Spatiotemporal Oasis Land Use/Cover Changes and Impacts on Groundwater Resources in the Central Plain of the Shiyang River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Methodology
2.2.1. Land-Use Types
2.2.2. Groundwater Depth
2.2.3. Groundwater Balance Analysis
3. Results and Discussion
3.1. Spatiotemporal LUCCs over the Last 30 Years
3.1.1. Land-Use Intensity Analysis
3.1.2. Spatiotemporal LUCCs during 1984–2007
3.1.3. Spatiotemporal LUCCs during 2008–2018
3.1.4. LUCCs during 1984–2018
3.2. Impact of LUCCs on Groundwater Depth
3.2.1. Impact of LUCCs on Groundwater Depth from 1984 to 2007
3.2.2. Impact of LUCCs on Groundwater Depth from 2008 to 2018
3.3. Causes of Groundwater Depth Variation
3.4. Response of Groundwater Depth to LUCC
3.5. Groundwater Balance Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gleeson, T.; Cuthbert, M.; Ferguson, G.; Perrone, D. Global Groundwater Sustainability, Resources, and Systems in the Anthropocene. Annu. Rev. Earth Planet. Sci. 2020, 48, 431–463. [Google Scholar] [CrossRef] [Green Version]
- Lall, U.; Josset, L.; Russo, T. A Snapshot of the World’s Groundwater Challenges. Annu. Rev. Environ. Resour. 2020, 45, 171–194. [Google Scholar] [CrossRef]
- Buhay Bucton, B.G.; Shrestha, S.; KC, S.; Mohanasundaram, S.; Virdis, S.G.P.; Chaowiwat, W. Impacts of climate and land use change on groundwater recharge under shared socioeconomic pathways: A case of Siem Reap, Cambodia. Environ. Res. 2022, 211, 113070. [Google Scholar] [CrossRef] [PubMed]
- Grönwall, J.; Danert, K. Regarding Groundwater and Drinking Water Access through A Human Rights Lens: Self-Supply as A Norm. Water 2020, 12, 419. [Google Scholar] [CrossRef] [Green Version]
- Sajjad, M.M.; Wang, J.; Abbas, H.; Ullah, I.; Khan, R.; Ali, F. Impact of climate and land-use change on groundwater resources, study of Faisalabad district, Pakistan. Atmosphere 2022, 13, 1097. [Google Scholar] [CrossRef]
- Ridwansyah, I.; Yulianti, M.; Apip; Onodera, S.; Shimizu, Y.; Wibowo, H.; Fakhrudin, M. The impact of land use and climate change on surface runoff and groundwater in Cimanuk watershed, Indonesia. Limnology 2020, 21, 487–498. [Google Scholar] [CrossRef]
- Nasiri, S.; Ansari, H.; Ziaei, A.N. Determination of water balance equation components in irrigated agricultural watersheds using SWAT and MODFLOW models: A case study of Samalqan plain in Iran. J. Groundw. Sci. Eng. 2022, 10, 44–56. [Google Scholar] [CrossRef]
- Kafando, M.B.; Koïta, M.; Zouré, C.O.; Yonaba, R.; Niang, D. Quantification of Soil Deep Drainage and Aquifer Recharge Dynamics according to Land Use and Land Cover in the Basement Zone of Burkina Faso in West Africa. Sustainability 2022, 14, 14687. [Google Scholar] [CrossRef]
- Zomlot, Z.; Verbeiren, B.; Huysmans, M.; Batelaan, O. Trajectory analysis of land use and land cover maps to improve spatial–temporal patterns, and impact assessment on groundwater recharge. J. Hydrol. 2017, 554, 558–569. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Liu, L.; Cui, X. Source identification of methane in groundwater in shale gas development areas: A critical review of the state of the art, prospects, and future challenges. J. Groundw. Sci. Eng. 2021, 9, 245–255. [Google Scholar] [CrossRef]
- Tang, Z.; Engel, B.A.; Pijanowski, B.C.; Lim, K.J. Forecasting land use change and its environmental impact at a watershed scale. J. Env. Manag. 2005, 76, 35–45. [Google Scholar] [CrossRef]
