Assessing Climate and Human Activity Effects on Hypersaline Lake Ecosystem: Case Study of Saki Lake, Crimea
Abstract
:1. Introduction
- To analyze the seasonal climate changes in the area of Saki Lake (Easter basin) in 2022;
- To reveal the seasonal fluctuations of physicochemical parameters of brine;
- To determine daily fluctuations of temperature and carbon-bearing gases in the different layers of the lake water column;
- To analyze seasonal dynamics of Artemia population.
2. Materials and Methods
2.1. Sampling Site
2.2. Methods
2.2.1. Meteorological Characteristics
2.2.2. Hydrochemical Parameters
2.2.3. Telemetry Measuring System
2.2.4. Determination of Brine Shrimp Artemia and Its Population Dynamics
2.3. Statistical Analysis
3. Results
3.1. Seasonal Dynamics of Weather Characteristics near Saki Lake
3.2. Seasonal Dynamics of Some Hydrochemical Characteristics of Water in Saki Lake in 2022
3.3. Telemetry Measurement Results in 2022
3.4. Seasonal Variations of Brine Shrimp Artemia Population
4. Discussion
5. Conclusions
- To obtain continuous time series for the water quality parameters (historical data), inflows, outflows, ground waters, and meteorological parameters during the long time period in order to develop a water quality model;
- To provide a statistically proven and robust technique capable of selecting the environmental variables that most impact greenhouse gases in salt lakes;
- To receive information on the variability of salt concentrations with different kinds of ions, which are changed annually, seasonally and even daily. For this purpose, the monitoring systems in real time are required.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jellison, R.; Williams, W.D.B.; Timms, B.; Aladin, N.V. Salt lakes: Values, threats, and future. In Aquatic Ecosystems: Trends and Global Prospects; Cambridge University Press: Cambridge, UK, 2008; pp. 94–110. [Google Scholar]
- Wurtsbaugh, W.A.; Miller, C.; Null, S.E.; DeRose, R.J.; Wilcock, P.; Hahnenberger, F.; Howe, M.; Moore, J. Decline of the world saline lakes. Nat. Geosci. 2017, 10, 816–821. [Google Scholar] [CrossRef]
- Ioannidou, I.; Manolaki, P.; Litskas, V.D.; Vogiatzakis, I.N. Temporary Salt Lakes: Ecosystem Services Shift in a Ramsar Site Over a 50-Year Period. Front. Ecol. Evol. 2021, 9, 662107. [Google Scholar] [CrossRef]
- Wooldridge, J.B.; Adams, K.M.; Fernandes, M. Biotic responses to extreme hypersalinity in an arid zone estuary. S. Afr. J. Bot. 2016, 107, 160–169. [Google Scholar] [CrossRef]
- Shadkam, F.; Ludwig, T.H.; van Vliet, A.; Pastor, G.; Kabat, P. Preserving the world second largest hypersaline lake under future irrigation and climate change. Sci. Total Environ. 2016, 559, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Gulov, O.A. Ecocyde of Crimean Salt Lakes. In Lema, Theory and Practice of Recovery of Internal Lakes; Lema: St. Petersburg, Russia, 2007; pp. 60–78. (In Russian) [Google Scholar]
- Blomqvist, S.; Gunnars, A.; Elmgren, R. Why the limiting nutrient differs between temperate coastal seas and freshwater lakes: A matter of salt. Limnol. Oceanog. 2004, 49, 2236–2241. [Google Scholar] [CrossRef]
- Chapra, S.C.; Dove, A.; Warren, G.T.J. Long-Term trends of Great Lakes Major ion chemistry. J. Great Lakes Res. 2012, 38, 550–560. [Google Scholar] [CrossRef]
- Lazar, V.; Iordache, C.; Ditu, L.M.; Holban, A.; Gheorghe, I.; Marinescu, F.; Ilie, M.A.; Ivanov, A.; Dobre, D.; Chifiriuc, M. Physico-chemical and microbiological assessment of organic pollution in Play Salty lakes from protected regions. J. Environ. Protect. 2017, 8, 1474–1489. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chang, F.; Zhang, X.; Li, D.; Liu, Q.; Liu, F.; Zhang, H. Release of Endogenous Nutrients Drives the Transformation of Nitrogen and Phosphorous in the Shallow Plateau of Lake Jian in Southwestern China. Water 2022, 14, 2624. [Google Scholar] [CrossRef]
