Investigating Climate Change Effects on Evapotranspiration and Groundwater Recharge of the Nile Delta Aquifer, Egypt
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Nile Delta Study Area
2.2. Crop Consumptions
2.3. Data Collection
2.4. Model Description
Model Calibration
2.5. Climate Trend Analysis
2.6. Case Scenarios
3. Results and Discussion
3.1. Trend Analysis of Actual Evapotranspiration in the Nile Delta
3.2. Hydrological Water Balance of Nile Delta Aquifer
3.3. Quantification of Evapotranspiration–Aquifer Interaction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loucks, D.P.; van Beek, E. Water Resources Planning and Management: An Overview. In Water Resource Systems Planning and Management; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Abd-Elaty, I.; Saleh, O.K.; Ghanayem, H.M.; Zeleňáková, M.; Kuriqi, A. Numerical assessment of riverbank filtration using gravel back filter to improve water quality in arid regions. Front. Earth Sci. 2022, 10, 1006930. [Google Scholar] [CrossRef]
- Genanu, M.; Alamirew, T.; Senay, G.; Gebremichael, M. Remote Sensing Based Estimation of Evapo-Transpiration Using Selected Algorithms: The Case of Wonji Shoa Sugar Cane Estate, Ethiopia. Int. J. Sensors Sens. Netw. 2017, 5, 1–13. [Google Scholar] [CrossRef]
- Morote, A.-F.; Olcina, J.; Hernández, M. The Use of Non-Conventional Water Resources as a Means of Adaptation to Drought and Climate Change in Semi-Arid Regions: South-Eastern Spain. Water 2019, 11, 93. [Google Scholar] [CrossRef]
- Abd-Elaty, I.; Straface, S. Mathematical Models Ensuring Freshwater of Coastal Zones in Arid and Semiarid Regions. In Earth Systems Protection and Sustainability; Furze, J.N., Eslamian, S., Raafat, S.M., Swing, K., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- El Shinawi, A.; Kuriqi, A.; Zelenakova, M.; Vranayova, Z.; Abd-Elaty, I. Land subsidence and environmental threats in coastal aquifers under sea level rise and over-pumping stress. J. Hydrol. 2022, 608, 127607. [Google Scholar] [CrossRef]
- Ward, F.A.; Pulido-Velazquez, M. Water conservation in irrigation can increase water use. Proc. Natl. Acad. Sci. USA 2008, 105, 18215–18220. [Google Scholar] [CrossRef]
- Levidow, L.; Zaccaria, D.; Maia, R.; Vivas, E.; Todorovic, M.; Scardigno, A. Improving water-efficient irrigation: Prospects and difficulties of innovative practices. Agric. Water Manag. 2014, 146, 84–94. [Google Scholar] [CrossRef]
- Abd-Elaty, I.; Kushwaha, N.; Grismer, M.E.; Elbeltagi, A.; Kuriqi, A. Cost-effective management measures for coastal aquifers affected by saltwater intrusion and climate change. Sci. Total. Environ. 2022, 836, 155656. [Google Scholar] [CrossRef]
- Li, P.; Qian, H.; Wu, J. Conjunctive use of groundwater and surface water to reduce soil salinization in the Yinchuan Plain, North-West China. Int. J. Water Resour. Dev. 2018, 34, 337–353. [Google Scholar] [CrossRef]
- Obaideen, K.; Yousef, B.A.; AlMallahi, M.N.; Tan, Y.C.; Mahmoud, M.; Jaber, H.; Ramadan, M. An overview of smart irrigation systems using IoT. Energy Nexus 2022, 7, 100124. [Google Scholar] [CrossRef]
- Saggi, M.K.; Jain, S. A Survey Towards Decision Support System on Smart Irrigation Scheduling Using Machine Learning approaches. Arch. Comput. Methods Eng. 2022, 29, 4455–4478. [Google Scholar] [CrossRef]
- Taheri, M.; Mohammadian, A.; Ganji, F.; Bigdeli, M.; Nasseri, M. Energy-Based Approaches in Estimating Actual Evapotranspiration Focusing on Land Surface Temperature: A Review of Methods, Concepts, and Challenges. Energies 2022, 15, 1264. [Google Scholar] [CrossRef]
