Estimation of Actual Evapotranspiration Using Satellite-Based Surface Energy Balance Derived from Landsat Imagery in Northern Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Satellite Imagery
2.2.2. Meteorological Data
2.2.3. Geographic Information System (GIS) Data
2.2.4. Soil Sampling
2.2.5. Water Use and Water Measurement in the Testing Area
2.3. Software
2.4. Overview of Methods
2.4.1. METRIC Model
2.4.2. Reference Evapotranspiration Calculation
2.4.3. Dual-Crop Coefficient Approach
2.4.4. Estimation of Actual Evapotranspiration Based on the METRIC Model
Calculation of the Reference ET
METRIC Model Processing
Filling Image Gaps and Interpolation of the Daily Image
Spatiotemporal Distribution of ETa for Various Land Use Types
2.4.5. Evaluation of the Actual Evapotranspiration
3. Results and Discussion
3.1. Evaluation of the Actual Evapotranspiration
3.1.1. Analysis of the Crop Growth Period in the Testing Area during the Dry Season
3.1.2. Comparison of Actual Evapotranspiration Obtained from the METRIC Model and FAO-56 Method
3.2. Spatiotemporal Distribution of the Actual Evapotranspiration for Various Land Use Types
3.2.1. Temporal Variation of the Actual Evapotranspiration
3.2.2. Spatial Distribution of the Actual Evapotranspiration
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Takeshima, H.; Joshi, P.K. Overview of the Agricultural Modernization in Southeast Asia; IFPRI Discussion Paper 1819; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2019. [Google Scholar] [CrossRef]
- Association of Southeast Asian Nations. ASEAN Statistical Yearbook 2020. 2021. Available online: https://aseandse.org/wp-content/uploads/2021/02/ASYB_2020.pdf (accessed on 30 October 2021).
- Altendorf, S. Minor Tropical Fruits (Mainstreaming a Niche Market). Food Outlook 2018, 8, 67–75. Available online: http://www.fao.org/fileadmin/templates/est/COMM_MARKETS_MONITORING/Tropical_Fruits/Documents/Minor_Tropical_Fruits_FoodOutlook_1_2018.pdf (accessed on 21 March 2022).
- Mancosu, N.; Snyder, R.L.; Kyriakakis, G.; Spano, D. Water scarcity and future challenges for food production. Water 2015, 7, 975–992. [Google Scholar] [CrossRef]
- Spreer, W.; Schulze, K.; Ongprasert, S.; Wiriya-Alongkorn, W.; Müller, J. Mango and longan production in northern Thailand: The role of water saving irrigation and water stress monitoring. In Sustainable Land Use and Rural Development in Southeast Asia: Innovations and Policies for Mountainous Areas; Fröhlich, H.L., Schreinemachers, P., Stahr, K., Clemens, G., Eds.; Springer Environmental Science and Engineering; Springer: Berlin, Germany, 2013; pp. 215–228. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109.
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag 2011, 98, 899–920. [Google Scholar] [CrossRef] [Green Version]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing Surface Energy Balance Algorithm for Land (SEBAL). J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Allen, R.G.; Irmak, A.; Trezza, R.; Hendrickx, J.M.H.; Bastiaanssen, W.; Kjaersgaard, J. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrol. Process 2011, 25, 4011–4027. [Google Scholar] [CrossRef]
- Zheng, C.; Jia, L.; Hu, G.; Lu, J. Earth observations-based evapotranspiration in northeastern Thailand. Remote Sens. 2019, 11, 138. [Google Scholar] [CrossRef] [Green Version]
- Sriwongsitanon, N.; Suwawong, T.; Thianpopirug, S.; Williams, J.; Jia, J.; Bastiaanssen, W. Validation of seven global remotely sensed ET products across Thailand using water balance measurements and land use classifications. J. Hydrol. Reg. Stud. 2020, 30, 100709. [Google Scholar] [CrossRef]
- Kosa, P.; Pongput, K.; Nontananandh, S.; Khobklag, P. Spatial and temporal distribution of irrigation requirements in the Chao Phraya River Basin, Thailand. Kasetsart J. Nat. Sci. 2008, 42, 758–766. [Google Scholar]
- Maskong, H.; Kosa, P.; Jothityangkoon, C. Estimation of evapotranspiration in Lam Ta Kong Basin using Surface Energy Balance Algorithm for Land (SEBAL) Model. In Proceedings of the THA 2015 International Conference on Climate Change and Water & Environment Management in Monsoon Asia, Bangkok, Thailand, 28–30 January 2015. [Google Scholar]
- Paço, T.A.; Pôças, I.; Cunha, M.; Silvestre, J.C.; Santos, F.L.; Paredes, P.; Pereira, L.S. Evapotranspiration and crop coefficients for a super intensive olive orchard. An Application of SIMDualKc and METRIC models using ground and satellite observations. J. Hydrol. 2014, 519, 2067–2080. [Google Scholar] [CrossRef] [Green Version]
- Tasumi, M. Estimating evapotranspiration using METRIC Model and Landsat data for better understandings of regional hydrology in the Western Urmia lake basin. Agric. Water Manag 2019, 226, 105805. [Google Scholar] [CrossRef]
- Jensen, M.E.; Allen, R.G. Evaporation, Evapotranspiration, and Irrigation Water Requirements, 2nd ed.; American Society of Civil Engineers: Reston, VA, USA, 2016. [Google Scholar]
- HAII. Data Warehouse System Development Project of 25 Basin and Flood and Drought Modeling: Ping Basin. [in Thai]. 2012. Available online: https://tiwrm.hii.or.th/web/attachments/25basins/06-ping.pdf (accessed on 31 October 2021).
