Evolution of Water–Sediment Situation and Attribution Analysis in the Upper Yangtze River, China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Methods
3.1. TFPW–MK Trend Mutation Test
3.2. IHA-RVA Method
3.3. Ecological Diversity Assessment
3.4. Cumulative Curve Method
3.5. Water–Sediment Rating Curve Method
3.6. Estimation of Potential Evapotranspiration
3.7. Elasticity Factor Method Based on Budyko Assumption
3.8. Sediment Attribution Decomposition Method
4. Results and Analysis
4.1. Analysis of the Time-Varying Characteristics of Water and Sediment
4.1.1. Water and Sediment Trend Analysis
4.1.2. Analysis of Water–Sediment Mutability
4.2. Characteristics of the Water–Sediment Situation and Ecological Response
4.2.1. Analysis of the Degree of Change in the Water and Sediment Situation in the Upper Yangtze River
4.2.2. Biodiversity Analysis of the Upper Yangtze River
4.3. Water and Sediment Change Attribution Analysis
4.3.1. Water–Sediment Correlation Analysis
4.3.2. Spatial and Temporal Distribution Patterns of Meteorological Elements
4.3.3. Attribution Analysis Based on Elasticity Coefficient Method
4.3.4. Study Based on Sediment Attribution Decomposition Method
5. Discussion
5.1. Analysis of Factors Influencing Water and Sediment Changes
5.2. Environmental Impact of Water and Sediment Changes
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ge, J.; Peng, W.; Huang, W.; Qu, X.; Singh, S.K. Quantitative Assessment of Flow Regime Alteration Using a Revised Range of Variability Methods. Water 2018, 10, 597. [Google Scholar] [CrossRef]
- Hu, Y.; Feng, J.; Wang, M.; He, X. Influences of climate and land surface change on runoff and sediment in Jialing River Basin. Sci. Soil Water Conserv. 2016, 14, 75–83. [Google Scholar] [CrossRef]
- Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A Method for Assessing Hydrologic Alteration within Ecosystems. Conserv. Biol. 1996, 10, 1163–1174. [Google Scholar] [CrossRef]
- Galat, D.L.; Lipkin, R. Restoring ecological integrity of great rivers: Historical hydrographs aid in defining reference conditions for the Missouri River. In Hydrobiologia; Jungwirth, M., Muhar, S., Schmutz, S., Eds.; Springer: Dordrecht, The Netherlands, 2000; Volume 422, pp. 29–48. ISBN 978-94-010-5814-8. [Google Scholar]
- Cheng, N.N.; He, H.M.; Yang, S.Y.; Lu, Y.J.; Jing, Z.W. Impacts of topography on sediment discharge in Loess Plateau, China. Quat. Int. 2017, 440, 119–129. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, D.; Lu, J.; Yao, S.; Yan, X.; Jin, Z.; Liu, L.; Lu, X.X. Distinguishing the multiple controls on the decreased sediment flux in the Jialing River basin of the Yangtze River, Southwestern China. Catena 2020, 193, 104593. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.J.; Piao, S.L.; Lü, Y.H.; Ciais, P.; Feng, X.M.; Wang, Y.F. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 2016, 9, 38–41. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, C. Impacts of Afforestation, Deforestation, and Reforestation on Forest Cover in China from 1949 to 2003. Soc. Am. For. 2006, 10, 341–356. [Google Scholar] [CrossRef]
- Xu, Z.; Bennett, M.T.; Tao, R.; Xu, J. China’s Sloping Land Conversion Program Four Years on: Current Situation and Pending Issues. Int. For. Rev. 2004, 6, 317–326. [Google Scholar] [CrossRef]
- Zhai, R.; Tao, F. Contributions of climate change and human activities to runoff change in seven typical catchments across China. Sci. Total Environ. 2017, 605–606, 219–229. [Google Scholar] [CrossRef]
