Carbon Dioxide Emission Equivalent Analysis of Water Resource Behaviors: Determination and Application of CEEA Function Table
Abstract
:1. Introduction
1.1. Motivation
1.2. Literature Review
1.3. Contribution and Objectives
2. Methodology
2.1. CEEA Method Framework of Water Resource Behaviors
2.2. CEEA Method to Water Resource Development Behaviors
2.3. CEEA Method to Water Resource Allocation Behaviors
2.4. CEEA Method to Water Resource Utilization Behaviors
2.5. CEEA Method to Water Resource Protection Behaviors
2.6. Function Table of CEEA for Water Resource Behaviors
3. Case Study
3.1. Overview of the Study Area
3.2. Data source and Description
3.3. Results and Discussion
3.3.1. Carbon Dioxide Emission Equivalent Analysis of WRDBs
3.3.2. Carbon Dioxide Emission Equivalent Analysis of WRABs
3.3.3. Carbon Dioxide Emission Equivalent Analysis of WRUBs
3.3.4. Carbon Dioxide Emission Equivalent Analysis of WRPBs
4. Conclusions
- (1)
- Four categories of WRBs in 31 provinces of China produced a total of 0.137 billion tons of CEE in 2020, of which the emission effect was 1.001 billion tons and the absorption effect was 0.864 billion tons. There is significant spatial variability in CEE of WRBs in eight regions of China, and the spatial distribution characteristics of CEE produced by different WRBs are also different. Water supply/utilization structure, energy consumption structure, water resources endowment, physical geographic characteristics, hydropower resources distribution are important reasons for the spatial differences of CEE.
- (2)
- The WRDBs and WRABs produced a total of 0.256 billion tons of CEE. Among the WRDBs, reservoir storage and surface water lifting have the most CO2 emission effect. Among the WRABs, the CEE from inter-regional water transfer is smaller than that from tap water allocation. Water resource protection behaviors produced −87 million tons of CEE. The absorption effect of wastewater treatment behavior is the main contributor to CEE, followed by reclaimed water reuse behavior and water saving behavior.
- (3)
- The CO2 emission and absorption effects of WRUBs are most significant among four categories. Domestic water and industrial water utilization are the two main sources of emission effects, hydroelectric power generation behavior produced the greatest absorption effect. There is still a certain distance to achieve carbon neutrality in the field of water resources.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Michalak, A.M. Study role of climate change in extreme threats to water quality. Nature 2016, 535, 349–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermwille, L.; Obergassel, W.; Ott, H.E.; Beuermann, C. UNFCCC before and after Paris–what’s necessary for an effective climate regime? Clim. Policy 2017, 17, 150–170. [Google Scholar] [CrossRef]
- Christoff, P. The promissory note: COP 21 and the Paris Climate Agreement. Environ. Politics 2016, 25, 765–787. [Google Scholar] [CrossRef]
- Azar, C.; Johansson, D.J.A. IPCC and the effectiveness of carbon sinks. Environ. Res. Lett. 2022, 17, 041004. [Google Scholar] [CrossRef]
- Salvia, M.; Reckien, D.; Pietrapertosa, F.; Eckersley, P.; Spyridaki, N.-A.; Krook-Riekkola, A.; Olazabal, M.; De Gregorio Hurtado, S.; Simoes, S.G.; Geneletti, D.; et al. Will climate mitigation ambitions lead to carbon neutrality? An analysis of the local-level plans of 327 cities in the EU. Renew. Sustain. Energy Rev. 2021, 135, 110253. [Google Scholar] [CrossRef]
- Mallapaty, S. How China could be carbon neutral by mid-century. Nature 2020, 586, 482–483. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, Z.; He, G.; Wang, H.; Zhang, X.; Lin, J.; Qi, Y.; Liang, X. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 2022, 3, 141–155. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, B. When will China’s carbon emissions peak? Evidence from judgment criteria and emissions reduction paths. Energy Rep. 2022, 8, 8722–8735. [Google Scholar] [CrossRef]
- Mancini, M.S.; Galli, A.; Niccolucci, V.; Lin, D.; Bastianoni, S.; Wackernagel, M.; Marchettini, N. Ecological Footprint: Refining the carbon Footprint calculation. Ecol. Indic. 2016, 61, 390–403. [Google Scholar] [CrossRef]
- Wiedmann, T.; Minx, J.; Barrett, J.; Wackernagel, M. Allocating ecological footprints to final consumption categories with input–output analysis. Ecol. Econ. 2006, 56, 28–48. [Google Scholar] [CrossRef]
