Development and Application of Membrane Aerated Biofilm Reactor (MABR)—A Review
Abstract
:1. Introduction
2. Membrane Materials and Membrane Modules
2.1. Membrane Materials
2.1.1. Microporous Membrane
2.1.2. Dense Membrane
2.1.3. Flat Sheet Membrane
Membrane Materials | Types of Membrane | Gas | Manufacture Process | Reference |
---|---|---|---|---|
L-3,4-dihydroxy-phenylalanine (DOPA)PVDF | microporous | air | coating | [38] |
PVDF | dense | air | [45] | |
poly(vinylpyrrolidone) or propionic acid modification PVDF | hollow fiber membrane | O2/H2 | dry-jet wet spinning | [37] |
polyurethane or polystyrene modification polyethylene | hollow fiber | O2 | coating | [41] |
PDMS | hollow | O2 | coating | [46] |
La0.6Sr0.4Co0.2Fe0.8O3−δ SrFeCo0.5Ox | dense | O2 | high temperature calcination | [27] |
composite materials | hollow-fiber membrane | H2/O2 | [47] | |
nonwoven fabric substrate and porous expanded polytetraflfluoroethylene | flat sheet membrane | air | hot-press forming process | [43] |
2.2. Membrane Modules
3. Biofilm
3.1. Mass Transfer Process
3.2. Biofilm Structural Characteristics
4. Application of MABR Technology
4.1. Application in the Municipal Wastewater Treatment
Wastewater | Membrane Material | Configuration | Main Conclusion | Reference |
---|---|---|---|---|
Real municipal wastewater | hollow fiber membranes | Length 1 m, diameter 1.2 mm, volume 4.1 L, specific surface area 37 m²/m³ | NH4+-N, TN removal (70–90%, 60–80%) | [13] |
Synthetic municipal wastewater | microporous polyethylene | Length 12.5 cm, volume 6 L, specific surface area 32 m²/m | Realize simultaneous nitrification and denitrification (SND) | [84] |
Synthetic municipal wastewater | tubular PDMS membranes | Volume 0.8 L | Energy-efficient nitrogen removal with low N2O emission | [46] |
Domestic wastewater | polyvinyl alcohol gel (PVA) | Volume 250 L | COD and TN removal 82%, 42% | [30] |
Domestic wastewater | hollow fiber membranes | Length 1.015 m, internal diameter 200 μm, external diameter 280 μm, volume 30 L | TN, NH4+-N removal (88%, 79%) | [16] |
Real municipal wastewater | hollow fiber membranes | volume 40 L | Nitrification (25%–40%) | [79] |
Municipal primary effluent | Mitsubishi composite | volume 60 L | COD, TN, NH4+-N removal (74%, 80.6%, 66.7%) | [85] |
Municipal wastewater | dense | volume 6800 L | COD, TN, NH4+-N removal (77.5%, 80.9%, 97.5%) | [81] |
4.2. Application in the Industrial Wastewater Treatment
4.2.1. Hospital and Pharmaceutical Wastewater
4.2.2. High Salinity and Refractory Industrial Wastewater
4.2.3. Treatment Landfill Leachate
4.2.4. Livestock Wastewater
4.2.5. Petrochemical Wastewater
4.2.6. Formaldehyde Wastewater
4.2.7. Acetonitrile Wastewater
Wastewater | Membrane Material | Scale | Main Conclusion | Reference |
---|---|---|---|---|
Pharmaceutical wastewater | hydrophobic polypropylene dense PVDF hollow fiber | Pilot scale 1.4 L | Removal COD 90%, NH4+-N 98% Removal COD 95% and TN 92%. | [10,45] |
Steel pickling rinse wastewater | PVDF hollow fiber | 6 L | Removal COD 62.84%, NH4+-N 99.57%, TN 51.65% | [71] |
Phenolic wastewater | PVDF hollow fiber | 9 L | Removal phenolic compounds 95% | [95] |
Landfill leachate | hollow-fibre polydimethyl siloxane (PDMS) membranes | 60 L | Nitrification efficiency 80–99%, Removal 75%–80% | [8] |
Cow manure | Polytetrafluoroethylene (PTFE) | 1.8 L | Removal COD 85%, NH4+-N 90% | [23] |
Swine liquid | Polyethylene | 0.15 L | Removal TOC 96%, TN 83% | [101] |
Petrochemical wastewater | PDMS/silicone | 54 L | Removal TOC 80–85%, BOD5 95%, organic acids >98%, phenol 98%, NH4+-N 70–90%. | [103] |
Oilfield Wastewater | Composite dense hollow fiber membranes | Removal COD 82.3%, Oil 85.7%, NH4+-N 32.1%, TN 71.9%. | [45] | |
Formaldehyde wastewater | Silicone rubber membrane Tube/PDMS | Removal FA 99.90%, MeOH 81.50% COD 97.14%. | [26] | |
Acetonitrile wastewater | Polypropylene hollow fibers | 1.42 L | Removal TOC 98.6%, TN 83.3%. | [109] |
4.3. Application in Surface Water Treatment
Technology | Type of Surface Water | Pollutant Indexes | Main Conclusion | Reference |
---|---|---|---|---|
Vertical-flow constructed wetlands+ artificial aeration | Heavily polluted river | COD (65–158 mg/L), TN (5.8–12.7 mg/L) | Intermittent aeration TN and COD removal | [122] |
Sediment dredging | River sediment pollution | Heavy metals | Reduce the content of heavy metals in rivers | [123] |
Enhanced flocculation, polymeric ferric sulfate, polymeric aluminum chloride, Al2(SO4)3∙18H2O, Fe2(SO4)3 | Dianchi lake | Cyanobacterial blooms | polymeric ferric sulfate significant algae removal effect | [124] |
Microbial technology | Urban polluted river | Water black-odor, low dissolved oxygen concentration | DO reached 5.0 mg/L, eliminate black odor | [118] |
Planted floating bed system | Urban river water and sediment | Nutrients and heavy metals | Higher removal of nutrients, DO and transparency are improved | [125] |
Artificial aeration and biological zeolite | Eutrophic water bodies | Total nitrogen | TN removal (78%) | [126] |
Novel Mass Bio system and ion exchange | Micro-polluted water bodies | NH4+-N | NH4+-N removal capacity 120 t/d | [127] |