- Tusupova, K.; Peder Hjorth, A.; Morave, M. Drying lakes: A review on the applied restoration strategies and health conditions in contiguous areas. Water 2020, 12, 749. [Google Scholar] [CrossRef] [Green Version]
- Williams, W.D. Environmental threats to salt lakes and the likely status of inland saline ecosystems in 2025. Environ. Conservat. 2002, 29, 154–167. [Google Scholar] [CrossRef] [Green Version]
- Moiseenko, T.I. Evolution of biogeochemical cycles under anthropogenic loads: Limits impacts. Geochem. Int. 2017, 55, 841–860. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, J.; Tang, X.; Wang, Z.; Wu, J. A pilot–scale forward osmosis membrane system for concentrating low-strength municipal wastewater: Performance and implications. Sci. Rep. 2016, 6, 21653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Chen, Z.; Guan, Y.; Xu, S. Role and application of iron in water treatment for nitrogen removal: A review. Chemosphere 2018, 204, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Xu, C.-C.; Ridoutt, B.G.; Wang, X.-C.; Ren, P.-A. Nitrogen and phosphorus losses and eu-trophication potential associated with fertilizer application to cropland in China. J. Clean. Prod. 2017, 159, 171–179. [Google Scholar] [CrossRef]
- Bamba, D.; Coulibaly, M.; Robert, D. Nitrogen–containing organic compounds: Origins, toxicity and conditions of their photocatalytic mineralization over TiO2. Sci. Total Environ. 2017, 580, 1489–1504. [Google Scholar] [CrossRef]
- Jackson, R.B.; Le Quere, C.; Andrew, R.M.; Canadell, J.G.; Peters, G.P.; Roy, J.; Wu, L. Warning signs for stabilizing global CO2 emissions. Environ. Res. Lett. 2017, 12, 110202. [Google Scholar] [CrossRef] [Green Version]
- Dean, J.F.; Middelburg, J.J.; Röckmann, T.; Aerts, R.; Blauw, L.G.; Egger, M.; Jetten, M.M.S.; de Jong, A.E.E.; Meisel, O.H.; Rasigraf, O.; et al. Methane Feedbacks to the Global Climate System in a Warmer World. Rev. Geophysics 2018, 56, 207–250. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Wang, M.; Ya, M.; Xu, C. The denitrifying anaerobic methane oxidation process and microorganisms in the environments: A review. Front. Mar. Sci. 2022, 9, 1038400. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In IPCC: Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson, D., Arias, P., Bellouin, N., Coppola, E., Jones, R., Krinner, G., Marotzke, J., Naik, V., Palmer, M., Plattner, G., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. [Google Scholar]
- Ge, Y.; Chen, J.; Zhang, P.; Cao, C.; Le, X.; Ai, J.; Zhou, P.; Liang, T. A novel technique for seabed strata deformation in situ monitoring. Front. Mar. Sci. 2022, 9, 987319. [Google Scholar] [CrossRef]
- Wang, S.; Mu, L.; Qin, H.; Wang, L.; Yao, Z.; Zhao, E. The utilization of physically based models and GIS techniques for comprehensive risk assessment of storm surge: A case study of Huizhou. Front. Mar. Sci. 2022, 9, 939380. [Google Scholar] [CrossRef]
- Ponizovsky, A.M. Salt Resources of Crimea; Crimea: Simferopol, Russia, 1965; 164p. (In Russian) [Google Scholar]
- Moiseenko, T.I.; Gashkina, N.A. Formation of Chemical Composition of Lacustrine Waters under Environmental Changes. Nauka: Moscow, Nauka, 2010; 267p. (In Russian) [Google Scholar]
- Chaban, V.V. Influence of the anthropogenic changes of geological environment on the ecological state of the salt Saki Lake. Proc. Dnepropetr. Natl. Univ. Ser. Geol. Geogr. 2013, 2, 77–84. (In Russian) [Google Scholar]
- Available online: https://nuipogoda.ru/ (accessed on 17 November 2022).