- Dong, H.; Geng, Y.; Xi, F.; Fujita, T. Carbon footprint evaluation at industrial park level: A hybrid life cycle assessment approach. Energy Policy 2013, 57, 298–307. [Google Scholar] [CrossRef]
- Lenzen, M.; Sun, Y.-Y.; Faturay, F.; Ting, Y.-P.; Geschke, A.; Malik, A. The carbon footprint of global tourism. Nat. Clim. Chang. 2018, 8, 522–528. [Google Scholar] [CrossRef]
- Lombardi, M.; Laiola, E.; Tricase, C.; Rana, R. Assessing the urban carbon footprint: An overview. Environ. Impact Assess. Rev. 2017, 66, 43–52. [Google Scholar] [CrossRef]
- Onat, N.C.; Kucukvar, M. Carbon footprint of construction industry: A global review and supply chain analysis. Renew. Sustain. Energy Rev. 2020, 124, 109783. [Google Scholar] [CrossRef]
- Radonjič, G.; Tompa, S. Carbon footprint calculation in telecommunications companies—The importance and relevance of scope 3 greenhouse gases emissions. Renew. Sustain. Energy Rev. 2018, 98, 361–375. [Google Scholar] [CrossRef]
- Henriksson, P.J.G.; Heijungs, R.; Dao, H.M.; Phan, L.T.; De Snoo, G.R.; Guinée, J. Product Carbon Footprints and Their Uncertainties in Comparative Decision Contexts. PLoS ONE 2015, 10, e0121221. [Google Scholar] [CrossRef]
- Chai, C.; Zhang, D.; Yu, Y.; Feng, Y.; Wong, M.S. Carbon Footprint Analyses of Mainstream Wastewater Treatment Technologies under Different Sludge Treatment Scenarios in China. Water 2015, 7, 918–938. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, M.; Tang, Z.; Mei, Z. Urbanization, land use change, and carbon emissions: Quantitative assessments for city-level carbon emissions in Beijing-Tianjin-Hebei region. Sustain. Cities Soc. 2021, 66, 102701. [Google Scholar] [CrossRef]
- Raymond, P.A.; Hartmann, J.; Lauerwald, R.; Sobek, S.; McDonald, C.; Hoover, M.; Butman, D.; Striegl, R.; Mayorga, E.; Humborg, C.; et al. Global carbon dioxide emissions from inland waters. Nature 2013, 503, 355–359. [Google Scholar] [CrossRef] [Green Version]
- Keller, P.S.; Marcé, R.; Obrador, B.; Koschorreck, M. Global carbon budget of reservoirs is overturned by the quantification of drawdown areas. Nat. Geosci. 2021, 14, 402–408. [Google Scholar] [CrossRef]
- Guotong, Q.; Fei, C.; Na, W.; Dandan, Z. Inter-annual variation patterns in the carbon footprint of farmland ecosystems in Guangdong Province, China. Sci. Rep. 2022, 12, 14134. [Google Scholar] [CrossRef] [PubMed]
- Ran, Y.; Li, X.; Sun, R.; Kljun, N.; Zhang, L.; Wang, X.; Zhu, G. Spatial representativeness and uncertainty of eddy covariance carbon flux measurements for upscaling net ecosystem productivity to the grid scale. Agric. For. Meteorol. 2016, 230–231, 114–127. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Fu, B.; Lu, N.; Zeng, Y.; Wu, B. How ecological restoration alters ecosystem services: An analysis of carbon sequestration in China’s Loess Plateau. Sci. Rep. 2013, 3, 2846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, R.L.; Lassaletta, L.; Patra, P.K.; Wilson, C.; Wells, K.C.; Gressent, A.; Koffi, E.N.; Chipperfield, M.P.; Winiwarter, W.; Davidson, E.A.; et al. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nat. Clim. Chang. 2019, 9, 993–998. [Google Scholar] [CrossRef]
- Fernández-Martínez, M.; Sardans, J.; Chevallier, F.; Ciais, P.; Obersteiner, M.; Vicca, S.; Canadell, J.G.; Bastos, A.; Friedlingstein, P.; Sitch, S.; et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Chang. 2018, 9, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Trask, M. Water-Energy Relationship; California Energy Commission: Sacramento, CA, USA, 2005. [Google Scholar]
- Griffiths-Sattenspiel, B.; Wilson, W. The Carbon Footprint of Water; River Network: Portland, OR, USA, 2009. [Google Scholar]
- Wakeel, M.; Chen, B.; Hayat, T.; Alsaedi, A.; Ahmad, B. Energy consumption for water use cycles in different countries: A review. Appl. Energy 2016, 178, 868–885. [Google Scholar] [CrossRef]
- Rothausen SG, S.A.; Conway, D. Greenhouse-gas emissions from energy use in the water sector. Nat. Clim. Change 2011, 1, 210–219. [Google Scholar] [CrossRef]
- Friedrich, E.; Pillay, S.; Buckley, C. Carbon footprint analysis for increasing water supply and sanitation in South Africa: A case study. J. Clean. Prod. 2009, 17, 1–12. [Google Scholar] [CrossRef]
- Li, R.; Zhao, R.; Xie, Z.; Xiao, L.; Chuai, X.; Feng, M.; Zhang, H.; Luo, H. Water–energy–carbon nexus at campus scale: Case of North China University of Water Resources and Electric Power. Energy Policy 2022, 166, 113001. [Google Scholar] [CrossRef]