- Milliman, J.D.; Farnsworth, K.L.; Jones, P.D.; Xu, K.H.; Smith, L.C. Climatic and anthropogenic factors affecting river discharge to the global ocean, 1951–2000. Glob. Planet. Chang. 2008, 62, 187–194. [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, X.; Liu, Q.; Yao, Y.; Li, Y.; Wu, X.; Wang, C.; Yu, W.; Wang, T. Assessing natural and anthropogenic influences on water discharge and sediment load in the Yangtze River, China. Sci. Total Environ. 2017, 607, 920–932. [Google Scholar] [CrossRef]
- Sivapalan, M.; Zhang, L.; Vertessy, R.; Blöschl, G. Downward approach to hydrological prediction. Hydrol. Process. 2003, 17, 2099. [Google Scholar] [CrossRef]
- Sankarasubramanian, A.; Vogel, R.M. Annual hydroclimatology of the United States. Water Resour. Res. 2002, 38, 19-1–19-12. [Google Scholar] [CrossRef]
- Htwe, A.T.; Thant, A.A. Comparison of Radiation-based Method and the Standard Penman- Monteith Estimates of Reference Evapotranspiration in Myanmar. Int. J. Sci. Eng. Technol. Res. 2014, 3, 857–864. [Google Scholar]
- He, Y.; Song, J.; Hu, Y.; Tu, X.; Zhao, Y. Impacts of different weather conditions and landuse change on runoff variations in the Beiluo River Watershed, China. Sustain. Cities Soc. 2019, 50, 101674. [Google Scholar] [CrossRef]
- Yang, D.; Sun, F.; Liu, Z.; Cong, Z.; Lei, Z. Interpreting the complementary relationship in non-humid environments based on the Budyko and Penman hypotheses. Geophys. Res. Lett. 2006, 33, 18. [Google Scholar] [CrossRef]
- Liu, B.; Xu, M.; Henderson, M.; Gong, W. A spatial analysis of pan evaporation trends in China, 1955–2000. J. Geophys. Res. Atmos. 2004, 109, D15102. [Google Scholar] [CrossRef]
- Lv, X.; Zuo, Z.; Ni, Y.; Sun, J.; Wang, H. The effects of climate and catchment characteristic change on streamflow in a typical tributary of the Yellow River. Sci. Rep. 2019, 9, 14535. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, G.; Tian, P.; Mu, X.; Tian, X.; Feng, J.; Bai, Y. Runoff changes in the major river basins of China and their responses to potential driving forces. J. Hydrol. 2022, 607, 127536. [Google Scholar] [CrossRef]
- Li, D.; Lu, X.X.; Yang, X.; Chen, L.; Lin, L. Sediment load responses to climate variation and cascade reservoirs in the Yangtze River: A case study of the Jinsha River. Geomorphology 2018, 322, 41–52. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.; Liang, W.; Liu, Y.; Wang, Y. Driving forces of changes in the water and sediment relationship in the Yellow River. Sci. Total Environ. 2017, 576, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, Z.; Wang, Y.; Saito, Y.; Liu, J.P. Reconstruction of sediment flux from the Changjiang (Yangtze River) to the sea since the 1860s. J. Hydrol. 2008, 349, 318–332. [Google Scholar] [CrossRef]
- Nilsson, C.; Reidy, C.A.; Dynesius, M.; Revenga, C. Fragmentation and Flow Regulation of the World’s Large River Systems. Science 2005, 308, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.X.; Ran, L.S.; Liu, S.; Jiang, T.; Zhang, S.R.; Wang, J.J. Sediment loads response to climate change: A preliminary study of eight large Chinese rivers. Int. J. Sediment Res. 2013, 28, 1–14. [Google Scholar] [CrossRef]
- Zhu, Y.-M.; Lu, X.X.; Zhou, Y. Sediment flux sensitivity to climate change: A case study in the Longchuanjiang catchment of the upper Yangtze River, China. Glob. Planet. Chang. 2008, 60, 429–442. [Google Scholar] [CrossRef]
- Sun, P.; Wu, Y.; Wei, X.; Sivakumar, B.; Qiu, L.; Mu, X.; Chen, J.; Gao, J. Quantifying the contributions of climate variation, land use change, and engineering measures for dramatic reduction in streamflow and sediment in a typical loess watershed, China. Ecol. Eng. 2020, 142, 105611. [Google Scholar] [CrossRef]
- Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 2019, 12, 7–21. [Google Scholar] [CrossRef]
