Environ. Earth Sci. 2013, 70, 1005–1019. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.; Li, T.L.; Li, P.; Lei, Y.L. Numerical assessment for the efficiencies of check dams in debris flow gullies: A case study. Comput. Geotech. 2020, 122, 103541. [Google Scholar] [CrossRef]
- Hu, X.D.; Zhang, L.; Hu, K.H.; Cui, L.; Wang, L.; Xia, Z.Y.; Huang, Q.Z. Modelling the evolution of propagation and runout from a gravel-silty clay landslide to a debris flow in Shaziba, southwestern Hubei Province, China. Landslides 2022, 19, 2199–2212. [Google Scholar] [CrossRef]
- Zhai, Z.F.; Li, C.; Wang, G.; Wang, S.J.; Zhou, N. Characteristics and causes of Karst ground collapses in a ski resort located in high-middle mountainous area in Enshi City. Resour. Environ. Eng. 2022, 36, 186–192. (In Chinese) [Google Scholar]
- Nichol, S.L.; Hungr, O.; Evans, S.G. Large-scale brittle and ductile toppling of rock slopes. Can. Geotech. J. 2002, 39, 773–788. [Google Scholar] [CrossRef]
- Palis, E.; Lebourg, T.; Tric, E.; Malet, J.P.; Vidal, M. Long-term monitoring of a large deep-seated landslide (La Clapiere, South-East French Alps): Initial study. Landslides 2017, 14, 155–170. [Google Scholar] [CrossRef]
- Stark, T.D.; Baghdady, A.K.; Hungr, O.; Aaron, J. Case study: Oso, washington, landslide of march 22, 2014-material properties and failure mechanism. J. Geotech. Geoenviron. Eng. 2017, 143, 05017001. [Google Scholar] [CrossRef] [Green Version]
- Ma, G.; Hu, X.; Yin, Y.; Luo, G.; Pan, Y. Failure mechanisms and development of catastrophic rockslides triggered by precipitation and open-pit mining in Emei, Sichuan, China. Landslides 2018, 15, 1401–1414. [Google Scholar] [CrossRef]
- Scaringi, G.; Fan, X.M.; Xu, Q.; Liu, C.; Ouyang, C.J.; Domenech, G.; Yang, F.; Dai, L.X. Some considerations on the use of numerical methods to simulate past Landslides and possible new failures: The case of the recent Xinmo landslide (Sichuan, China). Landslides 2018, 15, 1359–1375. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, L.Z.; Zhang, J.C.; Li, L.P. The 2009 Jiweishan rock avalanche, Wulong, China: Deposit characteristics and implications for its fragmentation. Landslides 2019, 16, 893–906. [Google Scholar] [CrossRef]
- Zhou, J.; Li, Y.X.; Jia, M.C.; Li, C.N. Numerical simulation of failure behavior of granular debris flows based on flume model tests. Sci. World J. 2013, 603130. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Zhang, L.; Zhu, H.; Zhang, Q. Effect of model scale and particle size distribution on PFC3D simulation results. Rock Mech. Rock Eng. 2013, 47, 2139–2156. [Google Scholar] [CrossRef]
- Wu, Y.M.; Lan, H.X. Landslide Analysta landslide propagation model considering block size heterogeneity. Landslides 2019, 16, 1107–1120. [Google Scholar] [CrossRef]
- Pudasaini, S.P.; Mergili, M.A. Multi-phase mass flow model. J. Geophys. Res. Earth Surf. 2019, 124, 2920–2942. [Google Scholar] [CrossRef]
- Kang, C.; Chan, D. Numerical simulation of 2D granular flow entrainment using DEM. Granul. Matter 2018, 20, 13. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Particle density (kg/m3) | 2100 |
Effective modulus (Pa) | 16 × 107 |
Normal-to-shear stiffness ratio (/) | 2 |
Bond effective modulus (Pa) | 16 × 107 |
Bond normal-to-shear stiffness ratio (/) | 2 |
Friction coefficient (/) | 0.3 |
Cohesion (Pa) | 3 × 104 |
Tensile strength (Pa) | 1 × 105 |
Friction angle (°) | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Cheng, H.; Dai, Z. Propagation Modeling of Rainfall-Induced Landslides: A Case Study of the Shaziba Landslide in Enshi, China. Water 2023, 15, 424. https://doi.org/10.3390/w15030424
Wei L, Cheng H, Dai Z. Propagation Modeling of Rainfall-Induced Landslides: A Case Study of the Shaziba Landslide in Enshi, China. Water. 2023; 15(3):424. https://doi.org/10.3390/w15030424
Chicago/Turabian StyleWei, Li, Hualin Cheng, and Zili Dai. 2023. "Propagation Modeling of Rainfall-Induced Landslides: A Case Study of the Shaziba Landslide in Enshi, China" Water 15, no. 3: 424. https://doi.org/10.3390/w15030424
APA StyleWei, L., Cheng, H., & Dai, Z. (2023). Propagation Modeling of Rainfall-Induced Landslides: A Case Study of the Shaziba Landslide in Enshi, China. Water, 15(3), 424. https://doi.org/10.3390/w15030424