- Litvinenko, L.I.; Litvinenko, A.I.; Boiko, E.G.; Kutcanov, K.V.; Gerasimov, A.G.; Razova, L.F. Influence of the climate change the western Sibiria lakes. Fisheries, Moscow. TSUREN 2018, 6, 52–59. (In Russian) [Google Scholar]
- Rudneva, I.I.; Shaida, V.G.; Scherba, A.V.; Zav’yalov, A.V. Influence of climatic factors on interan-nual and seasonal dynamics of the environmental state of the salt lake Adzhi-Baichi (Crimea). Arid Ecosyst. 2021, 11, 436–442. [Google Scholar] [CrossRef]
- Gaisky, V.A.; Gaisky, P.V. Distributed thermoprofilometers and their capabilities in oceanographic investigations. Phys. Oceanogr. 2001, 11, 543–577. [Google Scholar] [CrossRef]
- Van Stappen, G. Use of cysts. In Manual on the Production and Use of Live Food for Aquaculture; FAO Fisheries Technical Paper, 361; Lavens, P., Sorgeloos, P., Eds.; FAO: Geneva, Switzerland, 1996; pp. 102–123. [Google Scholar]
- Hussein, A.M.; Al-Zubaidi, A.; Naje, A.S.; Al-Ridah, Z.A.; Chabuck, A.; Ali, I.M. A Statistical Technique for Modelling Dissolved Oxygen in Salt Lakes. Cogent Eng. 2021, 8, 1875533. [Google Scholar]
- Tweed, S.; Grace, M.; Leblanc, M.; Cartwright, I.; Smithyman, D. The individual response of saline lakes to a severe drought. Sci. Total Environ. 2011, 409, 3919–3933. [Google Scholar] [CrossRef] [PubMed]
- Khoshnood, S.; Lotfata, A.; Sharifi, A. Unsustainable Anthropogenic Activities: A Paired Watershed Approach of Lake Urmia (Iran) and Lake Van (Turkey). Remote Sens. 2022, 14, 5269. [Google Scholar] [CrossRef]
- Obianyo, J.I. Effect of salinity on evaporation and the water cycle. Emerg. Sci. J. 2019, 3, 255–262. [Google Scholar] [CrossRef]
- Mojtahedi, A.; Dadashzadeh, M.; Azizkhani, M.; Mohammadian, A.; Almasi, R. Assessing climate and human activity effects on lake characteristics using spatio temporal satellite data and an emotional neural network. Environ. Earth Sci. 2022, 81, 61. [Google Scholar] [CrossRef]
- Irwandi, H.; Rosid, M.S.; Mart, T. The effects of ENSO, climate change and human ctivities on the water level of Lake Toba, Indonesia: A critical literature review. Geosci. Lett. 2021, 8, 21. [Google Scholar] [CrossRef]
- Patti, B.; Fiorenti, F.; Fortibuoni, T.; Somarakis, S.; García-Lafuente, J. Editorial: Impacts of envi-ronmental variability related to climate change on biological resources in the Mediterranean. Front. Mar. Sci. 2022, 9, 1059424. [Google Scholar] [CrossRef]
- Ali, M.F.; Salman, A.H.; Guda, M.A.; Abojassim, A.A.; Almayabi, B. The hydro climatic effects of the thermal pollution on surface waters in Iraq and its biological effects. Prensa Med. Argent. 2020, 106, 189–196. [Google Scholar] [CrossRef]
- Plotnikov, I.; Smurov, A.; Aladin, N. Large saline lakes of Central Asia. J. Arid. Land Stud. 2021, 31, 29–44. [Google Scholar]
- Tokoro, T.; Kuwae, T. Airwater CO2 and water-sediment O2 exchanges over a tidal flat in Tokyo Bay. Front. Mar. Sci. 2022, 9, 989270. [Google Scholar] [CrossRef]
- Souza, R.B.; Copertino, M.S.; Fisch, G.; Santini, M.F.; Pinaya, W.H.D.; Furlan, F.M.; Alves, R.C.M.; Möller, O.O.; Pezzi, L.P. Salt marsh atmosphere CO2 exchanges in Patos Lagoon Estuary, Southern Brazil. Front. Mar. Sci. 2022, 9, 892857. [Google Scholar] [CrossRef]
- Rudneva, I.I.; Chaban, V.V.; Golub, M.A.; Shaida, V.G.; Scherba, A.V. Influence of hydrometeoro-logical factors on the ecological state of the hypersaline lake Saki (Crimea) in 2017–2018. Ecosyst. Transform. 2020, 3, 34–47. [Google Scholar] [CrossRef]
- Ezhov, V.V.; Tarasenko, D.N. Secrets of Crimean Health; Biznes-Inform: Simferopol, Russia, 2002. [Google Scholar]