- Valek, A.M.; Sušnik, J.; Grafakos, S. Quantification of the urban water-energy nexus in México City, México, with an assessment of water-system related carbon emissions. Sci. Total Environ. 2017, 590, 258–268. [Google Scholar] [CrossRef]
- Sambito, M.; Freni, G. LCA Methodology for the Quantification of the Carbon Footprint of the Integrated Urban Water System. Water 2017, 9, 395. [Google Scholar] [CrossRef] [Green Version]
- Fang, A.; Newell, J.P.; Cousins, J. The energy and emissions footprint of water supply for Southern California. Environ. Res. Lett. 2015, 10, 114002. [Google Scholar] [CrossRef]
- Boulos, P.F.; Bros, C.M. Assessing the carbon footprint of water supply and distribution systems. J. Am. Water Work. Assoc. 2010, 102, 47–54. [Google Scholar] [CrossRef]
- Heihsel, M.; Lenzen, M.; Malik, A.; Geschke, A. The carbon footprint of desalination: An input-output analysis of seawater re-verse osmosis desalination in Australia for 2005–2015. Desalination 2019, 454, 71–81. [Google Scholar] [CrossRef]
- Siddiqi, A.; Fletcher, S. Energy intensity of water end-uses. Curr. Sustain./Renew. Energy Rep. 2015, 2, 25–31. [Google Scholar] [CrossRef]
- Escriva-Bou, A.; Lund, J.R.; Pulido-Velazquez, M. Modeling residential water and related energy, carbon footprint and costs in California. Environ. Sci. Policy 2015, 50, 270–281. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Rothausen, S.G.; Conway, D.; Zhang, L.; Xiong, W.; Holman, I.P.; Li, Y. China’s water–energy nexus: Greenhouse-gas emissions from ground-water use for agriculture. Environ. Res. Lett. 2012, 7, 014035. [Google Scholar] [CrossRef]
- Zeng, S.; Chen, X.; Dong, X.; Liu, Y. Efficiency assessment of urban wastewater treatment plants in China: Considering greenhouse gas emissions. Resour. Conserv. Recycl. 2017, 120, 157–165. [Google Scholar] [CrossRef]
- Zib, I.I.I.L.; Byrne, D.M.; Marston, L.T. Operational carbon footprint of the US water and wastewater sector’s en-ergy consumption. J. Clean. Prod. 2021, 321, 128815. [Google Scholar] [CrossRef]
- Marinelli, E.; Radini, S.; Foglia, A.; Lancioni, N.; Piasentin, A.; Eusebi, A.L.; Fatone, F. Validation of an evidence-based methodology to support regional carbon foot-print assessment and decarbonisation of wastewater treatment service in Italy. Water Res. 2021, 207, 117831. [Google Scholar] [CrossRef]
- Wu, Z.; Duan, H.; Li, K.; Ye, L. A comprehensive carbon footprint analysis of different wastewater treatment plant configurations. Environ. Res. 2022, 214, 113818. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, B.; Wang, H.; Bi, J. Drops of Energy: Conserving Urban Water to Reduce Greenhouse Gas Emissions. Environ. Sci. Technol. 2013, 47, 10753–10761. [Google Scholar] [CrossRef] [PubMed]
- Parece, T.E.; Grossman, L.; Geller, E.S. Reducing Carbon Footprint of Water Consumption: A Case Study of Water Conservation at a University Campus. In The Handbook of Environmental Chemistry; Younos, T., Grady, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 199–218. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Liu, Z.; Frans, V.F.; Xu, Z.; Qiu, X.; Xu, F.; Li, Y. Assessing the water and carbon footprint of hydropower stations at a national scale. Sci. Total. Environ. 2019, 676, 595–612. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, S. Carbon peaks of water systems in Chinese cities under varying water demand dynamics and energy transition pathways. J. Clean. Prod. 2022, 379, 134695. [Google Scholar] [CrossRef]
- Venkatesh, G.; Chan, A.; Brattebø, H. Understanding the water-energy-carbon nexus in urban water utilities: Comparison of four city case studies and the relevant influencing factors. Energy 2014, 75, 153–166. [Google Scholar] [CrossRef]
- Bakhshi, A.A.; Demonsabert, S.M. Estimating the carbon footprint of the municipal water cycle. J. Am. Water Work. Assoc. 2012, 104, E337–E347. [Google Scholar] [CrossRef]
- Stokes, J.R.; Horvath, A. Energy and Air Emission Effects of Water Supply. Environ. Sci. Technol. 2009, 43, 2680–2687. [Google Scholar] [CrossRef] [Green Version]
- Presura, E.; Robescu, L.D. Energy use and carbon footprint for potable water and wastewater treatment. Proceedings of the International Conference on Business Excellence. 2017, Volume 11, pp. 191–198. Available online: https://sciendo.com/article/10.1515/picbe-2017-0020 (accessed on 17 January 2023).