- Supriyasilp, T.; Pongput, K.; Boonyanupong, S.; Suwanlertcharoen, T. Enhanced water management for Muang Fai irrigation systems through remote sensing and SWOT analysis. Water Resour Manag. 2021, 35, 263–277. [Google Scholar] [CrossRef]
- Supriyasilp, T.; Pongput, K. Water Balance Model as a tool for building participation and joint water use promotion at the river basin level. Irrig. Drain 2021, 70, 254–268. [Google Scholar] [CrossRef]
- Tasumi, M. Progress in Operational Estimation of Regional Evapotranspiration Using Satellite Imagery. PhD Dissertation, University of Idaho, Moscow, Russia, 2003. [Google Scholar]
- Allen, R.G.; Burnett, B.; Kramber, W.; Huntington, J.; Kjaersgaard, J.; Kilic, A.; Kelly, C.; Trezza, R. Automated calibration of the METRIC-Landsat Evapotranspiration Process. J. Am. Water Resour. Assoc. 2013, 49, 563–576. [Google Scholar] [CrossRef]
- Pereira, L.S.; Paredes, P.; López-Urrea, R.; Hunsaker, D.J.; Mota, M.; Mohammadi Shad, Z. Standard single and basal crop coefficients for vegetable crops, an Update of FAO56 Crop Water Requirements Approach. Agric. Water Manag. 2021, 243, 106196. [Google Scholar] [CrossRef]
- Rosa, R.D.; Paredes, P.; Rodrigues, G.C.; Fernando, R.M.; Alves, I.; Pereira, L.S.; Allen, R.G. Implementing the dual crop coefficient approach in interactive software: 2. Model Testing. Agricultural Water Manag. 2012, 103, 62–77. [Google Scholar] [CrossRef]
- Mkhwanazi, M.; Chávez, J.L.; Andales, A. SEBAL-a: A remote sensing ET algorithm that accounts for advection with limited data. Part I: Development and Validation. Remote Sens. 2015, 7, 15046–15067. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Bali, K.M.; Light, S.; Hessels, T.; Kisekka, I. 2020. Evaluation of remote sensing-based evapotranspiration models against surface renewal in almonds, tomatoes and maize. Agric. Water Manag. 2020, 238, 106228. [Google Scholar] [CrossRef]
- Liu, W.; Hong, Y.; Khan, S.I.; Huang, M.; Vieux, M.; Caliskan, S.; Grout, T. Actual evapotranspiration estimation for different land use and land cover in urban regions using Landsat 5 data. J. Appl. Remote Sens. 2010, 4, 041873. [Google Scholar] [CrossRef]
- Khand, K.; Numata, I.; Kjaersgaard, J.; Vourlitis, G.L. Dry season evapotranspiration dynamics over human-impacted landscapes in the Southern Amazon using the Landsat-based METRIC Model. Remote Sens. 2017, 9, 706. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Xiong, Y.; Tian, J.; Tan, Z. Spatiotemporal changes in evapotranspiration from an overexploited water resources basin in arid northern China and their implications for ecosystem management. Sustainability 2019, 11, 445. [Google Scholar] [CrossRef] [Green Version]
Dry Season in Year 2018 | Dry Season in Year 2019 | Dry Season in Year 2020 | ||||||
---|---|---|---|---|---|---|---|---|