- Hetzel, Y.; Pattiaratchi, C.; Lowe, R.; Hofmeister, R. Wind and tidal mixing controls on stratification and dense water outflows in a large hypersaline bay. J. Geophys. Res. Ocean. 2015, 120, 6034–6056. [Google Scholar] [CrossRef] [Green Version]
- Geldenhuys, C.; Cotiyane, P.; Rajkaran, A. Understanding the creek dynamics and environmental characteristics that determine the distribution of mangrove and saltmarsh communities at Nahoon Estuary. S. Afr. J. Bot. 2016, 107, 137–147. [Google Scholar] [CrossRef]
- Mitchell, S.; Boateng, I.; Couceiro, F. Influence of flushing and other characteristics of coastal lagoons using data from Ghana. Ocean. Coast. Manag. 2017, 143, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Aladin, N.V.; Plotnikov, I.S. The concept of relativity and multiplicity of salinity zones and the form of hydrosphere. Tr. Zool. Inst. Ross. Akad. Nauk. 2013, 3, 7–21. [Google Scholar]
- Hargrave, B.T.; Holmer, M.; Newcombe, C.P. Towards a classification of organic enrichment in marine sediments based on biochemical indicators. Mar. Pollut. Bull. 2008, 56, 810–824. [Google Scholar] [CrossRef]
- Golan, R.; Gavrieli, I.; Ganor, J.; Lazarc, B. Controls on the pH of hyper-saline lakes—A lesson from the Dead Sea, Earth Planet. Sci. Lett. 2016, 434, 289–297. [Google Scholar]
- Li, L.; Song, W.; Deng, C.; Zhang, D.; Ezzati, A.N.; Madzalan, A.; Misman, D.; Nordin, I.N.A.M.; Misned, F.A.; Mortuza, M.G.; et al. Effects of pH and salinity on adsorption of hypersaline photosynthetic microbial mat exopolymers to goethite: A study using a quartz crystal microbalance and fluorescence spectroscopy. Geomicrobiol. J. 2016, 33, 332–337. [Google Scholar] [CrossRef]
- Sirota, I.; Arnon, A.; Lensky, N.G. Seasonal variations of halite saturation in the Dead Sea. Water Resour. Res. 2016, 52, 7151–7162. [Google Scholar] [CrossRef]
- Lu, X.; Lao, Q.; Chen, F.; Zhou, X.; Chen, C.; Zhu, Q. Assessing the sources and dynamics of organic matter in a high human impact bay in the northern Beibu Gulf: Insights from stable isotopes and optical properties. Front. Mar. Sci. 2022, 9, 1043278. [Google Scholar] [CrossRef]
- Madzalan, N.E.A.; Misman, D.; Nordin, I.N.A.M. Real Time Water Quality Monitoring in Lakes with IOT Application. Prog. Eng. Appl. Technol. 2022, 3, 549–558. [Google Scholar]
- Wang, Z.; Luo, P.; Zha, X.; Xu, C.; Kang, S.; Zhou, M.; Nover, D.; Wang, Y. Overview assessment of risk evaluation and treatment technologies for heavy metal pollution of water and soil. J. Cleaner Prod. 2022, 379, 134043. [Google Scholar] [CrossRef]
- Jo, N.; Youn, S.-H.; Joo, H.; Jang, H.K.; Kim, Y.; Park, S.; Kim, J.; Kim, K.; Kang, J.J.; Lee, S.H. Seasonal variations in biochemical (biomolecular and amino acid) compositions and protein quality of particulate organic matter in the Southwestern East Japan Sea. Front. Mar. Sci. 2022, 9, 979137. [Google Scholar] [CrossRef]
- Pepenel, I.; Cracium, N.; Jujea, V.; Florea, A.S.; Pop, C.E.; Stoian, G. Biochemical parameters of salt sapropelic sludge from Buzau County protected area, with different degrees of microbiological attrition. Sci. Ann. Danub. Delta Inst. 2020, 25, 101–111. [Google Scholar]
- Mostofa, K.M.G.; Sakugawa, H.; Yuan, J.; Liu, C.-Q.; Senesi, N.; Mohinuzzaman, M.; Liu, Y.; Yang, X.; Vione, D.; Li, S.-L. Continuous productiondegradation of dissolved organic matter provides signals of biogeochemical processes from terrestrial to marine end-members. Front. Mar. Sci. 2022, 9, 1044135. [Google Scholar] [CrossRef]