- Eggleston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies: Hayama, Japan, 2006. [Google Scholar]
- Hu, G.; Ou, X.; Zhang, Q.; Karplus, V.J. Analysis on energy–water nexus by Sankey diagram: The case of Beijing. Desalination Water Treat. 2013, 51, 4183–4193. [Google Scholar] [CrossRef]
- Xiang, X.; Jia, S. China’s water-energy nexus: Assessment of water-related energy use. Resour. Conserv. Recycl. 2019, 144, 32–38. [Google Scholar] [CrossRef]
- Plappally, A.K.; Lienhard, V.J.H. Energy requirements for water production, treatment, end use, reclamation, and disposal. Renew. Sustain. Energy Rev. 2012, 16, 4818–4848. [Google Scholar] [CrossRef]
- Appelbaum, B. Water and sustainability: US electricity consumption for water supply and treatment—The next half century. Water Supply. 2002, 4, 93. [Google Scholar]
- Rocheta, E.; Peirson, W. Urban Water Supply in a Carbon Constrained Australia; UNSW Water Research Centre: Kensington, Australia, 2011. [Google Scholar]
- Li, X.; Liu, J.; Zheng, C.; Han, G.; Hoff, H. Energy for water utilization in China and policy implications for integrated planning. Int. J. Water Resour. Dev. 2016, 32, 477–494. [Google Scholar] [CrossRef]
- He, G.; Zhao, Y.; Wang, J.; Zhu, Y.; Jiang, S.; Li, H.; Wang, Q. The effects of urban water cycle on energy consumption in Beijing, China. J. Geogr. Sci. 2019, 29, 959–970. [Google Scholar] [CrossRef] [Green Version]
- Marsh, D. The Water–Energy Nexus: A Comprehensive Analysis in the Context of New South Wales. Ph.D. Dissertation, Faculty of Engineering and Information Technology, University of Technology, Sydney, Australia, 2008. [Google Scholar]
- Maas, C. Ontario’s Water-Energy Nexus: Will We Find Ourselves in Hot Water or Tap into Opportunity? POLIS Project on Ecological Governance; University of Victoria: Victoria, BC, Canada, 2010. [Google Scholar]
- Muñoz, I.; Milà-i-Canals, L.; Fernández-Alba, A.R. Life cycle assessment of water supply plans in Mediterranean Spain: The Ebro river transfer versus the AGUA Programme. J. Ind. Ecol. 2010, 14, 902–918. [Google Scholar] [CrossRef]
- Kneppers, B.; Birchfield, D.; Lawton, M. Energy-water relationships in reticulated water infrastructure systems. Water Supply 2009, 76, 1–27. [Google Scholar]
- Lin, S.; Zhao, H.; Zhu, L.; He, T.; Chen, S.; Gao, C.; Zhang, L. Seawater desalination technology and engineering in China: A review. Desalination 2020, 498, 114728. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Z.; Han, M.; Wang, G.; Hayat, T.; Chen, G. Energy-water nexus in seawater desalination project: A typical water production system in China. J. Clean. Prod. 2020, 279, 123412. [Google Scholar] [CrossRef]
- Buonomenna, M.G. Membrane processes for a sustainable industrial growth. RSC Adv. 2012, 3, 5694–5740. [Google Scholar] [CrossRef]
- von Medeazza, G.M. “Direct” and socially-induced environmental impacts of desalination. Desalination 2005, 185, 57–70. [Google Scholar] [CrossRef]
- Sharif, M.N.; Haider, H.; Farahat, A.; Hewage, K.; Sadiq, R. Water–energy nexus for water distribution systems: A literature review. Environ. Rev. 2019, 27, 519–544. [Google Scholar] [CrossRef]
- Smith, K.; Liu, S.; Liu, Y.; Guo, S. Can China reduce energy for water? A review of energy for urban water supply and wastewater treatment and suggestions for change. Renew. Sustain. Energy Rev. 2018, 91, 41–58. [Google Scholar] [CrossRef]
- He, G.; Zhao, Y.; Wang, J.; Li, H.; Zhu, Y.; Jiang, S. The water–energy nexus: Energy use for water supply in China. Int. J. Water Resour. Dev. 2018, 35, 587–604. [Google Scholar] [CrossRef]
- Corominas, J. Agua y energía en el riego, en la época de la sostenibilidad. Ing. Del Agua 2010, 17, 219–233. [Google Scholar] [CrossRef] [Green Version]
- Buckley, C.; Friedrich, E.; von Blottnitz, H. Life-cycle assessments in the South African water sector: A review and future challenges. Water SA 2011, 37, 719–726. [Google Scholar] [CrossRef] [Green Version]