Date | Day of Year (DOY) | Time of Acquisition (hh:mm:ss) [UTC+7] | Date | Day of Year (DOY) | Time of Acquisition (hh:mm:ss) [UTC+7] | Date | Day of Year (DOY) | Time of Acquisition (hh:mm:ss) [UTC+7] |
22 Oct 2017 | 295 | 10:49:14 | 9 Oct 2018 | 282 | 10:48:44 | 12 Oct 2019 | 285 | 10:49:19 |
9 Dec 2017 | 343 | 10:49:04 | 25 Oct 2018 | 298 | 10:48:49 | 28 Oct 2019 | 301 | 10:49:19 |
25 Dec 2017 | 359 | 10:49:07 | 26 Nov 2018 | 330 | 10:48:51 | 13 Nov 2019 | 317 | 10:49:17 |
10 Jan 2018 | 10 | 10:49:01 | 28 Dec 2018 | 362 | 10:48:48 | 29 Nov 2019 | 333 | 10:49:15 |
26 Jan 2018 | 26 | 10:48:52 | 13 Jan 2019 | 13 | 10:48:46 | 15 Dec 2019 | 349 | 10:49:13 |
11 Feb 2018 | 42 | 10:48:45 | 29 Jan 2019 | 29 | 10:48:42 | 31 Dec 2019 | 365 | 10:49:09 |
27 Feb 2018 | 58 | 10:48:39 | 14 Feb 2019 | 45 | 10:48:40 | 16 Jan 2020 | 16 | 10:49:06 |
15 Mar 2018 | 74 | 10:48:30 | 2 Mar 2019 | 61 | 10:48:36 | 1 Feb 2020 | 32 | 10:49:01 |
31 Mar 2018 | 90 | 10:48:23 | 18 Mar 2019 | 77 | 10:48:31 | 17 Feb 2020 | 48 | 10:48:57 |
16 Apr 2018 | 106 | 10:48:14 | 3 Apr 2019 | 93 | 10:48:28 | 4 Mar 2020 | 64 | 10:48:52 |
18 May 2018 | 138 | 10:47:54 | 19 Apr 2019 | 109 | 10:48:22 | 20 Mar 2020 | 80 | 10:48:45 |
3 Jun 2018 | 154 | 10:47:43 | 5 May 2019 | 125 | 10:48:23 | 5 Apr 2020 | 96 | 10:48:35 |
21 May 2019 | 141 | 10:48:33 | 21 Apr 2020 | 112 | 10:48:29 | |||
6 Jun 2019 | 157 | 10:48:42 | 7 May 2020 | 128 | 10:48:20 | |||
23 May 2020 | 144 | 10:48:22 |
Plot Name | Soil Texture | Sand (%) | Silt (%) | Clay (%) | Rock (%) | Location |
---|---|---|---|---|---|---|
A1_Rice | Loam | 49.3 | 33.7 | 17 | 7.87 | 18°24′48.1″ N, 98°40′44.1″ E |
A2_Rice | Sandy Loam | 64 | 19 | 17 | 18.24 | 18°24′16.2″ N, 98°41′01.1″ E |
A4_Longan | Sandy Clay Loam | 45.8 | 25 | 29.2 | 15.4 | 18°23′48.2″ N, 98°41′24.3″ E |
A5_Rice | Sandy Loam | 64 | 22.8 | 13.2 | 0.14 | 18°23′51.4″ N, 98°41′11.0″ E |
A6_Longan | Sandy Loam | 67.9 | 20.6 | 11.5 | 0.77 | 18°23′17.4″ N, 98°41′05.4″ E |
Dataset | Description | Source |
---|---|---|
Satellite imagery | Landsat-8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) images with 30 m spatial resolution were collected from level-1 products with terrain precision correction (L1TP) | USGS Earth Explorer (https://earthexplorer.usgs.gov/) (accessed on 3 January 2013) |
Meteorological data | The Automatic Weather System (AWS) from the Lamphun station records meteorological data every 10 min, including the precipitation, air temperature, wind speed, relative humidity, and atmospheric pressure. In addition, precipitation data were collected at the Chom Thong station. | Thailand Meteorological Department |
Digital Elevation Model (DEM) | Shuttle Radar Topography Mission (SRTM) data with 30 m spatial resolution | USGS Earth Resources Observation and Science (EROS) Centre |
Land Use | GIS data regarding land-use classification at 1:25,000 scale | Land Development Department, Thailand |
Irrigated Area | GIS data of irrigated area at 1:50,000 scale | Royal Irrigation Department, Thailand |