Microalgae technology | Synthetic wastewater, black-odorous water | Emerging contaminants | Biodegradation is effective for removing NH4+-N, ibuprofen and caffeine | [128] |
Integrated eco-engineering | Eutrophic river waters | TP, TN, COD | TP, TN, COD removal 10.5%, 11.8% and 8.2% | [129] |
5. Influencing Factors of MABR System Performance
5.1. pH
5.2. C/N Ration
5.3. Temperature
5.4. Biofilm Thickness
5.5. DO
5.6. Hydraulic Retention Time (HRT)
6. Limitations and Perspectives of the MABR Technology
6.1. Limitations of the MABR Technology
6.2. Prospect of MABR Technology
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MABR | Membrane aerated biofilm reactor | PE | Polyethylene |
AOB | Ammonium oxidizing bacteria | PTFE | Polytetrafluoroethylene |
NOB | Nitrate oxidizing bacteria | PDMS | Polydimethylsiloxane |
SND | Simultaneous nitrification and denitrification | EPS | Extracellular polymeric substances |
DO | Dissolved oxygen | AS | activated sludge |
HRT | Hydraulic retention time | VOCs | volatile organic compounds |
WWTP | Wastewater treatment plant | C/N | Carbon–nitrogen ratio |
TIPS | Thermally induced phase separation | FISH | Fluorescence in situ hybridization |
PVDF | Polyvinylidene fluoride | MeOH | Methanol |
DOPA | L-3,4-dihydroxyphenylalanine | HB | Heterotrophic bacteria |
PP | Polypropylene | SMX | Sulfamethoxazole |
COD | Chemical oxygen demand | TMP | Trimethoprim |
TN | Total nitrogen | TP | Total phosphorus |
References
- Mansoorianfar, M.; Shahin, K.; Hojjati–Najafabadi, A.; Pei, R. MXene–laden bacteriophage: A new antibacterial candidate to control bacterial contamination in water. Chemosphere 2022, 290, 133383. [Google Scholar] [CrossRef] [PubMed]
- Mansoorianfar, M.; Nabipour, H.; Pahlevani, F.; Zhao, Y.; Hussain, Z.; Hojjati-Najafabadi, A.; Hoang, H.Y.; Pei, R. Recent progress on adsorption of cadmium ions from water systems using metal-organic frameworks (MOFs) as an efficient class of porous materials. Environ. Res. 2022, 214, 114113. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Z.; Ullah, S.; Yan, J.; Wang, Z.; Ullah, I.; Ahmad, Z.; Zhang, Y.; Cao, Y.; Wang, L.; Mansoorianfar, M.; et al. Electrospun tannin-rich nanofibrous solid-state membrane for wastewater environmental monitoring and remediation. Chemosphere 2022, 307, 135810. [Google Scholar] [CrossRef] [PubMed]
- Shahin, K.; Zhang, L.; Bao, H.; Hedayatkhah, A.; Soleimani-Delfan, A.; Komijani, M.; He, T.; Barazandeh, M.; Mansoorianfar, M.; Bouzari, M.; et al. An in-vitro study on a novel six-phage cocktail against multi-drug resistant-ESBL Shigella in aquatic environment. Lett. Appl. Microbiol. 2021, 72, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Shahin, K.; Barazandeh, M.; Zhang, L.; Hedayatkhah, A.; He, T.; Bao, H.; Mansoorianfar, M.; Pang, M.; Wang, H.; Wei, R.; et al. Biodiversity of New Lytic Bacteriophages Infecting Shigella spp. in Freshwater Environment. Front. Microbiol. 2021, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sabia, G.; Petta, L.; Avolio, F.; Caporossi, E. Energy saving in wastewater treatment plants: A methodology based on common key performance indicators for the evaluation of plant energy performance, classification and benchmarking. Energy Convers. Manag. 2020, 220, 113067. [Google Scholar] [CrossRef]
- Yeh, S.-J.; Jenkins, C.R. Pure Oxygen Fixed Film Reactor. American Society of Civil Engineers J. Environ. Eng. Div. 1978, 104, 611–623. [Google Scholar] [CrossRef]
- Syron, E.; Semmens, M.J.; Casey, E. Performance analysis of a pilot-scale membrane aerated biofilm reactor for the treatment of landfill leachate. Chem. Eng. J. 2015, 273, 120–129. [Google Scholar] [CrossRef]
- Castrillo, M.; Díez Montero, R.; Esteban-Garcia, A.L.; Monzón, I. Mass transfer enhancement and improved nitrification in MABR through specific membrane configuration. Water Res. 2019, 152, 1–11. [Google Scholar] [CrossRef]
- Wei, X.; Li, B.; Zhao, S.; Wang, L.; Zhang, H.; Li, C.; Wang, S. Mixed pharmaceutical wastewater treatment by integrated membrane-aerated biofilm reactor (MABR) system—A pilot-scale study. Bioresour. Technol. 2012, 122, 189–195. [Google Scholar] [CrossRef]
- Li, M.; Li, P.; Chunyu, D.; Sun, L.; Li, B. Pilot-Scale Study of Integrated Membrane-Aerated Biofilm Reactor (MABR) System on the Urban River Remediation. Ind. Eng. Chem. Res. 2016, 55, 8373–8382. [Google Scholar] [CrossRef]
- Li, T.; Liu, J.; Bai, R. Membrane Aerated Biofilm Reactors: A Brief Current Review. Recent Pat. Biotechnol. 2008, 2, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Bunse, P.; Orschler, L.; Agrawal, S.; Lackner, S. Membrane aerated biofilm reactors for mainstream partial nitritation/anammox: Experiences using real municipal wastewater. Water Res. X 2020, 9, 100066. [Google Scholar] [CrossRef] [PubMed]
- De Paepe, J.; De Paepe, K.; Gòdia, F.; Rabaey, K.; Vlaeminck, S.E.; Clauwaert, P. Bio-electrochemical COD removal for energy-efficient, maximum and robust nitrogen recovery from urine through membrane aerated nitrification. Water Res. 2020, 185, 116223. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhao, D.; Zhang, Y.; Sun, L.; Zhang, H.; Lian, M.; Li, B. Oil-field wastewater treatment by hybrid membrane-aerated biofilm reactor (MABR) system. Chem. Eng. J. 2015, 264, 595–602. [Google Scholar] [CrossRef]
