Interaction of Silica Nanoparticles with Microalgal Extracellular Polymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. SiO2 Nanoparticles Suspensions
2.2. DLS and ELS Measurements
2.3. Diatom Culture
2.4. Microalgal Extracellular Polymers Isolation
2.5. Interaction of SiO2 NPs with Microalgal EPS
2.5.1. Interaction of SiO2 NPs with Isolated EPS
2.5.2. Interaction of SiO2 NPs with Released EPS at the Single-Cell Level
2.6. AFM Imaging: Measurements Condition and Samples Preparation
2.7. Fourier Transform Infrared Spectroscopy
3. Results and Discussion
3.1. SiO2 NPs Stability in Natural Seawater
3.2. Interaction of SiO2 NPs with Isolated EPS at the Nanoscale- and Molecular-Level
3.3. Interaction of SiO2 NPs with Released EPS at the Single-Cell Level
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ISO ISO/TR 18401:2017; Nanotechnologies—Plain Language Explanation of Selected Terms from the ISO/IEC 80004 Series. ISO: Geneva, Switzerland, 2017.
- Jarvie, H.P.; AL-Obaidi, H.; King, S.M.; Bowes, M.J.; Lawrance, J.; Drake, A.F.; Green, M.A.; Dobson, P. Fate of Silica Nanoparticles in Simulated Primary Wastewater Treatment. Environ. Sci. Technol. 2009, 43, 8622–8628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Napierska, D.; Thomassen, L.C.; Lison, D.; Martens, J.A.; Hoet, P.H. The Nanosilica Hazard: Another Variable Entity. Part. Fibre Toxicol. 2010, 7, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Hoek, J.; Heideman, G.; Noordermeer, J.; Dierkes, W.; Blume, A. Implications of the Use of Silica as Active Filler in Passenger Car Tire Compounds on Their Recycling Options. Materials 2019, 12, 725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlsson, N.; Gustafsson, H.; Thörn, C.; Olsson, L.; Holmberg, K.; Åkerman, B. Enzymes Immobilized in Mesoporous Silica: A Physical–Chemical Perspective. Adv. Colloid Interface Sci. 2014, 205, 339–360. [Google Scholar] [CrossRef]
- Fenollosa, R.; Garcia-Rico, E.; Alvarez, S.; Alvarez, R.; Yu, X.; Rodriguez, I.; Carregal-Romero, S.; Villanueva, C.; Garcia-Algar, M.; Rivera-Gil, P.; et al. Silicon Particles as Trojan Horses for Potential Cancer Therapy. J. Nanobiotechnol. 2014, 12, 35. [Google Scholar] [CrossRef]
- Santos, H.A.; Mäkilä, E.; Airaksinen, A.J.; Bimbo, L.M.; Hirvonen, J. Porous Silicon Nanoparticles for Nanomedicine: Preparation and Biomedical Applications. Nanomedicine 2014, 9, 535–554. [Google Scholar] [CrossRef]
- Slowing, I.; Viveroescoto, J.; Wu, C.; Lin, V. Mesoporous Silica Nanoparticles as Controlled Release Drug Delivery and Gene Transfection Carriers. Adv. Drug Deliv. Rev. 2008, 60, 1278–1288. [Google Scholar] [CrossRef]
- Baun, A.; Hartmann, N.B.; Grieger, K.; Kusk, K.O. Ecotoxicity of Engineered Nanoparticles to Aquatic Invertebrates: A Brief Review and Recommendations for Future Toxicity Testing. Ecotoxicology 2008, 17, 387–395. [Google Scholar] [CrossRef]
- Moore, M.N. Do Nanoparticles Present Ecotoxicological Risks for the Health of the Aquatic Environment? Environ. Int. 2006, 32, 967–976. [Google Scholar] [CrossRef]