- Aghelpour, P.; Bahrami-Pichaghchi, H.; Karimpour, F. Estimating Daily Rice Crop Evapotranspiration in Limited Climatic Data and Utilizing the Soft Computing Algorithms MLP, RBF, GRNN, and GMDH. Complexity 2022, 2022, 4534822. [Google Scholar] [CrossRef]
- Wanniarachchi, S.; Sarukkalige, R. A Review on Evapotranspiration Estimation in Agricultural Water Management: Past, Present, and Future. Hydrology 2022, 9, 123. [Google Scholar] [CrossRef]
- Tasumi, M.; Allen, R.G. Satellite-based ET mapping to assess variation in ET with timing of crop development. Agric. Water Manag. 2007, 88, 54–62. [Google Scholar] [CrossRef]
- Abd-Elaty, I.; Zelenakova, M. Saltwater intrusion management in shallow and deep coastal aquifers for high aridity regions. J. Hydrol. Reg. Stud. 2022, 40, 101026. [Google Scholar] [CrossRef]
- Wilson, K.B.; Hanson, P.J.; Mulholland, P.J.; Baldocchi, D.D.; Wullschleger, S.D. A comparison of methods for determining forest evapotranspiration and its components: Sap-flow, soil water budget, eddy covariance and catchment water balance. Agric. For. Meteorol. 2001, 106, 153–168. [Google Scholar] [CrossRef]
- Zhao, L.; Xia, J.; Xu, C.-Y.; Wang, Z.; Sobkowiak, L.; Long, C. Evapotranspiration estimation methods in hydrological models. J. Geogr. Sci. 2013, 23, 359–369. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration, Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; ISBN 92-5-104219-5. [Google Scholar]
- De Caro, M.; Perico, R.; Crosta, G.B.; Frattini, P.; Volpi, G.A. Regional-scale conceptual and numerical groundwater flow model in fluvio-glacial sediments for the Milan Metropolitan area (Northern Italy). J. Hydrol. Reg. Stud. 2020, 29, 100683. [Google Scholar] [CrossRef]
- Shah, N.; Nachabe, M.; Ross, M. Extinction Depth and Evapotranspiration from Ground Water under Selected Land Covers. Groundwater 2007, 45, 329–338. [Google Scholar] [CrossRef]
- Doble, R.C.; Crosbie, R. Review: Current and emerging methods for catchment-scale modelling of recharge and evapotranspiration from shallow groundwater. Hydrogeol. J. 2017, 25, 3–23. [Google Scholar] [CrossRef]
- Chen, M.; Izady, A.; Abdalla, O.A. An efficient surrogate-based simulation-optimization method for calibrating a regional MODFLOW model. J. Hydrol. 2017, 544, 591–603. [Google Scholar] [CrossRef]
- Liou, Y.-A.; Kar, S.K. Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms—A Review. Energies 2014, 7, 2821–2849. [Google Scholar] [CrossRef]
- Elkamhawy, E.; Zelenakova, M.; Abd-Elaty, I. Numerical Canal Seepage Loss Evaluation for Different Lining and Crack Techniques in Arid and Semi-Arid Regions: A Case Study of the River Nile, Egypt. Water 2021, 13, 3135. [Google Scholar] [CrossRef]
- Rana, G.; Katerji, N. Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: A review. Eur. J. Agron. 2000, 13, 125–153. [Google Scholar] [CrossRef]
- Xu, C.-Y.; Chen, D. Comparison of seven models for estimation of evapotranspiration and groundwater recharge using lysimeter measurement data in Germany. Hydrol. Process. 2005, 19, 3717–3734. [Google Scholar] [CrossRef]
- Linacre, E.T. Evaporation trends. Theor. Appl. Climatol. 2004, 79, 11–21. [Google Scholar] [CrossRef]
- Han, S.; Tian, F. A review of the complementary principle of evaporation: From the original linear relationship to generalized nonlinear functions. Hydrol. Earth Syst. Sci. 2020, 24, 2269–2285. [Google Scholar] [CrossRef]
- Abd-Elaty, I.; Sallam, G.A.; Straface, S.; Scozzari, A. Effects of climate change on the design of subsurface drainage systems in coastal aquifers in arid/semi-arid regions: Case study of the Nile delta. Sci. Total. Environ. 2019, 672, 283–295. [Google Scholar] [CrossRef]