- Siriweera, W.B.S.; Lee, Y.-J.; Masumi, K.; Visvanathan, C. Organic matter and total nitrogen removal from wastewater using a pilot-scale membrane-aerated biofilm reactor. Bioresour. Technol. Rep. 2021, 15, 100817. [Google Scholar] [CrossRef]
- Yılmaz, M.; Taşkan, E.; Hasar, H. Comparative potentials of H2- and O2-MBfRs in removing multiple tetracycline antibiotics. Process Saf. Environ. Prot. 2022, 167, 184–191. [Google Scholar] [CrossRef]
- Mei, X.; Gao, H.; Ding, Y.; Xue, C.; Xu, L.; Wang, Y.; Zhang, L.; Ma, M.; Zhang, Z.; Xiao, Y.; et al. Coupling of (methane + air)-membrane biofilms and air-membrane biofilms: Treatment of p-nitroaniline wastewater. J. Hazard. Mater. 2022, 435, 128946. [Google Scholar] [CrossRef]
- Modin, O.; Fukushi, K.; Nakajima, F.; Yamamoto, K. Performance of a membrane biofilm reactor for denitrification with methane. Bioresour. Technol. 2008, 99, 8054–8060. [Google Scholar] [CrossRef]
- Nerenberg, R. The membrane-biofilm reactor (MBfR) as a counter-diffusional biofilm process. Curr. Opin. Biotechnol. 2016, 38, 131–136. [Google Scholar] [CrossRef]
- Ahmed, T.; Semmens, M.J.; Voss, M.A. Oxygen transfer characteristics of hollow-fiber, composite membranes. Adv. Environ. Res. 2004, 8, 637–646. [Google Scholar] [CrossRef]
- Ashley, K.I.; Hall, K.J.; Mavinic, D.S. Factors influencing oxygen transfer in fine pore diffused aeration. Water Res. 1991, 25, 1479–1486. [Google Scholar] [CrossRef]
- Gong, W.; Fan, A.; Zhang, H.; Luo, L.; Liang, H. Cow manure anaerobic fermentation effluent treatment by oxygen-based membrane aerated biofilm reactor. Chem. Eng. J. 2020, 395, 125116. [Google Scholar] [CrossRef]
- Qambar, A.S.; Al Khalidy, M.M. Optimizing dissolved oxygen requirement and energy consumption in wastewater treatment plant aeration tanks using machine learning. J. Water Process Eng. 2022, 50, 103237. [Google Scholar] [CrossRef]
- Quan, X.; Huang, K.; Li, M.; Lan, M.; Li, B. Nitrogen removal performance of municipal reverse osmosis concentrate with low C/N ratio by membrane-aerated biofilm reactor. Front. Environ. Sci. Eng. 2018, 12, 5. [Google Scholar] [CrossRef]
- Mei, X.; Guo, Z.; Liu, J.; Bi, S.; Li, P.; Wang, Y.; Shen, W.; Yang, Y.; Wang, Y.; Xiao, Y.; et al. Treatment of formaldehyde wastewater by a membrane-aerated biofilm reactor (MABR): The degradation of formaldehyde in the presence of the cosubstrate methanol. Chem. Eng. J. 2019, 372, 673–683. [Google Scholar] [CrossRef]
- Vang Hendriksen, P.; Larsen, P.; Mogensen, M.; Poulsen, F.; Wiik, K. Prospects and Problems of Dense Oxygen Permeable Membranes. Catal. Today 2000, 56, 283–295. [Google Scholar] [CrossRef]
- Werkneh, A. Application of membrane-aerated biofilm reactor in removing water and wastewater pollutants: Current advances, knowledge gaps and research needs—A review. Environ. Chall. 2022, 8, 100529. [Google Scholar] [CrossRef]
- Atkinson, S. SUEZ’s MABR technology helps UK facility meet strict ammonia targets within an existing plant footprint. Membr. Technol. 2021, 2021, 5. [Google Scholar] [CrossRef]
- Nguyen, A.-V.; Yun-Je, L.; Masumi, K.; Visvanathan, C. Effects of membrane relaxation rate on performance of pilot-scale membrane aerated biofilm reactors treating domestic wastewater. Environ. Res. 2022, 211, 113003. [Google Scholar] [CrossRef]
- Ke, Y.; Li, X.; Liu, B.; Ma, H.; Zheng, X.; Zheng, C. Application and research progress of MABR technology in sewage treatment. Ind. Water Treat. 2022, 42, 18–24. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y.; Ren, Y.; Wang, Y.; Wang, Y.; Zhang, H. Transition of fouling characteristics after development of membrane wetting in membrane-aerated biofilm reactors (MABRs). Chemosphere 2022, 299, 134355. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wu, Z.; Chu, H.; Li, J.; Ngo, H.H.; Guo, W.; Zhang, N.; Zhang, H. Comparison study on the performance of two different gas-permeable membranes used in a membrane-aerated biofilm reactor. Sci. Total Environ. 2019, 658, 1219–1227. [Google Scholar] [CrossRef] [PubMed]
- Takashige, M. Biaxially Oriented Nylon Film and Process for Production of Biaxially Oriented Nylon Film. U.S. Patent 8,445,626, 21 May 2013. [Google Scholar]
- Lloyd, D.R.; Kinzer, K.E.; Tseng, H.S. Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation. J. Membr. Sci. 1990, 52, 239–261. [Google Scholar] [CrossRef]
- Kreulen, H.; Smolders, C.A.; Versteeg, G.; Van Swaaij, W. Determination of Mass Transfer Rates in Wetted and Non-Wetted Microporous Membranes. Chem. Eng. Sci. 1993, 48, 2093–2102. [Google Scholar] [CrossRef] [Green Version]
- Aksoy, Y.; Hasar, H. Fabrication of gas-permeable polyvinylidene fluoride (PVDF) hollow-fiber membrane by dry-jet wet spinning and its application in membrane biofilm reactors. J. Water Process Eng. 2021, 40, 101879. [Google Scholar] [CrossRef]
- Hou, F.; Li, B.; Xing, M.; Wang, Q.; Hu, L.; Wang, S. Surface modification of PVDF hollow fiber membrane and its application in membrane aerated biofilm reactor (MABR). Bioresour. Technol. 2013, 140, 1–9. [Google Scholar] [CrossRef]