- Sturm, T.W. Open Channel Hydraulics; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Sousa, V.; Meireles, I. Dynamic simulation of the energy consumption and carbon emissions for domestic hot water production in a touristic region. J. Clean. Prod. 2022, 355, 131828. [Google Scholar] [CrossRef]
- Qiu, G.Y.; Zou, Z.; Li, W.; Li, L.; Yan, C. A quantitative study on the water-related energy use in the urban water system of Shenzhen. Sustain. Cities Soc. 2022, 80, 103786. [Google Scholar] [CrossRef]
- Zhao, R.; Yu, J.; Xiao, L.; Sun, J.; Luo, H.; Yang, W.; Chuai, X.; Jiao, S. Carbon emissions of urban water system based on water-energy-carbon nexus. Acta Geogr. Sin. 2021, 76, 3119–3134. [Google Scholar]
- Duan, H.P.; Zhang, Y.; Zhao, J.B.; Bian, X.M. Carbon footprint analysis of farmland ecosystem in China. J. Soil Water Conserv. 2011, 25, 203–208. [Google Scholar]
- Feng, M.; Zhao, R.; Huang, H.; Xiao, L.; Xie, Z.; Zhang, L.; Sun, J.; Chuai, X. Water–energy–carbon nexus of different land use types: The case of Zhengzhou, China. Ecol. Indic. 2022, 141, 109073. [Google Scholar] [CrossRef]
- Wu, H.; Guo, S.; Guo, P.; Shan, B.; Zhang, Y. Agricultural water and land resources allocation considering carbon sink/source and water scarcity/degradation footprint. Sci. Total. Environ. 2021, 819, 152058. [Google Scholar] [CrossRef]
- van Diepen, C.A.; Wolf, J.; van Keulen, H.; Rappoldt, C. WOFOST: A simulation model of crop production. Soil Use Manag. 1989, 5, 16–24. [Google Scholar] [CrossRef]
- Qiu, M.; Zuo, Q.; Wu, Q.; Yang, Z.; Zhang, J. Water ecological security assessment and spatial autocorrelation analysis of prefectural regions involved in the Yellow River Basin. Sci. Rep. 2022, 12, 5105. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Q.; Zhou, K.; Yang, L. Study on the quantity of water resources and the water quantity for ecosystem use in water resources programming. Arid. Land Geogr. 2002, 4, 296–301. [Google Scholar]
- Xu, J.; Wang, F.; Lv, C.; Xie, H. Carbon emission reduction and reliable power supply equilibrium based daily scheduling towards hydro-thermal-wind generation system: A perspective from China. Energy Convers. Manag. 2018, 164, 1–14. [Google Scholar] [CrossRef]
- Whittington, R. Hydro and the CDM: The role of hydroelectricity in meeting Kyoto obligations. Refocus 2007, 8, 54–56. [Google Scholar] [CrossRef]
- Wu, B.; Chen, Y.; Zeng, Y.; Zhao, Y.; Yuan, C. Evaluation of carbon emission reduction in power generation and shipping of the Three Gorges Reservoir. Resour. Environ. Yangtze Basin 2011, 20, 257–261. [Google Scholar]
- Meng, F.; Liu, G.; Liang, S.; Su, M.; Yang, Z. Critical review of the energy-water-carbon nexus in cities. Energy 2019, 171, 1017–1032. [Google Scholar] [CrossRef]
- Racoviceanu, A.I.; Karney, B.W.; Kennedy, C.A.; Colombo, A.F. Life-Cycle Energy Use and Greenhouse Gas Emissions Inventory for Water Treatment Systems. J. Infrastruct. Syst. 2007, 13, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Qamar, M.A.; Javed, M.; Shahid, S.; Iqbal, S.; Abubshait, S.A.; Abubshait, H.A.; Ramay, S.M.; Mahmood, A.; Ghaithan, H.M. Designing of highly active g-C3N4/Co@ ZnO ternary nanocomposites for the disinfection of pathogens and degradation of the organic pollutants from wastewater under visible light. J. Environ. Chem. Eng. 2021, 9, 105534. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, D.; Wang, M.; Yin, C. Analysis of Typical Energy Saving Technology in the Sewage Treatment Plant. Energy Procedia 2017, 142, 1230–1237. [Google Scholar] [CrossRef]
- Peng, L.; Nairuo, Z.; Wei, X. COD and Carbon Emission Reduction in Sludge Deep Dewatering Treatment and Disposal. Environ. Sanit. Eng. 2012, 20, 9–12. [Google Scholar]
- Guan, Y.; Shan, Y.; Huang, Q.; Chen, H.; Wang, D.; Hubacek, K. Assessment to China’s recent emission pattern shifts. Earth’s Future 2021, 9, e2021EF002241. [Google Scholar] [CrossRef]