- Angel, B.M.; Batley, G.E.; Jarolimek, C.V.; Rogers, N.J. The Impact of Size on the Fate and Toxicity of Nanoparticulate Silver in Aquatic Systems. Chemosphere 2013, 93, 359–365. [Google Scholar] [CrossRef]
- Ates, M.; Daniels, J.; Arslan, Z.; Farah, I.O. Effects of Aqueous Suspensions of Titanium Dioxide Nanoparticles on Artemia Salina: Assessment of Nanoparticle Aggregation, Accumulation, and Toxicity. Environ. Monit. Assess. 2013, 185, 3339–3348. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Burgess, R.M.; Cantwell, M.G.; Portis, L.M.; Perron, M.M.; Wu, F.; Ho, K.T. Stability and Aggregation of Silver and Titanium Dioxide Nanoparticles in Seawater: Role of Salinity and Dissolved Organic Carbon: Stability and Aggregation of Silver and Titanium Dioxide. Environ. Toxicol. Chem. 2014, 33, 1023–1029. [Google Scholar] [CrossRef] [PubMed]
- Boughbina-Portolés, A.; Sanjuan-Navarro, L.; Moliner-Martínez, Y.; Campíns-Falcó, P. Study of the Stability of Citrate Capped AgNPs in Several Environmental Water Matrices by Asymmetrical Flow Field Flow Fractionation. Nanomaterials 2021, 11, 926. [Google Scholar] [CrossRef] [PubMed]
- Gondikas, A.; Gallego-Urrea, J.; Halbach, M.; Derrien, N.; Hassellöv, M. Nanomaterial Fate in Seawater: A Rapid Sink or Intermittent Stabilization? Front. Environ. Sci. 2020, 8, 151. [Google Scholar] [CrossRef]
- Mišić Radić, T.; Vukosav, P.; Komazec, B.; Formosa-Dague, C.; Domazet Jurašin, D.; Peharec Štefanić, P.; Čačković, A.; Juraić, K.; Ivošević DeNardis, N. Nanoplastic-Induced Nanostructural, Nanomechanical, and Antioxidant Response of Marine Diatom Cylindrotheca Closterium. Water 2022, 14, 2163. [Google Scholar] [CrossRef]
- Navarro, E.; Baun, A.; Behra, R.; Hartmann, N.B.; Filser, J.; Miao, A.-J.; Quigg, A.; Santschi, P.H.; Sigg, L. Environmental Behavior and Ecotoxicity of Engineered Nanoparticles to Algae, Plants, and Fungi. Ecotoxicology 2008, 17, 372–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verdugo, P. Polymer Gel Phase Transition in Condensation-Decondensation of Secretory Products. In Responsive Gels: Volume Transitions II; Dušek, K., Ed.; Advances in Polymer Science; Springer: Berlin/Heidelberg, Germany, 1993; Volume 110, pp. 145–156. ISBN 978-3-540-56970-1. [Google Scholar]
- Aluwihare, L.I.; Repeta, D.J.; Chen, R.F. A Major Biopolymeric Component to Dissolved Organic Carbon in Surface Sea Water. Nature 1997, 387, 166–169. [Google Scholar] [CrossRef]
- Martin, J.H.; Fitzwater, S.E. Dissolved Organic Carbon in the Atlantic, Southern and Pacific Oceans. Nature 1992, 356, 699–700. [Google Scholar] [CrossRef]
- Sharp, J.H. Marine Dissolved Organic Carbon: Are the Older Values Correct? Mar. Chem. 1997, 56, 265–277. [Google Scholar] [CrossRef]
- Dautović, J.; Vojvodić, V.; Tepić, N.; Ćosović, B.; Ciglenečki, I. Dissolved Organic Carbon as Potential Indicator of Global Change: A Long-Term Investigation in the Northern Adriatic. Sci. Total Environ. 2017, 587–588, 185–195. [Google Scholar] [CrossRef]