- Ye, F.; Guo, W.; Shi, Z.; Jia, G.; Wei, G. Seasonal dynamics of particulate organic matter and its response to flooding in the pearl river estuary, China, revealed by stable isotope (d13C and d15N) analyses. J. Geophys. Res. Ocean 2017, 122, 6835–6856. [Google Scholar] [CrossRef]
- Zhu, W.Z.; Zhang, H.H.; Zhang, J.; Yang, G.P. Seasonal variation in chromophoric dissolved organic matter and relationships among fluorescent components, absorption coefficients and dissolved organic carbon in the Bohai Sea, the Yellow Sea and the East China Sea. J. Mar. Syst. 2018, 180, 9–23. [Google Scholar] [CrossRef]
- Brothers, S. Aquatic Carbon Dynamics in a Time of Global Change Aquatic Carbon Dynamics in a Time of Global Change. Water 2022, 14, 3927. [Google Scholar] [CrossRef]
- Sun, A.; Yang, Q.; Liub, Q.Z.; Chen, H.; Han, L.; Liang, S.M.; Meng, Y.; Bian, Y.; Yang, Y. Distribution of wetlands and salt lakes in the Yadong region of Tibet based on remote sensing and their geo-climatic environmental changes. China Geol. 2022, 5, 637–648. [Google Scholar] [CrossRef]
- Cuosovic, B.; Cigleneckia, I.; Vilicic, D.; Ahela, M. Distribution and Seasonal Variability of Organic Matter in a Small Eutrophicated Salt Lake. Estuar. Coast. Shelf Sci. 2000, 51, 705–715. [Google Scholar] [CrossRef]
- Hu, Z.; Tan, D.; Wen, X.; Chen, B.; Shen, D. Investigation of dynamic lake changes in Zhuonai Lake—Salt Lake Basin, Hoh Xil, using remote sensing images in response to climate change (1989–2018). J. Water Clim. Change 2021, 12, 2199–2216. [Google Scholar] [CrossRef]
- Delju, A.H.A.; Ceylan, A.; Piguet, E.; Rebete, M. Observed climate variability and change in Urmia Lake Basin. Iran Appl. Clim. 2013, 111, 285–296. [Google Scholar] [CrossRef] [Green Version]
- Aslan, H.; Elipek, B.; Gönülal, O.; Baytut, O.; Yusuf Kurt, Y.; İnanmaz, O.E. Gökçeada Salt Lake: A Case Study of Seasonal Dynamics of Wetland Ecological Communities in the Context of Anthropogenic Pressure and Nature Conservation. Wetlands 2021, 41, 23. [Google Scholar] [CrossRef]
- Yakushev, E.V.; Andrulionis, N.Y.; Jafari, M.; Lahijani, H.A.K.; Ghaffari, P. How Climate Change and Human Interaction Alter Chemical Regime in Salt Lakes, Case Study: Lake Urmia, Aral Sea, the Dead Sea, and Lake Issyk-Kul. In The Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Hamed, Y.; Hadji, R.; Redhaounia, B.; Zighmi, K.; Bâali, F.; El Gayar, A. Climate impact on surface and groundwater in North Africa: A global synthesis of findings and recommendations. Euro-Mediterr. J. Environ. Integr. 2018, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Hamed, Y.; Zairi, M.; Ali, W.; Dhia, H.B. Estimation of residence times and recharge area of groundwater in the Moulares mining basin by using carbon and oxygen isotopes (South Western Tunisia). J. Environ. Prot. 2010, 1, 466–474. [Google Scholar] [CrossRef] [Green Version]
- Gayar, A.E.; Hamed, Y. Climate change and water resources management in Arab countries. In Euro-Mediterranean Conference for Environmental Integration; Springer: Cham, Switzerland, 2017; pp. 89–91. [Google Scholar]
- Besser, H.; Dhaouadi, L.; Hadji, R.; Hamed, Y.; Jemmali, H. Ecologic and economic perspectives for sustainable irrigated agriculture under arid climate conditions: An analysis based on environmental indicators for southern Tunisia. J. Afr. Earth Sci. 2021, 177, 104134. [Google Scholar] [CrossRef]
