Combined Analysis of Net Groundwater Recharge Using Water Budget and Climate Change Scenarios
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. Method of Water Budget
3.2. Method of Climate Change Scenarios
4. Results
4.1. Net Groundwater Recharge Rate by the Water Budget
4.2. Net Groundwater Recharge Rate under the Climate Change Scenarios
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sophocleous, M.A. Combining the soilwater balance and water-level fluctuation methods to estimate natural groundwater recharge: Practical aspects. J. Hydrol. 1991, 124, 229–241. [Google Scholar] [CrossRef]
- Fetter, C.W. Applied Hydrology, 4th ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 2003; 676p. [Google Scholar]
- Schwartz, F.W.; Zhang, H. Fundamentals of Groundwater; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; 583p. [Google Scholar]
- Healy, R.W.; Cook, P.G. Using groundwater levels to estimate recharge. Hydrogeol. J. 2002, 10, 91–109. [Google Scholar] [CrossRef]
- Park, E.; Parker, J.C. A simple model for water table fluctuations in response to precipitation. J. Hydrol. 2008, 356, 344–349. [Google Scholar] [CrossRef]
- Moon, S.-K.; Woo, N.C.; Lee, K.S. Statistical analysis of hydrographs and water-table fluctuation to estimate groundwater recharge. J. Hydrol. 2004, 292, 198–209. [Google Scholar] [CrossRef]
- Choi, I.H.; Woo, N.C.; Kim, S.-J.; Moon, S.-K.; Kim, J. Estimation of the groundwater recharge rate during a rainy season at a headwater catchment in Gwangneung, Korea. Korean J. Agric. For. Meteorol. 2007, 9, 75–87. [Google Scholar] [CrossRef]
- Chung, I.-M.; Kim, N.W.; Lee, J. Estimation of groundwater recharge by considering runoff process and groundwater level variation in watershed. J. Soil Groundw. Environ. 2007, 12, 19–32. [Google Scholar]
- Kim, N.W.; Chung, I.-M.; Won, Y.S. An integrated surface water-groundwater modeling by using fully combined SWAT-MODFLOW model. J. Korean Soc. Civil Eng. 2006, 26, 481–488. [Google Scholar]
- Noh, D.N.; Park, H.J.; Cheong, J.-Y.; Hamm, S.-Y. Groundwater recharge analysis and comparison using hybrid water-table fluctuation method and groundwater modeling: A case of Gangcheon basin in Yeoju City. J. Geol. Soc. Korea 2018, 54, 169–181. [Google Scholar] [CrossRef]
- Bae, S.K. Applicability of NRCS-CN method for the estimation of groundwater recharge. J. Korean Soc. Civ. Eng. B 2005, 25, 425–430. [Google Scholar]
- Lee, S.H.; Bae, S.K. Groundwater balance in urban area. J. Environ. Sci. 2011, 20, 1553–1560. [Google Scholar]
- Viji, R.; Prasanna, P.R.; Ilangovan, R. Gis Based SCS-CN Method for estimating runoff In Kundahpalam watershed, Nilgries district, Tamilnadu. Earth Sci. Res. J. 2015, 19, 59–64. [Google Scholar]
- Ling, L.; Yusop, Z.; Yap, W.-S.; Tan, W.L.; Chow, M.F.; Ling, J.L. A calibrated, watershed-specific SCS-CN Method: Application to Wangjiaqiao watershed in the three gorges area, China. Water 2019, 12, 60. [Google Scholar] [CrossRef]
- Shi, W.; Wang, N. An improved SCS-CN method incorporating slope, soil moisture, and storm duration factors for runoff prediction. Water 2020, 12, 1335. [Google Scholar] [CrossRef]