- Wu, Q.; Zuo, Q.; Ma, J.; Zhang, Z.; Jiang, L. Evolution analysis of water consumption and economic growth based on Decomposition-Decoupling Two-stage Method: A case study of Xinjiang Uygur Autonomous Region, China. Sustain. Cities Soc. 2021, 75, 103337. [Google Scholar] [CrossRef]
- Li, D.; Zuo, Q.; Zhang, Z. A new assessment method of sustainable water resources utilization considering fair-ness-efficiency-security: A case study of 31 provinces and cities in China. Sustain. Cities Soc. 2022, 81, 103839. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Su, X.; Qi, L.; Liu, M. Evaluation of the comprehensive carrying capacity of interprovincial water resources in China and the spatial effect. J. Hydrol. 2019, 575, 794–809. [Google Scholar] [CrossRef]
- Liu, X.; Xu, Y.; Sun, S.; Zhao, X.; Wang, Y. Analysis of the Coupling Characteristics of Water Resources and Food Security: The Case of Northwest China. Agriculture 2022, 12, 1114. [Google Scholar] [CrossRef]
- Zhou, Y.; Ma, M.; Gao, P.; Xu, Q.; Bi, J.; Naren, T. Managing water resources from the energy-water nexus perspective under a changing climate: A case study of Jiangsu province, China. Energy Policy 2018, 126, 380–390. [Google Scholar] [CrossRef]
- Shi, Q.; Chen, S.; Shi, C.; Wang, Z.; Deng, X. The Impact of Industrial Transformation on Water Use Efficiency in Northwest Region of China. Sustainability 2014, 7, 56–74. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Liu, G.; Casazza, M.; Hao, Y.; Giannetti, B.F. Emergy-based accounting method for aquatic ecosystem services valuation: A case of China. J. Clean. Prod. 2019, 230, 55–68. [Google Scholar] [CrossRef]
- Li, X.-Z.; Chen, Z.-J.; Fan, X.-C.; Cheng, Z.-J. Hydropower development situation and prospects in China. Renew. Sustain. Energy Rev. 2018, 82, 232–239. [Google Scholar] [CrossRef]
- Shimizu, Y.; Toyosada, K.; Yoshitaka, M.; Sakaue, K. Creation of Carbon Credits by Water Saving. Water 2012, 4, 533–544. [Google Scholar] [CrossRef]
- Xu, Y.; Tian, Q.; Yu, Y.; Li, M.; Li, C. Water-Saving Efficiency and Inequality of Virtual Water Trade in China. Water 2021, 13, 2994. [Google Scholar] [CrossRef]
- Chen, K.; Liu, X.; Ding, L.; Huang, G.; Li, Z. Spatial Characteristics and Driving Factors of Provincial Wastewater Discharge in China. Int. J. Environ. Res. Public Health 2016, 13, 1221. [Google Scholar] [CrossRef]
- Yi, L.; Jiao, W.; Chen, X.; Chen, W. An overview of reclaimed water reuse in China. J. Environ. Sci. 2011, 23, 1585–1593. [Google Scholar] [CrossRef] [PubMed]
Author(s) | Region(s) | Water-Related Activities | Methodology |
---|---|---|---|
Griffiths-Sattenspiel et al. [27] | United States | Water Supply and Conveyance | Carbon emission estimation based on statistical survey data and emission factors |
Water Treatment | |||
Water Distribution | |||
Water End-Uses | |||
Wastewater Collection and Treatment | |||
Wastewater Discharge | |||
Friedrich et al. [30] | Durban, South Africa | Water Impoundment | Carbon footprint analysis based on LCA method |
Water Treatment | |||
Water Distribution | |||
Water Collection | |||
Wastewater Treatment | |||
Water Recycling | |||
Bottled Water | |||
Zhang et al. [47] | All cities in Guangdong Province, China | Water Extraction and Conveyance | Accounting for CO2 emissions based on energy intensity and emission factors |
Water Purification and Supply | |||
Water Distribution | |||
Wastewater Treatment | |||
Venkatesh et al. [48] | Nantes (France), Oslo (Norway), Turin (Italy), Toronto (Canada) | Water Supply | System analysis method |
Water Treatment | |||
Water Distribution | |||
Wastewater Collection | |||
Wastewater Treatment | |||
Bakhshi and Demonsabert [49] | Loudoun, United States | Raw Water Extraction and Treatment | Carbon emission estimation based on survey data and Geographic information system models |
Water Distribution | |||
Wastewater Collection | |||
Wastewater Treatment | |||