- El Shinawi, A.; Zeleňáková, M.; Nosair, A.M.; Abd-Elaty, I. Geo-spatial mapping and simulation of the sea level rise influence on groundwater head and upward land subsidence at the Rosetta coastal zone, Nile Delta, Egypt. J. King Saud Univ. Sci. 2022, 34, 102145. [Google Scholar] [CrossRef]
- Abd-Elaty, I.; Pugliese, L.; Zelenakova, M.; Mesaros, P.; El Shinawi, A. Simulation-Based Solutions Reducing Soil and Groundwater Contamination from Fertilizers in Arid and Semi-Arid Regions: Case Study the Eastern Nile Delta, Egypt. Int. J. Environ. Res. Public Health 2020, 17, 9373. [Google Scholar] [CrossRef]
- Eltarabily, M.G. Reuse of Agriculture Drainage Water—Case Studies: Central Valley of California and the Nile Delta in Egypt. In The Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Ashour, M.A.; Aly, T.E.; Eldegwee, Y.A. An Investigation Concerning the Impact of Climate Changes on the Water Equilibrium in the Egyptian Nile Delta. Ann. Valahia Univ. Targoviste Geogr. Ser. 2017, 17, 58–69. [Google Scholar] [CrossRef]
- Eltarabily, M.G.; Moghazy, H.E.M. GIS-based evaluation and statistical determination of groundwater geochemistry for potential irrigation use in El Moghra, Egypt. Environ. Monit. Assess. 2021, 193, 306. [Google Scholar] [CrossRef]
- Abd-Elaty, I.; Zelenakova, M.; Straface, S.; Vranayová, Z.; Abu-Hashim, M. Integrated Modelling for Groundwater Contamination from Polluted Streams Using New Protection Process Techniques. Water 2019, 11, 2321. [Google Scholar] [CrossRef]
- Kambale, J.B. Impact of climate change on groundwater recharge in a semi-arid region of northern India. Appl. Ecol. Environ. Res. 2017, 15, 335–362. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Dunne, K.A. Trends in evaporation and surface cooling in the Mississippi River Basin. Geophys. Res. Lett. 2001, 28, 1219–1222. [Google Scholar] [CrossRef]
- Golubev, V.S.; Lawrimore, J.H.; Groisman, P.Y.; Speranskaya, N.A.; Zhuravin, S.A.; Menne, M.J.; Peterson, T.C.; Malone, R.W. Evaporation changes over the contiguous United States and the former USSR: A reassessment. Geophys. Res. Lett. 2001, 28, 2665–2668. [Google Scholar] [CrossRef]
- Mostafa, A.N.; Wheida, A.; El Nazer, M.; Adel, M.; El Leithy, L.; Siour, G.; Coman, A.; Borbon, A.; Magdy, A.W.; Omar, M.; et al. Past (1950–2017) and future (−2100) temperature and precipitation trends in Egypt. Weather. Clim. Extrem. 2019, 26, 100225. [Google Scholar] [CrossRef]
- Yassen, A.N.; Nam, W.-H.; Hong, E.-M. Impact of climate change on reference evapotranspiration in Egypt. Catena 2020, 194, 104711. [Google Scholar] [CrossRef]
- Ajjur, S.B.; Al-Ghamdi, S.G. Evapotranspiration and water availability response to climate change in the Middle East and North Africa. Clim. Chang. 2021, 166, 28. [Google Scholar] [CrossRef]
- Nikiel, C.A.; Eltahir, E.A.B. Past and future trends of Egypt’s water consumption and its sources. Nat. Commun. 2021, 12, 4508. [Google Scholar] [CrossRef]
- Eltarabily, M.G.A.; Negm, A.M. Groundwater Management for Sustainable Development Plans for the Western Nile Delta. In Groundwater in the Nile Delta; The Handbook of Environmental Chemistry; Negm, A., Ed.; Springer: Cham, Switzerland, 2018; Volume 73. [Google Scholar] [CrossRef]
- SNC. Egypt’s Second National Communication, Egyptian Environmental Affairs Agency (EEAA-May 2010), under the United Nations Framework Convention on Climate Change on Climate Change (UNFCCC). 2010. Available online: https://unfccc.int/resource/docs/natc/egync2.pdf (accessed on 1 August 2022).