Soil Sampling | Soil properties for each plot in testing area | Soil samples were taken from sample plots in testing area |
Water Use and Water Measurement | Water supplied from various sources and the flow data observed in the dry season were measured from 21 March to 15 May 2019 in testing area | According to Supriyasilp and Pongput [20] |
Software | Capabilities |
---|---|
ArcGIS 10.3.1 | Image processing, spatial analysis, spatial statistics, mapping, visualisation, and exploration for estimation of satellite-based ETa. |
SIMDualKc | Estimation of ETa using the FAO-56 dual-crop coefficient method. |
REF-ET | Calculation of the reference ET. |
DATimeS | Fill data gaps and generate the time series of daily ETrF and NDVI image using the cubic spline interpolation method. |
Plot Name | Seasonal Duration | Cumulative ETa (SIMDualKc) | Cumulative ETa (METRIC) | Percentage Difference (%) |
---|---|---|---|---|
A1_Rice | 11/01/2019 to 11/05/2019 | 549.96 | 530.68 | 3.57 |
A2_Rice | 17/10/2018 to 14/02/2019 | 328.14 | 318.85 | 2.87 |
A5_Rice | 02/10/2018 to 29/01/2019 | 313.68 | 310.78 | 0.93 |
A4_Longan | 01/11/2018 to 31/05/2019 | 817.99 | 755.14 | 7.99 |
A6_Longan | 01/11/2018 to 31/05/2019 | 872.40 | 845.93 | 3.08 |
Sum | 2882.17 | 2761.38 | 4.28 |
Date | ETa (mm) | ETr (mm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Paddy Field | Field Crop | Miscellaneous Land | Urban and Built-Up Land | Perennial Tree | Orchard | Horticulture | Forestland | Waterbody | ||
2017/10/01 to 2017/10/31 | 82.16 | 100.69 | 110.94 | 59.45 | 88.68 | 80.01 | 107.76 | 132.36 | 90.09 | 110.09 |
2017/11/01 to 2017/11/30 | 58.76 | 82.01 | 94.47 | 50.56 | 67.52 | 62.10 | 95.66 | 113.74 | 66.14 | 93.51 |
2017/12/01 to 2017/12/31 | 55.06 | 85.99 | 98.18 | 62.87 | 76.20 | 74.17 | 97.97 | 117.83 | 86.48 | 87.71 |
2018/01/01 to 2018/01/31 | 57.93 | 94.99 | 114.70 | 65.35 | 86.50 | 84.99 | 111.73 | 141.24 | 120.49 | 94.61 |
2018/02/01 to 2018/02/28 | 60.37 | 81.20 | 105.68 | 58.78 | 75.21 | 75.29 | 104.76 | 130.49 | 125.54 | 115.45 |
2018/03/01 to 2018/03/31 | 58.15 | 66.96 | 102.36 | 44.70 | 59.66 | 59.46 | 103.86 | 128.14 | 134.18 | 170.43 |
2018/04/01 to 2018/04/30 | 55.86 | 65.24 | 101.39 | 43.65 | 64.16 | 61.37 | 100.17 | 135.63 | 136.11 | 170.84 |
2018/05/01 to 2018/05/31 | 83.67 | 112.58 | 137.49 | 73.51 | 122.52 | 105.04 | 128.70 | 171.64 | 157.21 | 165.49 |
Sum | 511.96 | 689.66 | 865.22 | 458.86 | 640.44 | 602.44 | 850.61 | 1071.07 | 916.24 | 1008.13 |
2018/10/01 to 2018/10/31 | 69.31 | 106.17 | 110.40 | 46.62 | 81.18 | 66.75 | 104.69 | 135.40 | 82.59 | 113.48 |
2018/11/01 to 2018/11/30 | 73.95 | 120.14 | 118.28 | 73.29 | 110.63 | 87.86 | 110.60 | 138.60 | 108.19 | 98.85 |
2018/12/01 to 2018/12/31 | 59.08 | 97.38 | 103.05 | 66.00 | 85.42 | 78.75 | 99.61 | 118.51 | 107.29 | 87.05 |