- Ciglenečki, I.; Vilibić, I.; Dautović, J.; Vojvodić, V.; Ćosović, B.; Zemunik, P.; Dunić, N.; Mihanović, H. Dissolved Organic Carbon and Surface Active Substances in the Northern Adriatic Sea: Long-Term Trends, Variability and Drivers. Sci. Total Environ. 2020, 730, 139104. [Google Scholar] [CrossRef]
- Lin, D.; Drew Story, S.; Walker, S.L.; Huang, Q.; Cai, P. Influence of Extracellular Polymeric Substances on the Aggregation Kinetics of TiO2 Nanoparticles. Water Res. 2016, 104, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Morelli, E.; Gabellieri, E.; Bonomini, A.; Tognotti, D.; Grassi, G.; Corsi, I. TiO2 Nanoparticles in Seawater: Aggregation and Interactions with the Green Alga Dunaliella Tertiolecta. Ecotoxicol. Environ. Saf. 2018, 148, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jiang, Y.; Chen, C.-S.; Creeley, D.; Schwehr, K.A.; Quigg, A.; Chin, W.-C.; Santschi, P.H. Ameliorating Effects of Extracellular Polymeric Substances Excreted by Thalassiosira Pseudonana on Algal Toxicity of CdSe Quantum Dots. Aquat. Toxicol. 2013, 126, 214–223. [Google Scholar] [CrossRef]
- Adeleye, A.S.; Conway, J.R.; Perez, T.; Rutten, P.; Keller, A.A. Influence of Extracellular Polymeric Substances on the Long-Term Fate, Dissolution, and Speciation of Copper-Based Nanoparticles. Environ. Sci. Technol. 2014, 48, 12561–12568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, A.-J.; Schwehr, K.A.; Xu, C.; Zhang, S.-J.; Luo, Z.; Quigg, A.; Santschi, P.H. The Algal Toxicity of Silver Engineered Nanoparticles and Detoxification by Exopolymeric Substances. Environ. Pollut. 2009, 157, 3034–3041. [Google Scholar] [CrossRef]
- Pletikapić, G.; Žutić, V.; Svetličić, V.; Vinković Vrček, I. Atomic Force Microscopy Characterization of Silver Nanoparticles Interactions with Marine Diatom Cells and Extracellular Polymeric Substance. J. Mol. Recognit. 2012, 25, 309–317. [Google Scholar] [CrossRef]
- Summers, S.; Henry, T.; Gutierrez, T. Agglomeration of Nano- and Microplastic Particles in Seawater by Autochthonous and de Novo-Produced Sources of Exopolymeric Substances. Mar. Pollut. Bull. 2018, 130, 258–267. [Google Scholar] [CrossRef]
- Grassi, G.; Gabellieri, E.; Cioni, P.; Paccagnini, E.; Faleri, C.; Lupetti, P.; Corsi, I.; Morelli, E. Interplay between Extracellular Polymeric Substances (EPS) from a Marine Diatom and Model Nanoplastic through Eco-Corona Formation. Sci. Total Environ. 2020, 725, 138457. [Google Scholar] [CrossRef]
- Guillard, R.R.L. Culture of Phytoplankton for Feeding Marine Invertebrates. In Culture of Marine Invertebrate Animals; Smith, W.L., Chanley, M.H., Eds.; Springer: Boston, MA, USA, 1975; pp. 29–60. ISBN 978-1-4615-8716-3. [Google Scholar]
- Magaletti, E.; Urbani, R.; Sist, P.; Ferrari, C.R.; Cicero, A.M. Abundance and Chemical Characterization of Extracellular Carbohydrates Released by the Marine Diatom Cylindrotheca Fusiformis under N- and P-Limitation. Eur. J. Phycol. 2004, 39, 133–142. [Google Scholar] [CrossRef]
- Balnois, E.; Wilkinson, K.J. Sample Preparation Techniques for the Observation of Environmental Biopolymers by Atomic Force Microscopy. Colloid. Surf. A 2002, 207, 229–242. [Google Scholar] [CrossRef]