- Kim, J.H.; Jackson, R.B. A Global Analysis of Groundwater Recharge for Vegetation, Climate, and Soils. Vadose Zone J. 2012, 11. [Google Scholar] [CrossRef] [Green Version]
- Van Huijgevoort, M.H.J.; Voortman, B.R.; Rijpkema, S.; Nijhuis, K.H.S.; Witte, J.M. Influence of climate and land use change on the groundwater system of the Veluwe, the Netherlands: A historical and future perspective. Water 2020, 12, 2866. [Google Scholar] [CrossRef]
- Huang, M.; Zhang, L. Hydrological responses to conservation practices in a catchment of the Loess Plateau, China. Hydrol. Process. 2004, 18, 1885–1898. [Google Scholar] [CrossRef]
- Jinno, K.; Tsutsumi, A.; Alkaeed, O.; Saita, S.; Berndtsson, R. Effects of land-use change on groundwater recharge model parameters. Hydrol. Sci. J. 2009, 54, 300–315. [Google Scholar] [CrossRef]
- Guerrero-Morales, J.; Fonseca, C.R.; Goméz-Albores, M.A.; Sampedro-Rosas, M.L.; Silva-Gómez, S.E. Proportional variation of potential groundwater recharge as a result of climate change and land-use: A study case in Mexico. Land 2020, 9, 364. [Google Scholar] [CrossRef]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Ghimire, U.; Shrestha, S.; Neupane, S.; Mohanasundaram, S.; Lorphensri, O. Climate and land-use change impacts on spatiotemporal variations in groundwater recharge: A case study of the Bangkok Area, Thailand. Sci. Total Environ. 2021, 792, 148370. [Google Scholar] [CrossRef]
- Calow, R.C.; Robins, N.S.; Macdonald, A.M.; Macdonald, D.M.J.; Gibbs, B.R.; Orpen, W.R.G.; Mtembezeka, P.; Andrews, A.J.; Appiah, S.O. Groundwater Management in Drought-prone Areas of Africa. Int. J. Water Resour. D 1997, 13, 241–262. [Google Scholar] [CrossRef]
- Alley, W.M.; Reilly, T.E.; Franke, O.L. Sustainability of Ground-Water Resources; Circular 1186; US Geological Survey: Reston, VI, USA, 1999. [CrossRef] [Green Version]
- Li, X.; Xiao, D. Dynamics of water resources and land use in oases in middle and lower reaches of Shiyang River watershed, Northwest China. Adv. Water Sci. 2005, 16, 643–648. (In Chinese) [Google Scholar] [CrossRef]
- Li, H. Oasis Water Resource Utilization Scenarios Simulation and Oasis Ecological Security—A Case Study in Wuwei and Minqin Oasis of Shiyang River Stream. Ph.D. Thesis, Peking University, Beijing, China, 2008. [Google Scholar]
- Schwartz, W.F.; Zhang, H. Fundamentals of Groundwater; John Wiley & Sons: New York, NY, USA, 2003; p. 583. [Google Scholar]
- Sato, K.; Iwasa, Y. Groundwater Hydraulic; Springer: Tokyo, Japan, 2003; p. 204. [Google Scholar]
- Hu, J. Analysis on space-time distribution of groundwater resources based on gis technology in Shiyanghe River Basin. J. Desert Res. 2008, 28, 781–786. [Google Scholar]
- Wang, G.; Yang, L.; Chen, L.; Jumpei, K. Impacts of land use changes on groundwater resources in the Heihe River Basin. J. Geogr Sci 2005, 15, 405–414. [Google Scholar] [CrossRef]
- Shu, L.; Wang, Z.; Yuan, Y.; Zhang, F.; Liu, W.; Lu, C. Land use change and its impact on groundwater in the typical district of Sanjiang Plain during the past 40 years. J. Hydraul. Eng. 2021, 52, 896–906. [Google Scholar] [CrossRef]
- Hao, Y.; Xie, Y.; Ma, J.; Zhang, W. The critical role of local policy effects in arid watershed groundwater resources sustainability: A case study in the Minqin oasis, China. Sci. Total Environ. 2017, 601–602, 1084–1096. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Ding, H.; He, B. Dynamic variation of groundwater level in the middle-lower reaches of Shiyanghe River Basin for nearly 40 years. Northwestern Geol. 2016, 49, 164–174. [Google Scholar] [CrossRef]