- Dripps, W.R.; Bradbury, K.R. A simple daily soil-water balance model for estimating the spatial and temporal distribution of groundwater recharge in temperate humid areas. Hydrogeol. J. 2007, 15, 433–444. [Google Scholar] [CrossRef]
- Holman, I.P. Climate change impacts on groundwater recharge- uncertainty, shortcomings, and the way forward? Hydrogeol. J. 2005, 14, 637–647. [Google Scholar] [CrossRef] [Green Version]
- Schindler, U.; Steidl, J.; Müller, L.; Eulenstein, F.; Thiere, J. Drought risk to agricultural land in Northeast and Central Germany. J. Plant Nutr. Soil Sci. 2007, 170, 357–362. [Google Scholar] [CrossRef]
- Patricia, A.J.S.; Wang, L.; Koike, T. Modeling the hydrologic responses of the Pampanga River basin, Philippines: A quantitative approach for identifying droughts. Water Resour. Res. 2011, 47, 1–21. [Google Scholar]
- Jang, S.; Hamm, S.-Y.; Yoon, H.S.; Kim, G.B.; Park, J.H.; Kim, M.S. Predicting long-term change of groundwater level with regional climate model in South Korea. Geosci. J. 2015, 19, 503–513. [Google Scholar] [CrossRef]
- Lee, J.H.; Jeon, S.W.; Lee, M.J.; Hong, H.J. Coupled Model Development between Groundwater Recharge Rate Quantity and Climate Change in River Watershed; Korea Environment Institute: Sejong City, Republic of Korea, 2009; 09-06-52(4); 142p. [Google Scholar]
- Lee, J.H.; Jeon, S.W.; Lee, M.J.; Hong, H.J. Coupled Model Development between Groundwater Recharge Rate Quantity and Climate Change in River Watershed II; Korea Environment Institute: Sejong City, Republic of Korea, 2010; 10-02-97(5); 149p. [Google Scholar]
- Lee, M.J.; Lee, J.H. Coupled model development between groundwater recharge quantity and climate change using GIS, Green Growth Research Report. J. Korean Assoc. Geogr. Inf. Stud. 2011, 14, 36–51. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lee, K.K. A Comparative study on characteristics of waterlevel responses to rainfall in the two aquifer systems. J. Soil Groundw. Environ. 2002, 7, 3–14. [Google Scholar]
- Kim, T.W.; Hamm, S.-Y.; Cheong, J.Y.; Ryu, S.M.; Lee, J.H.; Son, K.T.; Kim, N.H. Time series and groundwater recharge analyses using water fluctuation data in mountain Geumjeong area. J. Environ. Sci. 2008, 17, 257–267. [Google Scholar]
- Jeon, H.-T. A Study of Long-Term Net Recharge Rate of Groundwater in Korea. Ph.D. Dissertation, Pusan National University, Busan, Republic of Korea, 2021; 167p. [Google Scholar]
- Morel-Seytoux, H.J.; Verdin, J.P. Extension of the SCS Rainfall-Runoff Methodology for Ungauged Watersheds; Colorado State University: Fort Collins, CO, USA, 1981. [Google Scholar]
- Aller, L.; Bennett, T.; Lehr, J.H.; Petty, R.H.; Hackett, G. DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings; Prepared for U.S. EPA Office of Research and Development, Ada, OK; National Water Well Association: Dublin, OH, USA, 1987. [Google Scholar]
- Thornthwaite, C.W. Report of the Committee on Transpiration and Evaporation, 1943–1944. Eos Trans. Am. Geophys. Union 1944, 25, 683–693. [Google Scholar]
- Penman, H.L. Natural evapotranspiration from open water, bare soil, and grass. Proc. R. Soc. Lond. Ser. A 1948, 193, 120–145. [Google Scholar]
- Blaney, H.F.; Criddle, W.D. Determining Water Requirements in Irrigated Areas from Climatological and Irrigation Data; USDA (SCS) TP-96; US Department of Agriculture: Washington, DC, USA, 1950.