2019/01/01 to 2019/01/31 | 54.90 | 97.24 | 109.97 | 56.14 | 75.00 | 76.20 | 109.45 | 132.00 | 104.14 | 94.61 |
2019/02/01 to 2019/02/28 | 75.85 | 93.41 | 116.08 | 64.75 | 73.26 | 82.40 | 115.02 | 136.79 | 139.07 | 131.77 |
2019/03/01 to 2019/03/31 | 85.97 | 85.84 | 122.92 | 61.86 | 64.40 | 78.04 | 126.09 | 150.08 | 180.29 | 187.3 |
2019/04/01 to 2019/04/30 | 130.36 | 112.32 | 158.11 | 98.47 | 102.09 | 115.45 | 157.23 | 192.03 | 243.42 | 204.21 |
2019/05/01 to 2019/05/31 | 62.72 | 77.75 | 112.59 | 54.62 | 73.67 | 74.14 | 115.71 | 142.46 | 135.50 | 195.71 |
Sum | 612.12 | 790.25 | 951.39 | 521.76 | 665.64 | 659.61 | 938.39 | 1145.86 | 1100.51 | 1112.98 |
2019/10/01 to 2019/10/31 | 62.87 | 135.57 | 135.65 | 58.85 | 99.81 | 86.35 | 132.89 | 162.87 | 109.69 | 122.6 |
2019/11/01 to 2019/11/30 | 30.89 | 96.78 | 98.67 | 33.02 | 59.62 | 53.43 | 100.11 | 123.53 | 80.28 | 102.56 |
2019/12/01 to 2019/12/31 | 40.72 | 111.45 | 115.91 | 53.59 | 75.11 | 76.43 | 113.05 | 144.65 | 107.28 | 93.48 |
2020/01/01 to 2020/01/31 | 64.52 | 112.37 | 122.14 | 73.67 | 81.74 | 89.80 | 118.96 | 141.63 | 144.87 | 103.02 |
2020/02/01 to 2020/02/29 | 73.67 | 109.83 | 123.24 | 78.23 | 79.84 | 90.00 | 123.06 | 140.18 | 165.74 | 135.31 |
2020/03/01 to 2020/03/31 | 102.99 | 146.18 | 163.38 | 104.62 | 113.16 | 118.19 | 168.52 | 186.89 | 236.65 | 202.05 |
2020/04/01 to 2020/04/30 | 63.60 | 98.44 | 114.31 | 69.98 | 72.10 | 79.62 | 116.91 | 139.14 | 173.38 | 198.4 |
2020/05/01 to 2020/05/31 | 78.55 | 131.83 | 146.53 | 81.23 | 106.80 | 111.51 | 145.43 | 179.62 | 168.32 | 198.77 |
Sum | 517.80 | 942.44 | 1,019.84 | 553.19 | 688.18 | 705.33 | 1018.92 | 1218.52 | 1186.20 | 1156.19 |
Average seasonal of ETa (2018–2020) | 547.29 | 807.45 | 945.48 | 511.27 | 664.76 | 655.79 | 935.97 | 1145.15 | 1067.65 | 1092.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suwanlertcharoen, T.; Chaturabul, T.; Supriyasilp, T.; Pongput, K. Estimation of Actual Evapotranspiration Using Satellite-Based Surface Energy Balance Derived from Landsat Imagery in Northern Thailand. Water 2023, 15, 450. https://doi.org/10.3390/w15030450
Suwanlertcharoen T, Chaturabul T, Supriyasilp T, Pongput K. Estimation of Actual Evapotranspiration Using Satellite-Based Surface Energy Balance Derived from Landsat Imagery in Northern Thailand. Water. 2023; 15(3):450. https://doi.org/10.3390/w15030450
Chicago/Turabian StyleSuwanlertcharoen, Teerawat, Thodsapol Chaturabul, Thanaporn Supriyasilp, and Kobkiat Pongput. 2023. "Estimation of Actual Evapotranspiration Using Satellite-Based Surface Energy Balance Derived from Landsat Imagery in Northern Thailand" Water 15, no. 3: 450. https://doi.org/10.3390/w15030450
APA StyleSuwanlertcharoen, T., Chaturabul, T., Supriyasilp, T., & Pongput, K. (2023). Estimation of Actual Evapotranspiration Using Satellite-Based Surface Energy Balance Derived from Landsat Imagery in Northern Thailand. Water, 15(3), 450. https://doi.org/10.3390/w15030450