- Ismail, A.F.; Mustaffar, M.I.; Illias, R.M.; Abdullah, M.S. Effect of dope extrusion rate on morphology and performance of hollow fibers membrane for ultrafiltration. Sep. Purif. Technol. 2006, 49, 10–19. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, T.; Chang, M.; Jin, D. Performance of a hybrid membrane aerated biofilm reactor (H-MBfR) for shortcut nitrification. Biochem. Eng. J. 2021, 173, 108089. [Google Scholar] [CrossRef]
- Kobayashi, M.; Agari, R.; Kigo, Y.; Terada, A. Efficient oxygen supply and rapid biofilm formation by a new composite polystyrene elastomer membrane for use in a membrane-aerated biofilm reactor. Biochem. Eng. J. 2022, 183, 108442. [Google Scholar] [CrossRef]
- Wei, Y.; Yang, W.; Caro, J.; Wang, H. Dense ceramic oxygen permeable membranes and catalytic membrane reactors. Chem. Eng. J. 2013, 220, 185–203. [Google Scholar] [CrossRef]
- He, L.; Wang, Y.; Zhou, T.; Zhao, Y. Enhanced ammonia resource recovery from wastewater using a novel flat sheet gas-permeable membrane. Chem. Eng. J. 2020, 400, 125338. [Google Scholar] [CrossRef]
- Ke, Y.; Li, X.; Liu, B.; Ma, H.; Wang, Y.; Zheng, X. Pilot-scale study of MABR coupled activated sludge technology for municipal wastewater treatment. Water Treat. Technol. 2022, 48, 110–114. [Google Scholar] [CrossRef]
- Tian, H.; Zhang, H.; Li, P.; Sun, L.; Hou, F.; Li, B. Treatment of pharmaceutical wastewater for reuse by coupled membrane-aerated biofilm reactor (MABR) system. RSC Adv. 2015, 5, 69829–69838. [Google Scholar] [CrossRef]
- Ma, Y.; Piscedda, A.; Veras, A.D.L.C.; Domingo-Félez, C.; Smets, B.F. Intermittent aeration to regulate microbial activities in membrane-aerated biofilm reactors: Energy-efficient nitrogen removal and low nitrous oxide emission. Chem. Eng. J. 2022, 433, 133630. [Google Scholar] [CrossRef]
- Nerenberg, R.; Rittmann, B. Hydrogen-based, hollow-fiber membrane biofilm reactor for reduction of perchlorate and other oxidized contaminants. Water Sci. Technol. 2004, 49, 223–230. [Google Scholar] [CrossRef]
- Ohandja, G.; Stuckey, D. Development of a membrane-aerated biofilm reactor to completely mineralise perchloroethylene in wastewaters. J. Chem. Technol. Biotechnol. 2006, 81, 1736–1744. [Google Scholar] [CrossRef]
- Pellicer-Nàcher, C.; Smets, B.F. Structure, composition, and strength of nitrifying membrane-aerated biofilms. Water Res. 2014, 57, 151–161. [Google Scholar] [CrossRef]
- Essila Neil, J.; Semmens Michael, J.; Voller Vaughan, R. Modeling Biofilms on Gas-Permeable Supports: Concentration and Activity Profiles. J. Environ. Eng. 2000, 126, 250–257. [Google Scholar] [CrossRef]
- LaPara, T.M.; Cole, A.C.; Shanahan, J.W.; Semmens, M.J. The effects of organic carbon, ammoniacal-nitrogen, and oxygen partial pressure on the stratification of membrane-aerated biofilms. J. Ind. Microbiol. Biotechnol. 2006, 33, 315–323. [Google Scholar] [CrossRef]
- Martin, K.J.; Nerenberg, R. The membrane biofilm reactor (MBfR) for water and wastewater treatment: Principles, applications, and recent developments. Bioresour. Technol. 2012, 122, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Ravishankar, H.; Nemeth, A.; Massons, G.; Puig, D.; Zardoya, D.; Carpi, N.; Lens, P.N.L.; Heffernan, B. Factors impacting simultaneous nitrification and denitrification in a membrane aerated biofilm reactor (MABR) system treating municipal wastewater. J. Environ. Chem. Eng. 2022, 10, 108120. [Google Scholar] [CrossRef]
- Elsayed, A.; Hurdle, M.; Kim, Y. Comprehensive model applications for better understanding of pilot-scale membrane-aerated biofilm reactor performance. J. Water Process Eng. 2021, 40, 101894. [Google Scholar] [CrossRef]
- Li, P.; Li, M.; Zhang, Y.; Zhang, H.; Sun, L.; Li, B. The treatment of surface water with enhanced membrane-aerated biofilm reactor (MABR). Chem. Eng. Sci. 2016, 144, 267–274. [Google Scholar] [CrossRef]
- Wang, J.; Liu, G.-F.; Lu, H.; Jin, R.-F.; Zhou, J.-T.; Lei, T.-M. Biodegradation of Acid Orange 7 and its auto-oxidative decolorization product in membrane-aerated biofilm reactor. Int. Biodeterior. Biodegrad. 2012, 67, 73–77. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, R.; Guo, B.; Xia, S.; Liu, Y.; Rittmann, B.E. The influent COD/N ratio controlled the linear alkylbenzene sulfonate biodegradation and extracellular polymeric substances accumulation in an oxygen-based membrane biofilm reactor. J. Hazard. Mater. 2022, 422, 126862. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.; Li, Y.; Chi, Q.; Cheng, Y.; Jiang, X.; Chen, D.; Mu, Y.; Shen, J. Structural characteristics and microbial function of biofilm in membrane-aerated biofilm reactor for the biodegradation of volatile pyridine. J. Hazard. Mater. 2022, 437, 129370. [Google Scholar] [CrossRef]
- Shanahan, J.W.; Semmens, M.J. Alkalinity and pH effects on nitrification in a membrane aerated bioreactor: An experimental and model analysis. Water Res. 2015, 74, 10–22. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef]
