Long-Term Operation of a Pilot-Scale Sulfur-Based Autotrophic Denitrification System for Deep Nitrogen Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Establishment of Pilot-Scale Bioreactor
2.2. Sulfur Particles
2.3. Seed Sludge and Influent
2.4. Analytical Methods
3. Results and Discussion
3.1. Start-Up of the Pilot-Scale Bioreactor
3.2. Nitrate Removal under Different HRT Conditions
3.3. Variation of Nitrate and DO at Different Heights in the Pilot-Scale Bioreactor
3.4. Long-Term Stable Operation of the Pilot-Scale Bioreactor
3.4.1. Variation of Nitrate
3.4.2. Variation of Ammonia Nitrogen and pH Value
3.5. Backwash of the Pilot-Scale Bioreactor
3.6. Microbial Community Structure
3.6.1. Microbial Community Characteristics in the Lab-Scale and Pilot-Scale Bioreactor
3.6.2. Microbial Community Characteristics in the Sulfur Particle Bed
3.7. Operation Cost of Pilot-Scale Bioreactor
- (1)
- Sulfur particles consumption
- (2)
- Bioreactor electricity consumption
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tian, T.; Yu, H.Q. Denitrification with non-organic electron donor for treating low C/N ratio wastewaters. Bioresour. Technol. 2020, 299, 122686. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Feng, C.; Hu, W.; Xi, B.; Chen, N.; Zhao, B.; Liu, Y.; Hao, C.; Pu, J. Woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process for nitrate contaminated water remediation. Water Res. 2016, 89, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Shao, M.; Li, J.; Xie, C. Nitrate removal with lateral flow sulphur autotrophic denitrification reactor. Environ. Technol. 2014, 35, 2692–2697. [Google Scholar] [CrossRef] [PubMed]
- Sahinkaya, E.; Dursun, N. Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: Elimination of excess sulfate production and alkalinity requirement. Chemosphere 2012, 89, 144–149. [Google Scholar] [CrossRef]
- Guo, G.; Li, Z.; Chen, L.; Ling, Q.; Zan, F.; Isawi, H.; Hao, T.; Ma, J.; Wang, Z.; Chen, G.; et al. Advances in elemental sulfur-driven bioprocesses for wastewater treatment: From metabolic study to application. Water Res. 2022, 213, 118143. [Google Scholar] [CrossRef]
- Young, J.C.; Clesceri, L.S.; Kamhawy, S.M. Changes in the Biochemical Oxygen Demand Procedure in the 21st Edition of “Standard Methods for the Examination of Water and Wastewater”. Water Environ. Res. 2005, 77, 404–410. [Google Scholar] [CrossRef]
- Chen, F.; Li, X.; Gu, C.; Huang, Y.; Yuan, Y. Selectivity control of nitrite and nitrate with the reaction of S(0) and achieved nitrite accumulation in the sulfur autotrophic denitrification process. Bioresour. Technol. 2018, 266, 211–219. [Google Scholar] [CrossRef]
- Claus, G.n.; Kutzner, H. Autotrophic denitrification by Thiobacillus denitrificans in a packed bed reactor. Appl. Microbiol. Biotechnol. 1985, 22, 289–296. [Google Scholar] [CrossRef]
- Grubba, D.; Yin, Z.; Majtacz, J.; Al-Hazmi, H.E.; Mąkinia, J. Incorporation of the sulfur cycle in sustainable nitrogen removal systems—A review. J. Clean. Prod. 2022, 372, 133495. [Google Scholar] [CrossRef]
- Nakasone, H.; Ozaki, M. Oxidation-Ditch Process Using Falling Water as Aerator. J. Environ. Eng. 1995, 121, 132–139. [Google Scholar] [CrossRef]
- Demir, O.; Atasoy, A.D.; Calis, B.; Cakmak, Y.; Di Capua, F.; Sahinkaya, E.; Ucar, D. Impact of temperature and biomass augmentation on biosulfur-driven autotrophic denitrification in membrane bioreactors treating real nitrate-contaminated groundwater. Sci. Total Environ. 2022, 853, 158470. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Sun, Y.L.; Yao, B.M.; Zhang, B.; Cheng, H.Y. Insight into the shaping of microbial communities in element sulfur-based denitrification at different temperatures. Environ. Res. 2022, 215, 114348. [Google Scholar] [CrossRef] [PubMed]
- Di Capua, F.; Ahoranta, S.H.; Papirio, S.; Lens, P.N.L.; Esposito, G. Impacts of sulfur source and temperature on sulfur-driven denitrification by pure and mixed cultures of Thiobacillus. Process Biochem. 2016, 51, 1576–1584. [Google Scholar] [CrossRef]
- Koenig, A.; Liu, L.H. Kinetic model of autotrophic denitrification in sulphur packed-bed reactors. Water Res. 2001, 35, 1969–1978. [Google Scholar] [CrossRef]
- Eusebi, A.L.; Martin-Garcia, N.; McAdam, E.J.; Jefferson, B.; Lester, J.N.; Cartmell, E. Nitrogen removal from temperate anaerobic-aerobic two-stage biological systems: Impact of reactor type and wastewater strength. J. Chem. Technol. Biotechnol. 2013, 88, 2107–2114. [Google Scholar] [CrossRef]