- Li, Z. Study on Water Crisis in Arid Inland River Basins and Its Countermeasures: A Case Study of Shiyang River Basin in Gansu Province. Ph.D. Thesis, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Beijing, China, 2007. [Google Scholar]
- Fan, Y.; Wang, C.; Nan, Z. Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China. Agric. Water Manag. 2014, 146, 335–345. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Ma, Y.; Wang, L.; Mu, H. Analysis of groundwater dynamic changes in Shiyang River Basin. J. Arid. Land Resour. Environ. 2018, 32, 145–151. [Google Scholar] [CrossRef]
- Zhou, J.; Lei, L.; Shi, P.; Wang, L.; Wei, W.; Liu, H. Response of runoff to the climate and land use pattern changes in Shiyang River Basin. Acta Ecol. Sin. 2015, 35, 3788–3796. [Google Scholar] [CrossRef] [Green Version]
- Liu, J. Study on Water Resource Distribution Change of Modality Driven with Land Use and Land Coverage in Hexi Inland River Basin of Northwest China. Ph.D. Thesis, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Beijing, China, 2007. [Google Scholar]
- Ma, X.; Li, B.; Wu, C.; Peng, H.; Guo, Y. Predicting of temporal-spatial change of groundwater table resulted from current land use in Minqin oasis. Adv. Water Sci. 2003, 14, 85–90. [Google Scholar] [CrossRef]
- Li, Z. Study on Ecological Flow Analysis and Water Resources Optimization Allocation in Shiyang River Basin. Master Thesis, Chang’an University, Xi’an, China, 2020. [Google Scholar]
- Zhang, L. Study on the Effectiveness of Integrated Management of Shiyang River Basin in Terms of Water Resources. Master Thesis, Lanzhou University, Lanzhou, China, 2017. [Google Scholar]
- Shi, Y.; Zhang, R.; Dong, P.; Hao, Y.; Shi, P.; Cheng, Z. Effect analysis of efficient utilization of water resources and ecological management measures in Shiyang River Basin: A case study of water resources management in Minqin. Water Resour. Plan. Des. 2017, 53–55. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Yang, X.; Yin, S.; Chen, J. Rural social-ecological systems vulnerability evolution and spatial-temporal heterogeneity in arid environmental change region: A case study of Minqin Oasis, northwestern China. Appl. Geogr. 2022, 145, 102747. [Google Scholar] [CrossRef]
- Nie, Z.; Liu, M.; Liu, P.; Wang, L.; Meng, L. Research and Demonstration of Rational Extraction and Utilization of Groundwater and Protection of Ecological Functions in Shiyang River Basin; Institute of Hydrogeology and Environmental Geology, CAGS: Shijiazhuang, China, 2021. [Google Scholar]
- Wang, L.; Nie, Z.; Liu, M.; Cao, L.; Zhu, P.; Yuan, Q. Rational Allocation of Water Resources in the Arid Area of Northwestern China Based on Numerical Simulations. Sustainability 2023, 15, 55. [Google Scholar] [CrossRef]
- Liu, H.; Liu, S.; Li, Y. Response of riparian vegetation to the change of groundwater level at middle and lower reaches of the Shiyang River. Arid Zone Res. 2012, 29, 335–341. [Google Scholar]
- Liu, S. Change of Riparian Vegetation and Its Driving Factors at the Middle and Lower Reaches of Shiyang River Basin. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2010. [Google Scholar]
- Feng, B.; Nie, Z.; Wang, J.; Lu, H. Long-time series remote sensing dynamic monitoring of the oasis in Shiyang River basin. Geospat. Inf. 2020, 18, 6. [Google Scholar] [CrossRef]
- Lu, H.; Nie, Z.; Liu, M.; Feng, B.; Cheng, X.; Wang, J.; Wang, Q.; Cui, H.; Fan, F. Research on land cover changes in Shiyang River Basin in recent 50 years based on RS and GIS. Geogr. Res. 2020, 29, 8. [Google Scholar]