- Mišić Radić, T.; Svetličić, V.; Žutić, V.; Boulgaropoulos, B. Seawater at the Nanoscale: Marine Gel Imaged by Atomic Force Microscopy. J. Mol. Recognit. 2011, 24, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Pletikapić, G.; Mišić Radić, T.; Zimmermann, A.H.; Svetličić, V.; Pfannkuchen, M.; Marić, D.; Godrijan, J.; Žutić, V. AFM Imaging of Extracellular Polymer Release by Marine Diatom Cylindrotheca Closterium (Ehrenberg) Reiman & J.C. Lewin. J. Mol. Recognit. 2011, 24, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Canet-Ferrer, J.; Coronado, E.; Forment-Aliaga, A.; Pinilla-Cienfuegos, E. Correction of the Tip Convolution Effects in the Imaging of Nanostructures Studied through Scanning Force Microscopy. Nanotechnology 2014, 25, 395703. [Google Scholar] [CrossRef]
- Derjaguin, B.; Landau, L.D. Theory of the Stability of Strongly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solutions of Electrolytes. Acta Physicochim. U.R.S.S. 1941, 14, 633–662. [Google Scholar] [CrossRef]
- Verwey, E.J.W.; Overbeek, J.T.G. Theory of Stability of Lyophobic Colloids; Elsevier: Amsterdam, The Netherlands, 1948. [Google Scholar]
- Loosli, F.; Omar, F.M.; Carnal, F.; Oriekhova, O.; Clavier, A.; Chai, Z.; Stoll, S. Manufactured Nanoparticle Behavior and Transformations in Aquatic Systems. Importance of Natural Organic Matter. Chimia 2014, 68, 783–787. [Google Scholar] [CrossRef]
- Adeleye, A.S.; Keller, A.A. Interactions between Algal Extracellular Polymeric Substances and Commercial TiO2 Nanoparticles in Aqueous Media. Environ. Sci. Technol. 2016, 50, 12258–12265. [Google Scholar] [CrossRef] [Green Version]
- Rehman, Z.U.; Vrouwenvelder, J.S.; Saikaly, P.E. Physicochemical Properties of Extracellular Polymeric Substances Produced by Three Bacterial Isolates from Biofouled Reverse Osmosis Membranes. Front. Microbiol. 2021, 12, 668761. [Google Scholar] [CrossRef]
- Bao, P.; Xia, M.; Liu, A.; Wang, M.; Shen, L.; Yu, R.; Liu, Y.; Li, J.; Wu, X.; Fang, C.; et al. Extracellular Polymeric Substances (EPS) Secreted by Purpureocillium Lilacinum Strain Y3 Promote Biosynthesis of Jarosite. RSC Adv. 2018, 8, 22635–22642. [Google Scholar] [CrossRef] [Green Version]
- Zhou, K.; Hu, Y.; Zhang, L.; Yang, K.; Lin, D. The Role of Exopolymeric Substances in the Bioaccumulation and Toxicity of Ag Nanoparticles to Algae. Sci. Rep. 2016, 6, 32998. [Google Scholar] [CrossRef]
- Mao, Y.; Li, H.; Huangfu, X.; Liu, Y.; He, Q. Nanoplastics Display Strong Stability in Aqueous Environments: Insights from Aggregation Behaviour and Theoretical Calculations. Environ. Pollut. 2020, 258, 113760. [Google Scholar] [CrossRef] [PubMed]
- Eboigbodin, K.E.; Biggs, C.A. Characterization of the Extracellular Polymeric Substances Produced by Escherichia Coli Using Infrared Spectroscopic, Proteomic, and Aggregation Studies. Biomacromolecules 2008, 9, 686–695. [Google Scholar] [CrossRef]
- Zheng, S.; Zhou, Q.; Chen, C.; Yang, F.; Cai, Z.; Li, D.; Geng, Q.; Feng, Y.; Wang, H. Role of Extracellular Polymeric Substances on the Behavior and Toxicity of Silver Nanoparticles and Ions to Green Algae Chlorella Vulgaris. Sci. Total Environ. 2019, 660, 1182–1190. [Google Scholar] [CrossRef]