- RIGW. Hydrogeological Map of Nile Delta. Scale 1: 500,000, 1st ed.; Nile Delta; Research Institute for Groundwater (RIGW), National Water Research Center (NWRC): El-Qanatir, Egypt, 1992; Internal report. [Google Scholar]
- Abdelaty, I.M. Numerical and Experimental Study for Simulating Climatic Changes Effects on Nile Delta Aquifer. Ph.D. Thesis, Faculty of Engineering, Zagazig University, Zagazig, Egypt, 2014. [Google Scholar]
- Elewa, H.H. Potentialities of Water Resources Pollution of the Nile River Delta. Open Hydrol. J. 2010, 4, 1–13. [Google Scholar] [CrossRef]
- Radwan, T.M.; Blackburn, G.A.; Whyatt, J.D.; Atkinson, P.M. Dramatic Loss of Agricultural Land Due to Urban Expansion Threatens Food Security in the Nile Delta, Egypt. Remote Sens. 2019, 11, 332. [Google Scholar] [CrossRef]
- Al-Agha, D.E.; Closas, A.; Molle, F. Survey of groundwater use in the central part of the Nile Delta. Water and Salt Management in the Nile Delta: Activity Report Number 6. 2015. Available online: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers16-02/010066349.pdf (accessed on 1 August 2022).
- Stanley, J.-D.; Clemente, P.L. Increased Land Subsidence and Sea-Level Rise Are Submerging Egypt’s Nile Delta Coastal Margin. GSA Today 2017, 27, 4–11. [Google Scholar] [CrossRef]
- Abd-Elaty, I.; Pugliese, L.; Bali, K.M.; Grismer, M.E.; Eltarabily, M.G. Modelling the impact of lining and covering irrigation canals on underlying groundwater stores in the Nile Delta, Egypt. Hydrol. Process. 2021, 36, e14466. [Google Scholar] [CrossRef]
- Said, R. The Geologic Evolution of the River Nile; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Abd-Elaty, I.; Javadi, A.A.; Abd-Elhamid, H. Management of saltwater intrusion in coastal aquifers using different wells systems: A case study of the Nile Delta aquifer in Egypt. Hydrogeol. J. 2021, 29, 1767–1783. [Google Scholar] [CrossRef]
- Ebraheem, A.-A.M.; Senosy, M.M.; Dahab, K.A. Geoelectrical and Hydrogeochemical Studies for Delineating Ground-Water Contamination Due to Salt-Water Intrusion in the Northern Part of the Nile Delta, Egypt. Groundwater 1997, 35, 216–222. [Google Scholar] [CrossRef]
- Morsy, W.S. Environmental Management of Groundwater Resources for Nile Delta Region. Ph.D. Thesis, Faculty of Engineering, Cairo University, Cairo, Egypt, 2009. [Google Scholar]
- Abd-Elhamid, H.F.; Abd-Elaty, I.; Negm, A.M. Control of Saltwater Intrusion in Coastal Aquifers. In Groundwater in the Nile Delta; Negm, A., Ed.; The Handbook of Environmental Chemistry; Springer: Cham, Switzerland, 2018; Volume 73. [Google Scholar] [CrossRef]
- Eltarabily, M.G.; Moghazy, H.E.; Abdel-Fattah, S.; Negm, A.M. The use of numerical modeling to optimize the construction of lined sections for a regionally-significant irrigation canal in Egypt. Environ. Earth Sci. 2020, 79, 80. [Google Scholar] [CrossRef]
- Abd-Elaty, I.; Saleh, O.K.; Ghanayem, H.M.; Grischek, T.; Zelenakova, M. Assessment of hydrological, geohydraulic and operational conditions at a riverbank filtration site at Embaba, Cairo using flow and transport modeling. J. Hydrol. Reg. Stud. 2021, 37, 100900. [Google Scholar] [CrossRef]