- Turc, L. Evaluation des besoins en eau d’irrigation. evapotranspiration potentielle, formulation simplifie et mise a jour. Ann. Agron 1963, 12, 13–49. [Google Scholar]
- Doorenbos, J.; Pruitt, W.O.; Aboukhaled, A. Crop water requirements. In Food and Agriculture Organization Irrigation and Drainage Paper 24, Technical Report; FAO: Rome, Italy, 1977; 156p. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapo-Transpiration-Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Liu, Z. Estimating land evapotranspiration from potential evapotranspiration constrained by soil water at daily scale. Sci. Total Environ. 2022, 834, 155327. [Google Scholar] [CrossRef]
- Yang, S.I.; Kang, D.H.; Kwon, B.H.; Kim, B.W. Influence of land use and meteorological factors for evapotranspiration estimation in the coastal urban area. J. Environ. Sci. Int. 2010, 19, 295–304. [Google Scholar] [CrossRef]
- Meyboom, P. Estimating groundwater recharge from stream hydrographs. J. Geophys. Res. 1961, 66, 1203–1214. [Google Scholar] [CrossRef]
- Rorabaugh, M.I. Estimating changes in bank storage and ground-water contribution to stream flow. Inter. Assoc. Sci. Hydrol. 1964, 63, 432–441. [Google Scholar]
- IPCC. Climate Change 2007: The Physical Science Basis. In The Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Choi, D.-H.; Lee, B.-Y.; OH, H.-Y. Long and short wave radiation and correlation analysis between downtown and suburban area(Ⅱ). J. Korean Sol. Energy Soc. 2013, 33, 101–110. [Google Scholar] [CrossRef]
- Moon, S.-K.; Woo, N.C.; Lee, K.S. A study on the relation between types and recharges of groundwater: Analysis on national groundwater monitoring network data. J. Soil Groundw. Environ. 2002, 7, 45–59. [Google Scholar]
- Keem, M.; Ko, I.; Kim, S. An analysis of the effect of climate change on Nakdong River flow condition using CGCM’s future climate information. J. Korean Soc. Water Qual. 2009, 25, 863–871. [Google Scholar]
- Snyder, R.; Moratiel, R.; Song, Z.; Swelam, A.; Jomaa, I.; Shapland, T. Evapotranspiration response to climate change. Acta Hortic. 2011, 922, 91–98. [Google Scholar] [CrossRef]
- Mazrooei, A.; Reitz, M.; Wang, D.; Sankarasubramanian, A. Urbanization impacts on evapotranspiration across various spatio-temporal scales. Earth’s Future 2021, 9, e2021EF002045. [Google Scholar] [CrossRef]
- Ha, K.; Park, C.; Kim, S.; Shin, E.; Lee, E. Groundwater recharge evaluation on Yangok-ri area of Hongseong using a distributed hydrologic model (VELAS). Econ. Environ. Geol. 2021, 54, 161–176. [Google Scholar] [CrossRef]
- Filgueiras, R.; Almeida, T.S.; Mantovani, E.C.; Dias, S.H.B.; Fernandes-Filho, E.I.; Cunha, F.F.; Venancio, L.P. Soil water content and actual evapotranspiration predictions using regression algorithms and remote sensing data. Agric. Water Manag. 2020, 241, 106346. [Google Scholar] [CrossRef]
- Senay, G.B.; Kagone, S.; Velpuri, N.M. Operational global actual evapotranspiration: Development, evaluation, and dissemination. Sensors 2020, 20, 1915. [Google Scholar] [CrossRef] [PubMed]
Surface Elevation (m) | Well Depth (m) | Groundwater Level (m, amsl) | Temp. (°C) | EC (μS/cm) | |
---|---|---|---|---|---|
Max | 735.6 | 168.0 | 735.1 | 20.6 | 11,695 |
Min | 1.4 | 40.0 | −6.8 | 11.0 | 83.9 |
Arithmetic mean | 105.6 | 79.7 | 98.6 | 15.0 | 536 |
Median | 78.9 | 70.0 | 72.4 | 15.0 | 320 |
Standard deviation | 105.4 | 19.8 | 104.6 | 1.2 | 1083 |
Range | 734.2 | 128.0 | 741.9 | 9.6 | 11,611 |
Year | P, mm | DR, mm (%) | ET0, mm (%) | BF, mm (%) | NGRR, mm (%) |
---|---|---|---|---|---|
2009 | 1191 | 274.91 (23.08) | 567.52 (47.65) | 196.95 (16.54) | 151.62 (12.73) |