- Chen, D.; Wang, D.; Xiao, Z.; Wang, H.; Yang, K. Nitrate removal in a combined bioelectrochemical and sulfur autotrophic denitrification system under high nitrate concentration: Effects of pH. Bioprocess Biosyst. Eng. 2018, 41, 449–455. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Wan, D.; Li, B.; Zhang, P.; Wang, H. Pilot-scale application of sulfur-limestone autotrophic denitrification biofilter for municipal tailwater treatment: Performance and microbial community structure. Bioresour. Technol. 2020, 300, 122682. [Google Scholar] [CrossRef]
- Yang, Y.; Gerrity, S.; Collins, G.; Chen, T.; Li, R.; Xie, S.; Zhan, X. Enrichment and characterization of autotrophic Thiobacillus denitrifiers from anaerobic sludge for nitrate removal. Process. Biochem. 2018, 68, 165–170. [Google Scholar] [CrossRef]
- Pu, J.; Feng, C.; Liu, Y.; Li, R.; Kong, Z.; Chen, N.; Tong, S.; Hao, C.; Liu, Y. Pyrite-based autotrophic denitrification for remediation of nitrate contaminated groundwater. Bioresour. Technol. 2014, 173, 117–123. [Google Scholar] [CrossRef]
- Henkel, J.V.; Vogts, A.; Werner, J.; Neu, T.R.; Sproer, C.; Bunk, B.; Schulz-Vogt, H.N. Candidatus Sulfurimonas marisnigri sp. nov. and Candidatus Sulfurimonas baltica sp. nov., thiotrophic manganese oxide reducing chemolithoautotrophs of the class Campylobacteria isolated from the pelagic redoxclines of the Black Sea and the Baltic Sea. Syst. Appl. Microbiol. 2021, 44, 126155. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, C.; Hu, C.; Liu, H.; Qu, J. Denitrification of groundwater using a sulfur-oxidizing autotrophic denitrifying anaerobic fluidized-bed MBR: Performance and bacterial community structure. Appl. Microbiol. Biotechnol. 2015, 99, 2815. [Google Scholar] [CrossRef] [PubMed]
- Morgan-Sagastume, F.; Nielsen, J.L.; Nielsen, P.H. Substrate-dependent denitrification of abundant probe-defined denitrifying bacteria in activated sludge. FEMS Microbiol. Ecol. 2008, 66, 447–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Shao, M.; Ye, L. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J. 2012, 6, 1137–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Wen, X.; Yan, H.; Ding, K.; Zhao, F.; Hu, M. Bacterial community dynamics in a functionally stable pilot-scale wastewater treatment plant. Bioresour. Technol. 2011, 102, 2352–2357. [Google Scholar] [CrossRef]
- Shao, M.F.; Zhang, T.; Fang, H.P. Sulfur-driven autotrophic denitrification: Diversity, biochemistry, and engineering applications. Appl. Microbiol. Biotechnol. 2010, 88, 1027–1042. [Google Scholar] [CrossRef]
- Pang, Y.; Wang, J. Various electron donors for biological nitrate removal: A review. Sci. Total Environ. 2021, 794, 148699. [Google Scholar] [CrossRef]
- Erkan, S.; Nesrin, D. Use of elemental sulfur and thiosulfate as electron sources for water denitrification. Bioprocess Biosyst. Eng. 2015, 38, 531–541. [Google Scholar]
- Tang, B.; Xiang, Q.; Wang, J.; Zhang, Y.; Li, X.; Cheng, H.; Hu, M.; Zou, Z. Kinetics of limestone decomposition in hot metal. Metall. Res. Technol. 2018, 115, 611. [Google Scholar] [CrossRef]
- Wang, S.; Yang, Y.K.; Chen, X.G.; Lv, J.Z.; Li, J. Effects of bamboo powder and rice husk powder conditioners on sludge dewatering and filtrate quality. Int. Biodeterior. Biodegrad. 2017, 124, 288–296. [Google Scholar] [CrossRef]
COD (mg/L) | NH4+-N (mg/L) | NO3−-N (mg/L) | TP (mg/L) | pH | T (°C) |
---|---|---|---|---|---|
30~50 | 0.1~0.5 | 6~15 | 0.2~0.5 | 6.9~7.3 | 13~27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xu, W.; Yang, X.; Ren, Z.; Huang, K.; Qian, F.; Li, J. Long-Term Operation of a Pilot-Scale Sulfur-Based Autotrophic Denitrification System for Deep Nitrogen Removal. Water 2023, 15, 428. https://doi.org/10.3390/w15030428
Wang Y, Xu W, Yang X, Ren Z, Huang K, Qian F, Li J. Long-Term Operation of a Pilot-Scale Sulfur-Based Autotrophic Denitrification System for Deep Nitrogen Removal. Water. 2023; 15(3):428. https://doi.org/10.3390/w15030428
Chicago/Turabian StyleWang, Yan, Weiyi Xu, Xue Yang, Zhengming Ren, Kaiwen Huang, Feiyue Qian, and Ji Li. 2023. "Long-Term Operation of a Pilot-Scale Sulfur-Based Autotrophic Denitrification System for Deep Nitrogen Removal" Water 15, no. 3: 428. https://doi.org/10.3390/w15030428
APA StyleWang, Y., Xu, W., Yang, X., Ren, Z., Huang, K., Qian, F., & Li, J. (2023). Long-Term Operation of a Pilot-Scale Sulfur-Based Autotrophic Denitrification System for Deep Nitrogen Removal. Water, 15(3), 428. https://doi.org/10.3390/w15030428