- Abd-Elaty, I.; Zeleňáková, M.; Krajníková, K.; Abd-Elhamid, H. Analytical Solution of Saltwater Intrusion in Costal Aquifers Considering Climate Changes and Different Boundary Conditions. Water 2021, 13, 995. [Google Scholar] [CrossRef]
- Mabrouk, M.; Jonoski, A.; Essink, G.O.; Uhlenbrook, S. Assessing the Fresh–Saline Groundwater Distribution in the Nile Delta Aquifer Using a 3D Variable-Density Groundwater Flow Model. Water 2019, 11, 1946. [Google Scholar] [CrossRef]
- Abd-Elaty, I.; Shahawy, A.E.; Santoro, S.; Curcio, E.; Straface, S. Effects of groundwater abstraction and desalination brine deep injection on a coastal aquifer. Sci. Total. Environ. 2021, 795, 148928. [Google Scholar] [CrossRef]
- Eltarabily, M.G.; Negm, A.M.; Yoshimura, C.; Saavedra, O.C. Modeling the impact of nitrate fertilizers on groundwater quality in the southern part of the Nile Delta, Egypt. Water Supply 2017, 17, 561–570. [Google Scholar] [CrossRef]
- Smith, M. Cropwat: A Computer Program for Irrigation Planning and Management (No. 46); Food & Agriculture Org.: Roma, Italy, 1992. [Google Scholar]
- Available online: https://www.fao.org/3/V9978E/v9978e0e.htm (accessed on 1 August 2022).
- Abatzoglou, J.T.; Dobrowski, S.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 Reanalysis: General Specifications and Basic Characteristics. J. Meteorol. Soc. Jpn. Ser. II 2015, 93, 5–48. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Aslam, M.R.; Mokhtar, A.; Deb, P.; Abubakar, G.A.; Kushwaha, N.; Venancio, L.P.; Malik, A.; Kumar, N.; Deng, J. Spatial and temporal variability analysis of green and blue evapotranspiration of wheat in the Egyptian Nile Delta from 1997 to 2017. J. Hydrol. 2021, 594, 125662. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Deng, J.; Wang, K.; Hong, Y. Crop Water footprint estimation and modeling using an artificial neural network approach in the Nile Delta, Egypt. Agric. Water Manag. 2020, 235, 106080. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Deng, J.; Wang, K.; Malik, A.; Maroufpoor, S. Modeling long-term dynamics of crop evapotran-spiration using deep learning in a semi-arid environment. Agric. Water Manag. 2020, 241, 106334. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Azad, N.; Arshad, A.; Mohammed, S.; Mokhtar, A.; Pande, C.; Etedali, H.R.; Bhat, S.A.; Islam, A.R.M.T.; Deng, J. Applications of Gaussian process regression for predicting blue water footprint: Case study in Ad Daqahliyah, Egypt. Agric. Water Manag. 2021, 255, 107052. [Google Scholar] [CrossRef]
- Wang, H.F.; Anderson, M.P. Introduction to Groundwater Modeling: Finite Difference and Finite Element Methods; Academic Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Ghafouri-Azar, M.; Bae, D.-H.; Kang, S.-U. Trend Analysis of Long-Term Reference Evapotranspiration and Its Components over the Korean Peninsula. Water 2018, 10, 1373. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of trends in reference evapotranspiration data in a humid climate. Hydrol. Sci. J. 2014, 59, 165–180. [Google Scholar] [CrossRef]