Stokes and Horvath [50] | Southern California, United States | Imported Water | Carbon emission measurement of water supply system based on hybrid LCA method |
Desalinated Ocean Water (Conventional pretreatment) | |||
Desalinated Ocean Water (Membrane pretreatment) | |||
Desalinated Brackish Groundwater | |||
Recycled Water | |||
Valek et al. [32] | México City, México | Water Supply | CO2 equivalent analysis based on statistical survey data and emission factors |
Water Treatment System | |||
Sambito and Freni [33] | Sicily, Italy | Water Supply and Treatment System | Carbon footprint analysis based on LCA approach |
Distribution of Water and Sewer System | |||
Wastewater Treatment Plant | |||
Presura and Robescu [51] | Constanta, Romania | Potable Water Treatment | Carbon footprint analysis based on energy intensity and emission factors |
Wastewater Treatment | |||
Heihsel and Lenzen [36] | Australia | Seawater Desalination | Carbon footprint analysis based on multi-regional input-output model |
Wang et al. [39] | China | Groundwater Use for Agriculture | Carbon footprint analysis based on energy intensity and emission factors |
Wu et al. [43] | Australia | Wastewater Treatment (Direct emission) | Carbon footprint analysis based on emission factors |
Wastewater Treatment (Indirect emission) | |||
Wastewater Treatment (Value chain emission) |
WRBs | CEEA Formulas | Parameter Reference Values |
---|---|---|
WRDB1 (Surface water lifting) | : 0.2 kWh/m3 (China); 0.0002–1.74 kWh/m3 (Global) : Table 3 (China) | |
WRDB2 (Groundwater extraction) | : Table 4 (China); 0.18–0.49 kWh/m3 kWh/m3 (USA); 0.48–0.53 kWh/m3 (Australia); 0.37–1.44 kWh/m3 (Global) | |
WRDB3 (Reservoir storage) | : 0.14 kWh/m3 (China) | |
WRDB4 (Raw water treatment) | : 0.31 kWh/m3 (China); 0.371–0.392 kWh/m3 (USA); 0.1–0.6 kWh/m3 (Australia); 0.38–1.44 kWh/m3 (Canada); 0.11–1.5 kWh/m3 (Spain); 0.15–0.44 kWh/m3 (New Zealand) | |
WRDB5 (Seawater Desalination) | : 5.9 kWh/m3 (China); 4 kWh/m3 (Australia); 2.4–8.5 kWh/m3 (Global) | |
WRAB1 (Tap water allocation) | ; | : 0.2 kWh/m3 (China); 0.2–0.32 kWh/m3 (California, USA); 0.12–0.22 kWh/m3 (Spain); 0.1 kWh/m3 (South Africa) |
WRAB2 (Inter–regional water transfer) | : 0.815 kWh/m3 (China) | |
WRUB1 (Domestic water utilization) | : 7.43 kWh/m3 (China); 24.6 kWh/m3 (Ontario, Canada) | |
WRUB2 (Industrial water utilization) | : 5.033 kWh/m3 (China) : 10% (China) | |
WRUB3 (Agricultural water utilization) | : 0.266 tC/ha (China) : 4.05 tC/ha (China) : 1/3 | |
WRUB4 (Ecological water utilization) | : Garden 3.81 tC/ha; Green Space 0.948 tC/ha; Wetland 0.567 tC/ha; Water Area 0.567 tC/ha (China) | |
WRUB5 (Hydroelectric power generation) | : 3.7 × 10−4 tce/kWh (China) : 670 kg/tce (China) | |
WRPB1 (Water saving) | For the parameters of E1, E2, and E7, see WRDB1, WRDB2, and WRAB2 | |
WRPB2 (Wastewater collection) | : 0.013 kWh/m3 (China) | |
WRPB3 (Wastewater treatment) | : 0.24 kWh/m3 (China); 0.8–1.5 kWh/m3 (Australia); 0.177–0.78 kWh/m3 (USA); 0.41–0.61 kWh/m3 (Spain); 0.44 kWh/m3 (South Africa); 0.38–1.122 kWh/m3 (Global) : 0.3~0.5% (China) : 0.69 kgCO2/kgCOD (IPCC); : 1.65 kgCO2/kgBOD5 (IPCC) | |
WRPB4 (Reclaimed water reuse) | For the parameters of E1 and E2, see WRDB1 and WRDB2 |
Provinces | EF | Provinces | EF |
---|---|---|---|
Beijing | 0.8292 | Henan | 0.8444 |
Tianjin | 0.8733 | Hubei | 0.3717 |
Hebei | 0.9148 | Hunan | 0.5523 |
Shanxi | 0.8798 | Chongqing | 0.6294 |
Inner Mongolia | 0.8503 | Sichuan | 0.2891 |
Shandong | 0.9236 | Guangdong | 0.6379 |
Liaoning | 0.8357 | Guangxi | 0.4821 |
Jilin | 0.6787 | Guizhou | 0.6556 |
Heilongjiang | 0.8158 | Yunnan | 0.415 |
Shanghai | 0.7934 | Hainan | 0.6463 |
Jiangsu | 0.7356 | Shaanxi | 0.8696 |
Zhejiang | 0.6822 | Gansu | 0.6124 |
Anhui | 0.7913 | Qinghai | 0.2263 |
Fujian | 0.5439 | Ningxia | 0.8184 |
Jiangxi | 0.7635 | Xinjiang | 0.7636 |
Provinces | EI2 | Provinces | EI2 |
---|---|---|---|
Beijing | 0.44 | Henan | 0.3 |