- Sánchez, M.I.; Paredes, I.; Lebouvier, M.; Green, A.J. Functional role of native and invasive filter-feeders, and the effect of parasites: Learning from hypersaline ecosystems. PLoS ONE 2016, 11, 161478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gajardo, G.M.; Beardmore, J.A. The brine shrimp Artemia: Adapted to critical life conditions. Front. Physiol. 2012, 3, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugumar, V. Biometrical, morphological and biochemical characterization of three Artemia (Crustacea: Anostraca) populations from South India. Int. J. Artemia Biol. 2012, 2, 7–29. [Google Scholar]
- Sura, S.A.; Belovsky, G.E. Impacts of harvesting of brine shrimp (Artemia franciscana) in Great Salt Lake, Utah, USA. Ecol. Appl. 2016, 26, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Escandari, A.; Saygi, Y. Ecological surveys on the parthenogenetic Artemia populations in the hypersaline lakes of Anatolia, Turkey. Turk J. Zool. 2019, 43, 367–378. [Google Scholar] [CrossRef] [Green Version]
Date | Air Temperature, °C | Sunrise Intensity, fc | Humidity, % | ||
---|---|---|---|---|---|
At the Day of Sampling | The Average of the Month (Total/Day) | The Range in the Month (min/max) | |||
January, 15 | +1.3 | +0.9/+1.1 | −9/+12 | ||
February, 19 | +6.2 | +5.2/+8.3 | −4/+3 | 2044.6 | 56.9 |
March, 19 | +0.4 | +2.6/+6.3 | −9/+16 | 1171.0 | 59.4 |
April, 16 | +12.2 | +11.4/+15.6 | +3/+26 | 4656.1 | 60.5 |
May, 17 | +16.4 | +14.9/+19.0 | +5/+30 | 1356.9 | 64.5 |
June, 21 | +26.6 | +22.1/+28.2 | +14/+35 | 5817.8 | 49.9 |
July, 20 | +23.2 | +21.6/+27.8 | +15/+36 | 5288.1 | 60.6 |
August, 16 | +26.4 | +26.5/+32.5 | +18/+37 | 938.7 | 68.2 |
September, 20 | +23.6 | +19.2/+24.0 | +7/+32 | 4674.7 | 45.2 |
October, 18 | +15.8 | +13.7/+18.4 | +3/+26 | 2193.3 | 67.6 |
November | +18.1 | +9.3/+13.4 | +1/+20 | 250.9 | 63.5 |
December | +7.6 | +2.0/+9.5 | 0/+17 | 237.5 | 51.4 |
Month | Cysts | Nauplia | Juveniles | Adults (Female) |
---|---|---|---|---|
January | 294–5000 (2200 ± 714) | 1–7 (4 ± 3) | 0 | 0 |
February | 500–1200 (867 ± 242) | 0 | 0 | 0 |
March | 45–157 (101 ± 67) | 0 | 0 | 0 |
April | 480–4000 (1525 ± 1261) | 0–40 (20 ± 14) | 0 | 0 |
May | 1–4 (3 ± 2) | 2–4 (3 ± 1) | 1–3 (2 ± 0.6) | 0 |
June | 370–10,400 (5385 ± 193) | 0 | 1 (1 ± 0) | 1 (1 ± 0) |
July | 18–38 (28 ± 12) | 1 (1 ± 0) | 0 | 1–2 (2 ± 1) |
August | 2–40 (21 ± 18) | 1–2 (2 ± 1) | 0 | 0–1 (1 ± 0) |
September | 142–11,000 (5380 ± 3058) | 1–20 (7 ± 4) | 1 (1 ± 0) | 0–2 (1± 0) |
October | 29–80 (54 ± 15) | 0 | 0 | 1–2 (2 ± 1) |
November | 3–29 (13 ± 3) | 0 | 0 | 0 |
December | 120–460 (243 ± 157) | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudneva, I.I.; Gaisky, P.V.; Shaida, V.G.; Shaida, O.V. Assessing Climate and Human Activity Effects on Hypersaline Lake Ecosystem: Case Study of Saki Lake, Crimea. Water 2023, 15, 456. https://doi.org/10.3390/w15030456
Rudneva II, Gaisky PV, Shaida VG, Shaida OV. Assessing Climate and Human Activity Effects on Hypersaline Lake Ecosystem: Case Study of Saki Lake, Crimea. Water. 2023; 15(3):456. https://doi.org/10.3390/w15030456
Chicago/Turabian StyleRudneva, Irina Ivanovna, Pavel Vital’evich Gaisky, Valentin Grigor’evich Shaida, and Oleg Valentinovich Shaida. 2023. "Assessing Climate and Human Activity Effects on Hypersaline Lake Ecosystem: Case Study of Saki Lake, Crimea" Water 15, no. 3: 456. https://doi.org/10.3390/w15030456
APA StyleRudneva, I. I., Gaisky, P. V., Shaida, V. G., & Shaida, O. V. (2023). Assessing Climate and Human Activity Effects on Hypersaline Lake Ecosystem: Case Study of Saki Lake, Crimea. Water, 15(3), 456. https://doi.org/10.3390/w15030456