- Adeyeri, O.E.; Ishola, K.A. Variability and Trends of Actual Evapotranspiration over West Africa: The Role of Environmental Drivers. Agric. For. Meteorol. 2021, 308, 108574. [Google Scholar] [CrossRef]
Case | Unit | Layer No. | Horizontal and Vertical Hydraulic Conductivities | Specific Storage Ss (m−1) | Specific Yield Sy (-) | Effective Porosity (%) | Recharge (mm day−1) | |
---|---|---|---|---|---|---|---|---|
Kh (m day−1) | Kv (m day−1) | |||||||
Initial | Clay cap | 1 | 0.10–0.25 | 0.01–0.025 | 10−3 | 0.10 | 50–60 | 0.25–0.80 |
Quaternary aquifer | 2–11 | 5–100 | 0.50–10 | 5 × 10−3–5 × 10−4 | 0.15–0.20 | 30–20 | ||
Calibrated | Clay cap | 1 | 0.35 | 0.035 | 10−3 | 0.10 | 50–60 | 0.01–1.05 |
Quaternary aquifer | 2–11 | 25–150 | 2.5–15 | 5 × 10−3–5 × 10−4 | 0.15–0.20 | 30–20 |
Boundary Parameter | Base Case | Simulation Period | ||
---|---|---|---|---|
Until 2030 | Until 2050 | Until 2070 | ||
Constant heads | 840,030 | 1,073,700 | 1,102,500 | 1,208,900 |
Flow into the aquifer | 6,000,400 | 4,815,900 | 4,692,300 | 4,271,700 |
Canals leakage | 732,910 | 985,600 | 1,014,400 | 1,116,100 |
Total inflow | 7,573,340 | 6,875,200 | 6,809,200 | 6,596,700 |
Constant heads | 1,656,200 | 1,394,600 | 1,370,400 | 1,292,200 |
Wells | 4,378,700 | 4,378,700 | 4,378,700 | 4,378,700 |
Drains | 1,480,900 | 1,068,100 | 1,027,700 | 897,500 |
Canal leakage | 23,176 | 6,167.40 | 5,572.80 | 3,888.50 |
General heads | 34,346 | 27,614 | 26,913 | 24,522 |
Total outflow | 7,573,322 | 6,875,181 | 6,809,286 | 6,596,811 |
Boundary Parameter | % Increase (+) or Decrease (−) Compared to the Base Case | ||
---|---|---|---|
Until 2030 | Until 2050 | Until 2070 | |
Constant heads | 27.8 | 31.2 | 43.9 |
Flow into the aquifer | −19.7 | −21.8 | −28.8 |
Canals leakage | 34.5 | 38.4 | 52.3 |
Total inflow | −9.2 | −10.1 | −12.9 |
Constant head | −15.8 | −17.3 | −22.0 |
Wells | 0.0 | 0.0 | 0.0 |
Drains | −27.9 | −30.6 | −39.4 |
Canals leakage | −73.4 | −76.0 | −83.2 |
General heads | −19.6 | −21.6 | −28.6 |
Total outflow | −9.2 | −10.1 | −12.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eltarabily, M.G.; Abd-Elaty, I.; Elbeltagi, A.; Zeleňáková, M.; Fathy, I. Investigating Climate Change Effects on Evapotranspiration and Groundwater Recharge of the Nile Delta Aquifer, Egypt. Water 2023, 15, 572. https://doi.org/10.3390/w15030572
Eltarabily MG, Abd-Elaty I, Elbeltagi A, Zeleňáková M, Fathy I. Investigating Climate Change Effects on Evapotranspiration and Groundwater Recharge of the Nile Delta Aquifer, Egypt. Water. 2023; 15(3):572. https://doi.org/10.3390/w15030572
Chicago/Turabian StyleEltarabily, Mohamed Galal, Ismail Abd-Elaty, Ahmed Elbeltagi, Martina Zeleňáková, and Ismail Fathy. 2023. "Investigating Climate Change Effects on Evapotranspiration and Groundwater Recharge of the Nile Delta Aquifer, Egypt" Water 15, no. 3: 572. https://doi.org/10.3390/w15030572
APA StyleEltarabily, M. G., Abd-Elaty, I., Elbeltagi, A., Zeleňáková, M., & Fathy, I. (2023). Investigating Climate Change Effects on Evapotranspiration and Groundwater Recharge of the Nile Delta Aquifer, Egypt. Water, 15(3), 572. https://doi.org/10.3390/w15030572