Tianjin | 0.66 | Hubei | 0.22 |
Hebei | 0.53 | Hunan | 0.4 |
Shanxi | 0.62 | Chongqing | 0.57 |
Inner Mongolia | 0.3 | Sichuan | 0.3 |
Shandong | 0.47 | Guangdong | 0.41 |
Liaoning | 0.21 | Guangxi | 0.34 |
Jilin | 0.35 | Guizhou | 0.36 |
Heilongjiang | 0.43 | Yunnan | 0.45 |
Shanghai | 0.39 | Hainan | 0.41 |
Jiangsu | 0.36 | Shaanxi | 0.64 |
Zhejiang | 0.43 | Gansu | 0.5 |
Anhui | 0.32 | Qinghai | 0.52 |
Fujian | 0.4 | Ningxia | 0.27 |
Jiangxi | 0.37 | Xinjiang | 0.6 |
Regions | WRDB1 | WRDB2 | WRDB3 | WRDB4 | WRDB5 | WRAB1 | WRAB2 |
---|---|---|---|---|---|---|---|
North coast | 464.39 | 819.75 | 595.18 | 408.86 | 193.61 | 275.50 | 1062.86 |
Middle Yellow River | 550.14 | 799.23 | 943.75 | 425.88 | 0.00 | 268.61 | 447.79 |
Northeast | 528.18 | 628.60 | 983.30 | 243.08 | 20.66 | 157.29 | 0.00 |
East coast | 1190.44 | 12.27 | 468.52 | 1061.67 | 61.60 | 725.56 | 34.30 |
Middle Yangtze River | 1262.68 | 103.99 | 1650.82 | 793.48 | 0.00 | 530.31 | 40.53 |
South coast | 746.55 | 39.34 | 663.31 | 516.33 | 16.56 | 336.86 | 90.46 |
Southwest | 720.44 | 44.23 | 1807.78 | 385.87 | 0.00 | 260.99 | 6.60 |
Northwest | 889.61 | 660.88 | 477.18 | 119.54 | 0.00 | 80.88 | 12.48 |
Total | 6352.42 | 3108.29 | 7589.83 | 3954.71 | 292.43 | 2636.02 | 1695.02 |
Regions | WRUB1 | WRUB2 | WRUB3 | WRUB3 | WRUB3 | WRUB4 | WRUB5 |
---|---|---|---|---|---|---|---|
Emission | Absorption | ||||||
North coast | 4684.22 | 2643.82 | −3600.23 | 885.44 | 4485.67 | −873.39 | −87.73 |
Middle Yellow River | 4514.91 | 3112.55 | −3901.06 | 959.42 | 4860.49 | −1514.52 | −923.25 |
Northeast | 2547.60 | 1812.01 | −2873.56 | 706.72 | 3580.28 | −1629.72 | −452.12 |
East coast | 5229.36 | 12,308.51 | −2085.14 | 512.82 | 2597.96 | −1188.59 | −598.08 |
Middle Yangtze River | 5225.80 | 8202.69 | −4165.40 | 1024.44 | 5189.84 | −1616.46 | −6028.88 |
South coast | 5044.67 | 3755.17 | −1065.50 | 262.05 | 1327.55 | −858.01 | −1472.20 |
Southwest | 4103.96 | 2716.85 | −2855.96 | 702.39 | 3558.36 | −3286.00 | −20,571.24 |
Northwest | 1337.90 | 802.65 | −2635.73 | 648.23 | 3283.96 | −3439.65 | −3461.95 |
Total | 32,688.42 | 35,354.25 | −23,182.59 | 5701.51 | 28,884.10 | −14,406.34 | −33,595.46 |
Regions | WRPB1 | WRPB2 | WRPB3 | WRPB3 | WRPB3 | WRPB4 |
---|---|---|---|---|---|---|
Emission | Absorption | |||||
North coast | −24.69 | 9.33 | −1158.76 | 131.27 | 1290.03 | −109.55 |
Middle Yellow River | −24.16 | 5.42 | −703.43 | 76.30 | 779.73 | −67.26 |
Northeast | −12.51 | 5.73 | −809.33 | 80.63 | 889.96 | −17.91 |
East coast | −57.17 | 9.61 | −1489.48 | 135.17 | 1624.65 | −22.95 |
Middle Yangtze River | −38.73 | 6.29 | −1255.82 | 88.55 | 1344.37 | −16.36 |
South coast | −33.13 | 8.07 | −1482.34 | 113.53 | 1595.87 | −7.12 |
Southwest | −10.26 | 4.51 | −1153.53 | 63.40 | 1216.93 | −12.19 |
Northwest | −4.62 | 1.35 | −231.80 | 19.06 | 250.86 | −14.82 |
Total | −205.27 | 50.31 | −8284.47 | 707.91 | 8992.38 | −268.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, Q.; Zhang, Z.; Ma, J.; Zhao, C.; Qin, X. Carbon Dioxide Emission Equivalent Analysis of Water Resource Behaviors: Determination and Application of CEEA Function Table. Water 2023, 15, 431. https://doi.org/10.3390/w15030431
Zuo Q, Zhang Z, Ma J, Zhao C, Qin X. Carbon Dioxide Emission Equivalent Analysis of Water Resource Behaviors: Determination and Application of CEEA Function Table. Water. 2023; 15(3):431. https://doi.org/10.3390/w15030431
Chicago/Turabian StyleZuo, Qiting, Zhizhuo Zhang, Junxia Ma, Chenguang Zhao, and Xi Qin. 2023. "Carbon Dioxide Emission Equivalent Analysis of Water Resource Behaviors: Determination and Application of CEEA Function Table" Water 15, no. 3: 431. https://doi.org/10.3390/w15030431
APA StyleZuo, Q., Zhang, Z., Ma, J., Zhao, C., & Qin, X. (2023). Carbon Dioxide Emission Equivalent Analysis of Water Resource Behaviors: Determination and Application of CEEA Function Table. Water, 15(3), 431. https://doi.org/10.3390/w15030431