- Möhle, R.B.; Langemann, T.; Haesner, M.; Augustin, W.; Scholl, S.; Neu, T.R.; Hempel, D.C.; Horn, H. Structure and shear strength of microbial biofilms as determined with confocal laser scanning microscopy and fluid dynamic gauging using a novel rotating disc biofilm reactor. Biotechnol. Bioeng. 2007, 98, 747–755. [Google Scholar] [CrossRef]
- Picioreanu, C.; van Loosdrecht, M.; Heijnen, S. Two-Dimensional Model of Biofilm Detachment Caused by Internal Stress from Liquid Flow. Biotechnol. Bioeng. 2001, 72, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Coufort-Saudejaud, C.; Derlon, N.; Ochoa-Chaves, J.; Line, A.; Etienne, P. Cohesion and detachment in biofilm systems for different electron acceptor and donors. Water Sci. Technol. 2007, 55, 421–428. [Google Scholar] [CrossRef]
- Bunse, P.; Orschler, L.; Pidde, A.V.; Lackner, S. Effects of scouring on membrane aerated biofilm reactor performance and microbial community composition. Bioresour. Technol. 2023, 369, 128441. [Google Scholar] [CrossRef]
- Derlon, N.; Massé, A.; Escudié, R.; Bernet, N.; Paul, E. Stratification in the cohesion of biofilms grown under various environmental conditions. Water Res. 2008, 42, 2102–2110. [Google Scholar] [CrossRef]
- Ahmar Siddiqui, M.; Kumar Biswal, B.; Siriweera, B.; Chen, G.; Wu, D. Integrated self-forming dynamic membrane (SFDM) and membrane-aerated biofilm reactor (MABR) system enhanced single-stage autotrophic nitrogen removal. Bioresour. Technol. 2022, 345, 126554. [Google Scholar] [CrossRef]
- Shanahan, J.W.; Semmens, M.J. Influence of a nitrifying biofilm on local oxygen fluxes across a micro-porous flat sheet membrane. J. Membr. Sci. 2006, 277, 65–74. [Google Scholar] [CrossRef]
- Lai, Y.S.; Ontiveros-Valencia, A.; Ilhan, Z.E.; Zhou, Y.; Miranda, E.; Maldonado, J.; Krajmalnik-Brown, R.; Rittmann, B.E. Enhancing biodegradation of C16-alkyl quaternary ammonium compounds using an oxygen-based membrane biofilm reactor. Water Res. 2017, 123, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Bai, H.; Kong, F.; Liss, S.N.; Liao, B. Recent advances in membrane aerated biofilm reactors. Crit. Rev. Environ. Sci. Technol. 2021, 51, 649–703. [Google Scholar] [CrossRef]
- Sayess, R.R.; Saikaly, P.E.; El-Fadel, M.; Li, D.; Semerjian, L. Reactor performance in terms of COD and nitrogen removal and bacterial community structure of a three-stage rotating bioelectrochemical contactor. Water Res. 2013, 47, 881–894. [Google Scholar] [CrossRef]
- Sun, Z.; Li, Y.; Li, M.; Wang, N.; Liu, J.; Guo, H.; Li, B. Steel pickling rinse wastewater treatment by two-stage MABR system: Reactor performance, extracellular polymeric substances (EPS) and microbial community. Chemosphere 2022, 299, 134402. [Google Scholar] [CrossRef]
- Li, Z.; Dai, R.; Yang, B.; Chen, M.; Wang, X.; Wang, Z. An electrochemical membrane biofilm reactor for removing sulfonamides from wastewater and suppressing antibiotic resistance development: Performance and mechanisms. J. Hazard. Mater. 2021, 404, 124198. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xie, S. Overview of sulfonamide biodegradation and the relevant pathways and microorganisms. Sci. Total Environ. 2018, 640–641, 1465–1477. [Google Scholar] [CrossRef] [PubMed]
- Çelik, A.; Casey, E.; Hasar, H. Degradation of oxytetracycline under autotrophic nitrifying conditions in a membrane aerated biofilm reactor and community fingerprinting. J. Hazard. Mater. 2018, 356, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Taşkan, B.; Casey, E.; Hasar, H. Simultaneous oxidation of ammonium and tetracycline in a membrane aerated biofilm reactor. Sci. Total Environ. 2019, 682, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Shoji, T.; Itoh, R.; Nittami, T.; Kageyama, T.; Noguchi, M.; Yamasaki, A. Influence of the flow velocity on membrane-aerated biofilm reactors: Application of a rotating disk for local flow control. Biochem. Eng. J. 2020, 164, 107771. [Google Scholar] [CrossRef]
- Khalid, S.; Shahid, M.; Bibi, I.; Sarwar, T.; Shah, A.H.; Niazi, N.K. A Review of Environmental Contamination and Health Risk Assessment of Wastewater Use for Crop Irrigation with a Focus on Low and High-Income Countries. Int. J. Environ. Res. Public Health 2018, 15, 895. [Google Scholar] [CrossRef] [Green Version]
- Karna, D.; Visvanathan, C. From Conventional Activated Sludge Process to Membrane-Aerated Biofilm Reactors: Scope, Applications, and Challenges. In Water and Wastewater Treatment Technologies; Bui, X.-T., Chiemchaisri, C., Fujioka, T., Varjani, S., Eds.; Springer Singapore: Singapore, 2019; pp. 237–263. [Google Scholar] [CrossRef]
- Corsino, S.F.; Torregrossa, M. Achieving complete nitrification below the washout SRT with hybrid membrane aerated biofilm reactor (MABR) treating municipal wastewater. J. Environ. Chem. Eng. 2022, 10, 106983. [Google Scholar] [CrossRef]
- Cote, P.; Peeters, J.; Adams, N.; Hong, Y.; Long, Z.; Ireland, J. A New Membrane-Aerated Biofilm Reactor for Low Energy Wastewater Treatment: Pilot Results. Proc. Water Environ. Fed. 2015, 2015, 4226–4239. [Google Scholar] [CrossRef] [Green Version]
- Peeters, J.; Adams, N.; Long, Z.; Cote, P.; Kunetz, T. Demonstration of innovative MABR low-energy nutrient removal technology at Chicago MWRD. Water Pract. Technol. 2017, 12, 927–936. [Google Scholar] [CrossRef]