- Li, M.; Wu, B.; Yan, C.; Zhou, W. Estimation of vegetation fraction in the upper basin of Miyun Reservoir by remote sensing. Resour. Sci. 2004, 26, 153–159. [Google Scholar]
- Gao, Z.; Li, Z.; Wei, H.; Ding, F. Quantitative monitoring of vegetation cover change by using remotely sensed data over Minqin Oasis, Gansu. Geogr. Res. 2006, 25, 587–595. [Google Scholar] [CrossRef]
- Rongqun, Z.; Sun, W.; Ai, D.; Wang, S. Analysis on land cover change based on visual method of monitoring information. Trans. Chin. Soc. Agric. Eng. 2015, 31, 8. [Google Scholar] [CrossRef]
- Aldwaik, S.Z.; Pontius, R.G. Intensity analysis to unify measurements of size and stationarity of land changes by interval, category, and transition. Landsc. Urban Plan 2012, 106, 103–114. [Google Scholar] [CrossRef]
- Huang, B. Processes in Land Use Change and their Environmental Consequences in Coastal Area of Fujian Province from the Perspective of Land-Sea Integration. Ph.D. Thesis, Xiamen University, Xiamen, China, 2019. [Google Scholar]
- Wen, X.; Duan, H.; Liao, J.; Xue, X. Rs monitoring of the spatial-temporal variation of vegetation index and desertification in Shiyang River Basin. J. Jilin Univ. (Earth Sci. Ed.) 2012, 42, 415–422. [Google Scholar] [CrossRef]
- Wei, J. The Hexi Area Oasis Extraction Method and Spatial Distribution Based on the Remote Sensing. Master Thesis, Lanzhou University, Lanzhou, China, 2016. [Google Scholar]
- Wang, J.; Zhang, G.; Cui, H.; Wang, Q.; Dong, H.; Hao, J. System index attribute and application of groundwater function zoning in northwest inland area of China. J. Hydraul. Eng. 2020, 51, 796–804. [Google Scholar] [CrossRef]
- Ye, H.; Chen, S.; Sheng, F.; Chen, H. Research on dynamic changes of land cover and its correlation with groundwater in the Shule River Basin. J. Hydraul. Eng. 2013, 44, 83–90. [Google Scholar] [CrossRef]
- Yan, D.; Wang, H.; Qin, D.; Wang, J.; Li, Y. The ecological evolution driven by water in the lower reaches of Heihe Basin. China Environ. Sci. 2005, 25, 38–42. [Google Scholar]
- Ren, D.; Xu, X.; Huang, Q.; Huo, Z.; Xiong, Y.; Huang, G. Analyzing the role of shallow groundwater systems in the water use of different land-use types in arid irrigated regions. Water 2018, 10, 634. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Nie, Z.; Cao, L. Comprehensive evaluation on the ecological function of groundwater in the Shiyang River watershed. J. Groundw. Sci. Eng. 2021, 9, 326–340. [Google Scholar] [CrossRef]
Year | Type | Farmland | HCO | MCO | LCO | DO | OL | Total |
---|---|---|---|---|---|---|---|---|
1984~2007 | Farmland | 1886.04 | 1.40 | 0.28 | 0.53 | 2.62 | 8.56 | 1899.43 |
HCO | 3.75 | 7.72 | 3.76 | 1.92 | 2.81 | 0.29 | 20.26 | |
MCO | 12.11 | 0.00 | 76.15 | 20.21 | 1.74 | 3.67 | 113.88 | |
LCO | 260.88 | 5.29 | 11.91 | 536.98 | 35.06 | 22.46 | 872.58 | |
DO | 26.74 | 3.89 | 151.76 | 114.82 | 147.86 | 24.74 | 469.81 | |
OL | 5.43 | 0.08 | 0.09 | 0.04 | 0.50 | 307.86 | 314.01 | |
Total | 2194.95 | 18.39 | 243.95 | 674.49 | 190.59 | 367.59 | 3689.96 | |
2008~2018 | Farmland | 2022.16 | 1.96 | 8.12 | 60.08 | 7.18 | 95.46 | 2194.95 |
HCO | 0.55 | 12.30 | 2.54 | 1.01 | 0.32 | 1.67 | 18.39 | |
MCO | 0.77 | 0.00 | 146.65 | 69.86 | 0.00 | 26.68 | 243.95 | |
LCO | 50.99 | 2.52 | 4.10 | 588.57 | 2.25 | 26.06 | 674.49 | |
DO | 8.14 | 0.15 | 1.33 | 57.74 | 118.28 | 4.94 | 190.59 | |
OL | 15.20 | 0.57 | 4.07 | 0.67 | 6.97 | 340.10 | 367.59 | |
Total | 2097.81 | 17.50 | 166.81 | 777.93 | 135.00 | 494.92 | 3689.96 |