2010 | 1345 | 315.14 (23.43) | 590.48 (43.90) | 239.94 (17.84) | 199.44 (14.83) |
2011 | 1494 | 372.25 (24.92) | 605.59 (40.53) | 254.81 (17.06) | 261.35 (17.49) |
2012 | 1464 | 367.67 (25.11) | 602.13 (41.13) | 254.37 (17.38) | 239.83 (16.38) |
2013 | 1072 | 254.72 (23.76) | 547.28 (51.05) | 133.09 (12.42) | 136.91 (12.77) |
2014 | 1363 | 345.11 (25.32) | 592.25 (43.45) | 189.08 (13.87) | 236.56 (17.36) |
2015 | 1025 | 238.26 (23.24) | 506.74 (49.44) | 155.47 (15.17) | 124.53 (12.15) |
2016 | 1465 | 363.33 (24.80) | 604.17 (41.24) | 236.25 (16.13) | 261.25 (17.83) |
2017 | 865 | 183.21 (21.18) | 452.27 (52.29) | 122.64 (14.18) | 106.88 (12.36) |
2018 | 1482 | 368.18 (24.84) | 604.89 (40.82) | 240.64 (16.24) | 268.29 (18.10) |
Average Daily Temp. (°C) | Daily Max. Temp. (°C) | Daily Min. Temp. (°C) | Solar Radiation (h) | Atmospheric Pressure (kPa) | Average Daily Water Vapor Pressure (kPa) | Average Daily Wind Speed (m/s) | |
---|---|---|---|---|---|---|---|
2009 | 15.2 | 32.5 | −7.6 | 5.99 | 100.7 | 1.25 | 3.4 |
2010 | 14.9 | 34.1 | −8.1 | 6.25 | 100.8 | 1.26 | 3.3 |
2011 | 14.6 | 33 | −12.8 | 6.37 | 100.9 | 1.23 | 3.3 |
2012 | 14.5 | 34.5 | −9.9 | 7.12 | 100.7 | 1.27 | 3.3 |
2013 | 15.3 | 35 | −10.7 | 7.7 | 100.7 | 1.24 | 3.4 |
2014 | 15.1 | 32.9 | −6 | 6.89 | 100.8 | 1.25 | 3.2 |
2015 | 15.4 | 33.5 | −7.8 | 7.04 | 100.8 | 1.24 | 3.1 |
2016 | 15.7 | 37.3 | −10.2 | 6.99 | 100.8 | 1.26 | 3.1 |
2017 | 15.2 | 36.2 | −7.7 | 7.55 | 100.8 | 1.25 | 3.2 |
2018 | 15.1 | 36.4 | −9.9 | 7.41 | 100.8 | 1.24 | 3.2 |
Period | RCP 4.5 | RCP 8.5 | ||||
---|---|---|---|---|---|---|
(Starting Year–Ending Year) | P | Sy | NGRR | P | Sy | NGRR |
2009–2018 | 1455.1 | 0.12 | 13.73 | 1445.2 | 0.12 | 14.43 |
2019–2039 | 1312.6 | 0.12 | 7.74 | 1387.4 | 0.12 | 6.31 |
2040–2059 | 1493.1 | 0.12 | 7.81 | 1424.7 | 0.12 | 5.78 |
2060–2079 | 1538.5 | 0.12 | 7.30 | 1474.8 | 0.12 | 5.72 |
2080–2100 | 1414.4 | 0.12 | 7.05 | 1585.0 | 0.12 | 5.90 |
Period | RCP 4.5 | RCP 8.5 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
(Starting Year–Ending Year) | Max | Min | Mean | Max | Min | Mean | ||||
2009–2018 | 520.2 | August 2014 | 1.9 | November 2017 | 107.6 | 520.2 | August 2014 | 1.9 | November 2017 | 107.6 |
2019–2039 | 502.3 | July 2020 | 5.7 | December 2020 | 109.9 | 580.8 | July 2031 | 4.9 | November 2035 | 115.9 |
2040–2059 | 702.7 | July 2052 | 4.8 | February 2042 | 124.4 | 657.0 | July 2040 | 5.8 | December 2058 | 118.7 |
2060–2079 | 824.1 | July 2077 | 6.6 | February 2079 | 128.2 | 549.1 | July 2061 | 3.5 | April 2072 | 122.9 |
2080–2100 | 980.3 | July 2100 | 4.8 | February 2098 | 117.9 | 790.2 | July 2092 | 4.5 | December 2089 | 132.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, S.-M.; Jeon, H.-T.; Cheong, J.-Y.; Kim, J.; Hamm, S.-Y. Combined Analysis of Net Groundwater Recharge Using Water Budget and Climate Change Scenarios. Water 2023, 15, 571. https://doi.org/10.3390/w15030571
Yun S-M, Jeon H-T, Cheong J-Y, Kim J, Hamm S-Y. Combined Analysis of Net Groundwater Recharge Using Water Budget and Climate Change Scenarios. Water. 2023; 15(3):571. https://doi.org/10.3390/w15030571
Chicago/Turabian StyleYun, Sul-Min, Hang-Tak Jeon, Jae-Yeol Cheong, Jinsoo Kim, and Se-Yeong Hamm. 2023. "Combined Analysis of Net Groundwater Recharge Using Water Budget and Climate Change Scenarios" Water 15, no. 3: 571. https://doi.org/10.3390/w15030571
APA StyleYun, S. -M., Jeon, H. -T., Cheong, J. -Y., Kim, J., & Hamm, S. -Y. (2023). Combined Analysis of Net Groundwater Recharge Using Water Budget and Climate Change Scenarios. Water, 15(3), 571. https://doi.org/10.3390/w15030571