- Capeletti, L.B.; Zimnoch, J.H. Fourier Transform Infrared and Raman Characterization of Silica-Based Materials; IntechOpen: Rijeka, Croatia, 2016; ISBN 978-953-51-2681-2. [Google Scholar]
- Oufakir, A.; Khouchaf, L.; Elaatmani, M.; Zegzouti, A.; Louarn, G.; Fraj, A.B. Study of Structural Short Order and Surface Changes of SiO2 Compounds. MATEC Web Conf. 2018, 149, 01041. [Google Scholar] [CrossRef]
- Urbani, R.; Paola, S.; Pletikapić, G.; Mišić Radić, T.; Svetličić, V.; Žutić, V. Diatom Polysaccharides: Extracellular Production, Isolation and Molecular Characterization. In The Complex World of Polysaccharides; Karunaratne, D.N., Ed.; InTechOpen: Rijeka, Croatia, 2012; pp. 345–370. ISBN 978-953-51-0819-1. [Google Scholar]
- Mišić Radić, T.; Čačković, A.; Penezić, A.; Dautović, J.; Lončar, J.; Omanović, D.; Juraić, K.; Ljubešić, Z. Physiological and Morphological Response of Marine Diatom Cylindrotheca Closterium (Bacillariophyceae) Exposed to Cadmium. Eur. J. Phycol. 2021, 56, 24–36. [Google Scholar] [CrossRef]
- Natarajan, L.; Omer, S.; Jetly, N.; Jenifer, M.A.; Chandrasekaran, N.; Suraishkumar, G.K.; Mukherjee, A. Eco-Corona Formation Lessens the Toxic Effects of Polystyrene Nanoplastics towards Marine Microalgae Chlorella Sp. Environ. Res. 2020, 188, 109842. [Google Scholar] [CrossRef] [PubMed]
- Giri, S.; Mukherjee, A. Ageing with Algal EPS Reduces the Toxic Effects of Polystyrene Nanoplastics in Freshwater Microalgae Scenedesmus Obliquus. J. Environ. Chem. Eng. 2021, 9, 105978. [Google Scholar] [CrossRef]
- Gao, X.; Yang, K.; Lin, D. Influence of Extracellular Polymeric Substance on the Interaction between Titanium Dioxide Nanoparticles and Chlorella Pyrenoidosa Cells. Sci. Total Environ. 2021, 778, 146446. [Google Scholar] [CrossRef]
Time/h | Particle Hydrodynamic Diameter (dh) as Measured by DLS/nm (vol. %) | Zeta Potential (ζ)/mV | ||
---|---|---|---|---|
UPW | SW | UPW | SW | |
0 | 21.4 ± 1.1 | 54 ± 14 (53.6 %) 345 ± 68 (21.2%) | −14.2 ± 3.2 | −6.0 ± 1.0 |
1 | 21.2 ± 0.8 | 780 ± 120 | −13.1 ± 2.2 | −7.3 ± 0.7 |
24 | 20.9 ± 0.4 | 990 ± 170 | −17.5 ± 3.3 | −6.4 ± 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vukosav, P.; Pašalić, L.; Bakarić, D.; Domazet Jurašin, D.; Mišić Radić, T. Interaction of Silica Nanoparticles with Microalgal Extracellular Polymers. Water 2023, 15, 519. https://doi.org/10.3390/w15030519
Vukosav P, Pašalić L, Bakarić D, Domazet Jurašin D, Mišić Radić T. Interaction of Silica Nanoparticles with Microalgal Extracellular Polymers. Water. 2023; 15(3):519. https://doi.org/10.3390/w15030519
Chicago/Turabian StyleVukosav, Petra, Lea Pašalić, Danijela Bakarić, Darija Domazet Jurašin, and Tea Mišić Radić. 2023. "Interaction of Silica Nanoparticles with Microalgal Extracellular Polymers" Water 15, no. 3: 519. https://doi.org/10.3390/w15030519
APA StyleVukosav, P., Pašalić, L., Bakarić, D., Domazet Jurašin, D., & Mišić Radić, T. (2023). Interaction of Silica Nanoparticles with Microalgal Extracellular Polymers. Water, 15(3), 519. https://doi.org/10.3390/w15030519