Year | Water Level Variations (m) | Farmland | HCO | MCO | LCO | DO | OL |
---|---|---|---|---|---|---|---|
1984~2007 | −50 to −40 | 0.8 | 0 | 11.52 | 0.32 | −19.04 | 6.4 |
−40 to −20 | 2.56 | 0 | 21.12 | 11.84 | −40.48 | 4.96 | |
−20 to −15 | 50.56 | −0.48 | 55.84 | −51.68 | −57.44 | 3.2 | |
−15 to −10 | 34.4 | 0.32 | 21.76 | −41.44 | −16.8 | 1.76 | |
−10 to −4 | 102.08 | 0.96 | 14.08 | −85.6 | −45.28 | 13.76 | |
−4 to −2 | 35.04 | 2.56 | −6.4 | −24.32 | −13.6 | 6.72 | |
−2 to 0 | 12.64 | −0.16 | −2.08 | 0 | −11.52 | 1.12 | |
0 to 2 | 7.36 | −0.96 | 1.28 | 3.2 | −12.96 | 2.08 | |
2 to 4 | 16.16 | 1.92 | 4.16 | −4.96 | −30.08 | 12.8 | |
4 to 5 | 33.6 | −6.4 | 9.28 | −5.6 | −31.68 | 0.8 | |
2008~2018 | −18 to −12 | 3.52 | 0 | 0 | −5.28 | −0.32 | 2.08 |
−12 to −8 | −0.8 | 0.48 | 0.96 | −6.24 | 1.92 | 3.68 | |
−8 to −5 | −43.04 | −0.48 | 4.16 | 27.2 | −7.68 | 19.84 | |
−5 to −3 | −25.92 | −0.8 | 3.04 | 4.48 | −3.84 | 23.04 | |
−3 to −2 | −14.72 | 0 | 1.28 | 3.04 | −5.76 | 16.16 | |
−2 to −1 | −6.72 | 1.12 | 1.76 | 6.72 | −12 | 9.12 | |
−1 to 0 | −2.24 | 1.12 | −2.24 | 6.72 | −9.28 | 5.92 | |
0 to 2 | −3.04 | 0 | −23.68 | 25.92 | −19.36 | 20.16 | |
2 to 4 | −1.92 | −0.96 | −40.48 | 35.2 | 0.8 | 7.36 | |
4 to 6 | −2.24 | −0.48 | −21.44 | 4.8 | −0.32 | 19.68 |
Water Level Variation Area | Land-Use Types | ||||||
---|---|---|---|---|---|---|---|
Year | Farmland | HCO | MCO | LCO | DO | OL | |
Decline area (−24.2 m) | 1984 (km2) | 1843.04 | 6.08 | 87.84 | 815.84 | 430.24 | 303.36 |
2007 (km2) | 2104.64 | 10.24 | 209.12 | 623.2 | 183.04 | 356.16 | |
Rate (%) | 14.2 | 68.4 | 138.1 | −23.6 | −57.5 | 17.4 | |
Rise area (+1.0 m) | 1984 (km2) | 63.2 | 13.76 | 25.28 | 58.4 | 39.36 | 9.92 |
2007 (km2) | 96.8 | 7.36 | 34.56 | 52.8 | 7.68 | 10.72 | |
Rate (%) | 53.2 | −46.5 | 36.7 | −9.6 | −80.5 | 8.1 | |
Decline area (−5.1 m) | 2008 (km2) | 1532.8 | 13.92 | 80.48 | 449.12 | 144.96 | 246.72 |
2018 (km2) | 1442.88 | 15.36 | 89.44 | 485.76 | 108 | 326.56 | |
Rate (%) | −5.9 | 10.3 | 11.1 | 8.2 | −25.5 | 32.4 | |
Rise area (+3.1 m) | 2008 (km2) | 669.12 | 3.68 | 163.2 | 226.88 | 45.76 | 120.16 |
2018 (km2) | 661.92 | 2.24 | 77.6 | 292.8 | 26.88 | 167.36 | |
Rate (%) | −1.1 | −39.1 | −52.5 | 29.1 | −41.3 | 39.3 |
Type | Coefficients | p-Value |
---|---|---|
β | 25,094.5822 | 0.49830 |
a | −19.0297 | 0.03714 |
b | 0.5214 | 0.00085 |
c | −0.5229 | 0.00105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Nie, Z.; Yuan, Q.; Liu, M.; Cao, L.; Zhu, P.; Lu, H.; Feng, B. Spatiotemporal Oasis Land Use/Cover Changes and Impacts on Groundwater Resources in the Central Plain of the Shiyang River Basin. Water 2023, 15, 457. https://doi.org/10.3390/w15030457
Wang L, Nie Z, Yuan Q, Liu M, Cao L, Zhu P, Lu H, Feng B. Spatiotemporal Oasis Land Use/Cover Changes and Impacts on Groundwater Resources in the Central Plain of the Shiyang River Basin. Water. 2023; 15(3):457. https://doi.org/10.3390/w15030457
Chicago/Turabian StyleWang, Lifang, Zhenlong Nie, Qinlong Yuan, Min Liu, Le Cao, Pucheng Zhu, Huixiong Lu, and Bo Feng. 2023. "Spatiotemporal Oasis Land Use/Cover Changes and Impacts on Groundwater Resources in the Central Plain of the Shiyang River Basin" Water 15, no. 3: 457. https://doi.org/10.3390/w15030457
APA StyleWang, L., Nie, Z., Yuan, Q., Liu, M., Cao, L., Zhu, P., Lu, H., & Feng, B. (2023). Spatiotemporal Oasis Land Use/Cover Changes and Impacts on Groundwater Resources in the Central Plain of the Shiyang River Basin. Water, 15(3), 457. https://doi.org/10.3390/w15030457