- Terada, A.; Lackner, S.; Tsuneda, S.; Smets, B. Redox-stratification controlled biofilm (ReSCoBi) for completely autotrophic nitrogen removal: The effect of co- versus counter-diffusion on reactor performance. Biotechnol. Bioeng. 2007, 97, 40–51. [Google Scholar] [CrossRef]
- Pellicer-Nàcher, C.; Sun, S.-P.; Lackner, S.; Terada, A.; Schreiber, F.; Zhou, Q.; Smets, B. Sequential Aeration of Membrane-Aerated Biofilm Reactors for High-Rate Autotrophic Nitrogen Removal: Experimental Demonstration. Environ. Sci. Technol. 2010, 44, 7628–7634. [Google Scholar] [CrossRef]
- Downing, L.S.; Nerenberg, R. Total nitrogen removal in a hybrid, membrane-aerated activated sludge process. Water Res. 2008, 42, 3697–3708. [Google Scholar] [CrossRef] [PubMed]
- Semmens, M. Membrane Technology: Pilot Studies of Membrane-Aerated Bioreactors; IWA Publishing: London, UK, 2005. [Google Scholar] [CrossRef]
- Kemp, J.; Zytner, R.; Bell, J.; Parker, W.; Thompson, D.; Rittmann, B. A method for determining VOC biotransformation rates. Water Res. 2000, 34, 3531–3542. [Google Scholar] [CrossRef]
- Qalyoubi, L.; Al-Othman, A.; Al-Asheh, S. Recent progress and challenges of adsorptive membranes for the removal of pollutants from wastewater. Part II: Environmental applications. Case Stud. Chem. Environ. Eng. 2021, 3, 100102. [Google Scholar] [CrossRef]
- Schmidt, B.; Wolters, R.; Kaplin, J.; Schneiker, T.; Lobo-Recio, M.d.l.A.; López, F.; López-Delgado, A.; Alguacil, F.J. Rinse water regeneration in stainless steel pickling. Desalination 2007, 211, 64–71. [Google Scholar] [CrossRef]
- Ogata, F.; Imai, D.; Kawasaki, N. Adsorption of nitrate and nitrite ions onto carbonaceous material produced from soybean in a binary solution system. J. Environ. Chem. Eng. 2015, 3, 155–161. [Google Scholar] [CrossRef]
- Teh, C.Y.; Budiman, P.M.; Shak, K.P.Y.; Wu, T.Y. Recent Advancement of Coagulation–Flocculation and Its Application in Wastewater Treatment. Ind. Eng. Chem. Res. 2016, 55, 4363–4389. [Google Scholar] [CrossRef]
- Pizarro, A.H.; Molina, C.B.; Rodriguez, J.J.; Epron, F. Catalytic reduction of nitrate and nitrite with mono- and bimetallic catalysts supported on pillared clays. J. Environ. Chem. Eng. 2015, 3, 2777–2785. [Google Scholar] [CrossRef]
- Li, X.; Li, W.; Wang, S.; Cui, Y.; Zhao, J.; Zeng, Y.; Li, F. Treatment of stainless steel pickling wastewater by ion resin exchange and activated carbon adsorption. In Advanced Materials Research; Trans Tech Publications Ltd.: Bach, Switzerland, 2012. [Google Scholar]
- Hou, C.; Shen, J.; Jiang, X.; Zhang, D.; Sun, X.; Li, J.; Han, W.; Liu, X.; Wang, L. Enhanced anoxic biodegradation of pyridine coupled to nitrification in an inner loop anoxic/oxic-dynamic membrane bioreactor (A/O-DMBR). Bioresour. Technol. 2018, 267, 626–633. [Google Scholar] [CrossRef]
- Lan, M.; Li, M.; Liu, J.; Quan, X.; Li, Y.; Li, B. Coal chemical reverse osmosis concentrate treatment by membrane-aerated biofilm reactor system. Bioresour. Technol. 2018, 270, 120–128. [Google Scholar] [CrossRef]
- Tian, H.; Xu, X.; Qu, J.; Li, H.; Hu, Y.; Huang, L.; He, W.; Li, B. Biodegradation of phenolic compounds in high saline wastewater by biofilms adhering on aerated membranes. J. Hazard. Mater. 2020, 392, 122463. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, A.; Gu, Z.; Li, Q. Enhanced degradation of refractory organics in concentrated landfill leachate by Fe0/H2O2 coupled with microwave irradiation. Chem. Eng. J. 2018, 354, 680–691. [Google Scholar] [CrossRef]
- Ittisupornrat, S.; Phihusut, D.; Kitkaew, D.; Sangkarak, S.; Phetrak, A. Performance of dissolved organic matter removal from membrane bioreactor effluent by magnetic powdered activated carbon. J. Environ. Manag. 2019, 248, 109314. [Google Scholar] [CrossRef]
- Wu, D.; Sui, Q.; Mei, X.; Yu, X.; Gu, Y.; Zhao, W. Non-antibiotics matter: Evidence from a one-year investigation of livestock wastewater from six farms in East China. Sci. Total Environ. 2022, 846, 157418. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Liu, K.; Yu, H.; Liang, H.; Xie, B.; Li, G.; Qu, F.; van der Bruggen, B. Treatment of anaerobic digestion effluent using membrane distillation: Effects of feed acidification on pollutant removal, nutrient concentration and membrane fouling. Desalination 2019, 449, 6–15. [Google Scholar] [CrossRef]
- Zhang, H.; Gong, W.; Luo, X.; Xie, B.; Li, G.; Liang, H. Obtaining high-purity struvite from anaerobically digested wastewater: Effects of pH, Mg/P, and Ca 2+ interactions. Environ. Eng. Sci. 2019, 36, 102–113. [Google Scholar] [CrossRef]
- Terada, A.; Hibiya, K.; Nagai, J.; Tsuneda, S.; Hirata, A. Nitrogen removal characteristics and biofilm analysis of a membrane-aerated biofilm reactor applicable to high-strength nitrogenous wastewater treatment. J. Biosci. Bioeng. 2003, 95, 170–178. [Google Scholar] [CrossRef]
- Yi, X.S.; Yu, S.L.; Shi, W.X.; Wang, S.; Sun, N.; Jin, L.M.; Wang, X.; Sun, L.P. Hydrodynamics behaviour of oil field wastewater advanced treatment by ultrafiltration process. Desalination 2012, 305, 12–16. [Google Scholar] [CrossRef]
- Veleva, I.; Weert, W.; Belzen, N.; Cornelissen, E.; Verliefde, A.; Vanoppen, M. Petrochemical condensate treatment by membrane aerated biofilm reactors: A pilot study. Chem. Eng. J. 2021, 428, 131013. [Google Scholar] [CrossRef]
- Li, M.; Li, Y.; Wang, N.; Li, T.; Guo, H.; Wu, Z.; Zhang, P.; Wang, B.; Li, B. Achieving efficient nitrogen removal in a single-stage partial nitrification-anammox-partial denitrification (PN/A/PD) membrane aerated biofilm reactor (MABR). J. Water Process Eng. 2022, 49, 103100. [Google Scholar] [CrossRef]
- Chen, X.; Yu, W.; Wang, J. Basic Principles and Methods of Fisheries Forecasting; Springer: Singapore, 2022; pp. 109–131. [Google Scholar] [CrossRef]
- Ming, G.; Duan, H.; Meng, X.; Sun, G.; Sun, W.; Liu, Y.; Lucia, L. A novel fabrication of monodisperse melamine–formaldehyde resin microspheres to adsorb lead (II). Chem. Eng. J. 2016, 288, 745–757. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Gil, G.; Kleerebezem, R.; van Aelst, A.; Zoutberg, G.R.; Versprille, A.I.; Lettinga, G. Toxicity effects of formaldehyde on methanol degrading sludge and its anaerobic conversion in biobed® expanded granular sludge bed (EGSB) reactors. Water Sci. Technol. 1999, 40, 195–202. [Google Scholar] [CrossRef]
- Allard, S.; Tan, J.; Joll, C.A.; von Gunten, U. Mechanistic Study on the Formation of Cl-/Br-/I-Trihalomethanes during Chlorination/Chloramination Combined with a Theoretical Cytotoxicity Evaluation. Environ. Sci. Technol. 2015, 49, 11105–11114. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, M.; Chapatwala, K.; Wolfram, J. Degradation of Acetonitrile by Pseudomonas putida. Appl. Environ. Microbiol. 1989, 55, 2267–2274. [Google Scholar] [CrossRef] [Green Version]
- Manolov, T.; Kristina, H.; Guieysse, B. Continuous acetonitrile degradation in packed-bed bioreactor. Appl. Microbiol. Biotechnol. 2005, 66, 567–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz, R.; Jacinto, M.; Guieysse, B.; Mattiasson, B. Combined carbon and nitrogen removal from acetonitrile using algal-bacterial reactors. Appl. Microbiol. Biotechnol. 2005, 67, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Liu, J.; Bai, R.; Wong, F. Membrane-Aerated Biofilm Reactor for the Treatment of Acetonitrile Wastewater. Environ. Sci. Technol. 2008, 42, 2099–2104. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Bai, R.; Ohandja, G.; Liu, J. Biodegradation of acetonitrile by adapted biofilm in a membrane-aerated biofilm reactor. Biodegradation 2009, 20, 569–580. [Google Scholar] [CrossRef]
- Chu, H.; Cao, D.; Dong, B.; Qiang, Z. Bio-diatomite dynamic membrane reactor for micro-polluted surface water treatment. Water Res. 2010, 44, 1573–1579. [Google Scholar] [CrossRef]
- Lapointe, B.E.; Herren, L.W.; Debortoli, D.D.; Vogel, M.A. Evidence of sewage-driven eutrophication and harmful algal blooms in Florida’s Indian River Lagoon. Harmful Algae 2015, 43, 82–102. [Google Scholar] [CrossRef]
- Liang, Z.; Siegert, M.; Wenwen, F.; Sun, Y.; Jiang, F.; Lu, H.; Chen, G.H.; Wang, S. Blackening and Odorization of Urban Rivers: A bio-geochemical process. FEMS Microbiol. Ecol. 2017, 94, fix180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, M.; Joshi, H. A review on green technologies for the rejuvenation of polluted surface water bodies: Field-scale feasibility, challenges, and future perspectives. J. Environ. Chem. Eng. 2021, 9, 105763. [Google Scholar] [CrossRef]
- Gao, H.; Xie, Y.; Hashim, S.; Akhtar Khan, A.; Wang, X.; Xu, H. Application of Microbial Technology Used in Bioremediation of Urban Polluted River: A Case Study of Chengnan River, China. Water 2018, 10, 643. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Chen, M.; Zheng, J.; Li, Z.; Tian, C.; Wang, Q.; Wang, Z. Efficacy of a novel electrochemical membrane-aerated biofilm reactor for removal of antibiotics from micro-polluted surface water and suppression of antibiotic resistance genes. Bioresour. Technol. 2021, 338, 125527. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Wang, H.; Tian, Y.; Liu, X.; Yang, Y.; Zhu, L.; Yan, S.; Liu, G. Treatment of polluted surface water with nylon silk carrier-aerated biofilm reactor (CABR). Bioresour. Technol. 2019, 289, 121617. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Guo, J.; Xie, G.-J.; Liu, Y.; Yuan, Z.; Ni, B.-J. A New Approach to Simultaneous Ammonium and Dissolved Methane Removal from Anaerobic Digestion Liquor: A Model-Based Investigation of Feasibility. Water Res. 2015, 85, 295–303. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Qiang, Z.; Li, T.; Jin, H.; Chen, W. Effect of artificial aeration on the performance of vertical-flow constructed wetland treating heavily polluted river water. J. Environ. Sci. 2012, 24, 596–601. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, C.N.; Yong, R.N.; Gibbs, B.F. An evaluation of technologies for the heavy metal remediation of dredged sediments. J. Hazard. Mater. 2001, 85, 145–163. [Google Scholar] [CrossRef]
- Ma, X.; Wang, Y.; Feng, S.; Wang, S. Comparison of four flocculants for removing algae in Dianchi Lake. Environ. Earth Sci. 2015, 74, 3795–3804. [Google Scholar] [CrossRef]
- Ning, D.; Huang, Y.; Pan, R.; Wang, F.; Wang, H. Effect of eco-remediation using planted floating bed system on nutrients and heavy metals in urban river water and sediment: A field study in China. Sci. Total Environ. 2014, 485–486, 596–603. [Google Scholar] [CrossRef]
- Lu, C.; Cheng, W.; Wang, M.; Zhou, Z. Combining artificial aeration and biological zeolite mulch for nitrogen removal from eutrophic water bodies. Water Pract. Technol. 2020, 15, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Tabassum, S. A combined treatment method of novel Mass Bio System and ion exchange for the removal of ammonia nitrogen from micro-polluted water bodies. Chem. Eng. J. 2019, 378, 122217. [Google Scholar] [CrossRef]
- De Oliveira, M.; Atalla, A.A.; Frihling, B.E.F.; Cavalheri, P.S.; Migliolo, L.; Filho, F.J.C.M. Ibuprofen and caffeine removal in vertical flow and free-floating macrophyte constructed wetlands with Heliconia rostrata and Eichornia crassipes. Chem. Eng. J. 2019, 373, 458–467. [Google Scholar] [CrossRef]
- Fang, T.; Bao, S.; Sima, X.; Jiang, H.; Zhu, W.; Tang, W. Study on the application of integrated eco-engineering in purifying eutrophic river waters. Ecol. Eng. 2016, 94, 320–328. [Google Scholar] [CrossRef]
- Princic, A.; Mahne, I.I.; Megušar, F.; Paul, E.; Tiedje, J. Effects of pH and Oxygen and Ammonium Concentrations on the Community Structure of Nitrifying Bacteria from Wastewater. Appl. Environ. Microbiol. 1998, 64, 3584–3590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simek, M.; Jišová, L.; Hopkins, D. What is the so-called optimum pH for denitrification in soil? Soil Biol Biochem. Soil Biol. Biochem. 2002, 34, 1227–1234. [Google Scholar] [CrossRef]
- Matsumoto, S.; Terada, A.; Tsuneda, S. Modeling of membrane-aerated biofilm: Effects of C/N ratio, biofilm thickness and surface loading of oxygen on feasibility of simultaneous nitrification and denitrification. Biochem. Eng. J. 2007, 37, 98–107. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, P.; Li, G.; Yin, J.; Li, J.; Zhao, X. Effect of COD/N ratio on nitrogen removal in a membrane-aerated biofilm reactor. Int. Biodeterior. Biodegrad. 2016, 113, 74–79. [Google Scholar] [CrossRef]
- Liao, B.Q.; Liss, S. A comparative study between thermophilic and mesophilic membrane aerated biofilm reactors. J. Environ. Eng. Sci. 2011, 6, 247–252. [Google Scholar] [CrossRef]
- Cao, C.; Zhao, L.; Xu, D.; Geng, Q. Membrane-Aerated Biofilm Reactor Behaviors for the Treatment of High-Strength Ammonium Industrial Wastewater. Chem. Eng. Technol. 2009, 32, 613–621. [Google Scholar] [CrossRef]
- Antoniou, P.; Hamilton, J.; Koopman, B.; Jain, R.; Holloway, B.; Lyberatos, G.; Svoronos, S.A. Effect of temperature and ph on the effective maximum specific growth rate of nitrifying bacteria. Water Res. 1990, 24, 97–101. [Google Scholar] [CrossRef]
- Kim, B.; Nerenberg, R. Effects of eukaryotic predation on nitrifying MABR biofilms. Water Res. 2022, 209, 117911. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Huerta, C.; Fortunato, L.; Leiknes, T.; Hong, P.Y. Influence of biofilm thickness on the removal of thirteen different organic micropollutants via a Membrane Aerated Biofilm Reactor (MABR). J. Hazard. Mater. 2022, 432, 128698. [Google Scholar] [CrossRef] [PubMed]
- Stenstrom, M.K.; Poduska, R.A. The effect of dissolved oxygen concentration on nitrification. Water Res. 1980, 14, 643–649. [Google Scholar] [CrossRef]
- Tan, C.; Ma, F.; Li, A.; Qiu, S.; Li, J. Evaluating the Effect of Dissolved Oxygen on Simultaneous Nitrification and Denitrification in Polyurethane Foam Contact Oxidation Reactors. Water Environ. Res. Res. Publ. Water Environ. Fed. 2013, 85, 195–202. [Google Scholar] [CrossRef]
- Taşkan, B.; Taşkan, E.; Hasar, H. New quorum quenching bacteria for controlling biofilm thickness in the membrane aerated biofilm reactor. Process Saf. Environ. Prot. 2022, 165, 57–65. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, T.; Ren, S.; Zhao, T.; Chai, H.; Xu, Y.; Peng, L.; Liu, Y. Contribution of nitrification and denitrification to nitrous oxide turnovers in membrane-aerated biofilm reactors (MABR): A model-based evaluation. Sci. Total Environ. 2022, 806, 151321. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Bao, D.; Zhang, Y.; Xu, W.; Zhang, C.; Yang, H.; Ru, Q.; Wang, Y.-f.; Ma, H.; Zhu, E.; et al. Development and Application of Membrane Aerated Biofilm Reactor (MABR)—A Review. Water 2023, 15, 436. https://doi.org/10.3390/w15030436
Li X, Bao D, Zhang Y, Xu W, Zhang C, Yang H, Ru Q, Wang Y-f, Ma H, Zhu E, et al. Development and Application of Membrane Aerated Biofilm Reactor (MABR)—A Review. Water. 2023; 15(3):436. https://doi.org/10.3390/w15030436
Chicago/Turabian StyleLi, Xiaolin, Dongguan Bao, Yaozhong Zhang, Weiqing Xu, Chi Zhang, Heyun Yang, Qiujin Ru, Yi-fan Wang, Hao Ma, Ershuai Zhu, and et al. 2023. "Development and Application of Membrane Aerated Biofilm Reactor (MABR)—A Review" Water 15, no. 3: 436. https://doi.org/10.3390/w15030436
APA StyleLi, X., Bao, D., Zhang, Y., Xu, W., Zhang, C., Yang, H., Ru, Q., Wang, Y. -f., Ma, H., Zhu, E., Dong, L., Li, L., Li, X., Qiu, X., Tian, J., & Zheng, X. (2023). Development and Application of Membrane Aerated Biofilm Reactor (MABR)—A Review. Water, 15(3), 436. https://doi.org/10.3390/w15030436