- Wu, J.; Miao, C.; Zhang, X.; Yang, T.; Duan, Q. Detecting the quantitative hydrological response to changes in climate and human activities. Sci. Total Environ. 2017, 586, 328–337. [Google Scholar] [CrossRef]
- Fan, H.; He, H.; Xu, L.; Zhang, M.; Jiang, J. Simulation and attribution analysis based on the long-short-term-memory network for de- tecting the dominant cause of runoff variation in the Lake Poyang Basin. J. Lake Sci. 2021, 33, 866–878. [Google Scholar] [CrossRef]
- Antico, A.; Schlotthauer, G.; Torres, M.E. Analysis of hydroclimatic variability and trends using a novel empirical mode decomposition: Application to the Paraná River Basin. J. Geophys. Res. Atmos. 2014, 119, 1218–1233. [Google Scholar] [CrossRef]
- Huai, W.; Gao, M.; Zeng, Y.; Li, D. Two-Dimensional Analytical Solution for Compound Channel Flows with Vegetated Floodplains. Appl. Math. Mech. 2009, 30, 1121–1130. [Google Scholar] [CrossRef]
- Xu, C.-Y.; Gong, L.; Jiang, T.; Chen, D.; Singh, V.P. Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. J. Hydrol. 2006, 327, 81–93. [Google Scholar] [CrossRef]
- Burn, D.H.; Elnur, M.A.H. Detection of hydrologic trends and variability. J. Hydrol. 2002, 255, 107–122. [Google Scholar] [CrossRef]
- Zhang, D.; Cong, Z.; Ni, G. Comparison of three Mann-Kendall methods based on the China’s meteorological data. Adv. Water Sci. 2013, 24, 490–496. [Google Scholar] [CrossRef]
- Kahya, E.; Kalaycı, S. Trend analysis of streamflow in Turkey. J. Hydrol. 2004, 289, 128–144. [Google Scholar] [CrossRef]
- Huntington, T.G. Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 2006, 319, 83–95. [Google Scholar] [CrossRef]
- Guo, W.; Jiao, X.; Zhou, H.; Zhu, Y.; Wang, H. Hydrologic regime alteration and influence factors in the Jialing River of the Yangtze River, China. Sci. Rep. 2022, 12, 11166. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Xiao, H. Study of the dynamic evaluation model of overall hydrological alternation degree based on the RVA and set pair analysis-Markov chain methods. Water Supply 2019, 19, 1515–1524. [Google Scholar] [CrossRef]
- Guo, W.; Zhou, H.; Jiao, X.; Huang, L.; Wang, H. Analysis of Alterations of the Hydrological Situation and Causes of River Runoff in the Min River, China. Water 2022, 14, 1093. [Google Scholar] [CrossRef]
- Yang, Y.-C.E.; Cai, X.; Herricks, E.E. Identification of hydrologic indicators related to fish diversity and abundance: A data mining approach for fish community analysis. Water Resour. Res. 2008, 44, 4. [Google Scholar] [CrossRef]
- Gao, P.; Li, P.; Zhao, B.; Xu, R.; Zhao, G.; Sun, W.; Mu, X. Use of double mass curves in hydrologic benefit evaluations. Hydrol. Process. 2017, 31, 4639–4646. [Google Scholar] [CrossRef]
- Cluis, D.A. Visual techniques for the detection of water quality trends: Double-mass curves and cusum functions. Environ. Monit. Assess. 1983, 3, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Walling, D.E. Human impact on land–ocean sediment transfer by the world’s rivers. Geomorphology 2006, 79, 192–216. [Google Scholar] [CrossRef]
- Hu, B.; Wang, H.; Yang, Z.; Sun, X. Temporal and Spatial Variations of Sediment Rating Curves in the Changjiang (Yangtze River) Basin and Their Implications. Quat. Int. 2011, 230, 34–43. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, X. Changes in Runoff and Driving Force Analysis in the Key Section of the Yellow River Diversion Project. J. Hydroecol. 2020, 41, 19–26. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Singh, V.P.; Shi, P. Contribution of multiple climatic variables and human activities to streamflow changes across China. J. Hydrol. 2017, 545, 145–162. [Google Scholar] [CrossRef]
- Xu, X.; Yang, D.; Yang, H.; Lei, H. Attribution analysis based on the Budyko hypothesis for detecting the dominant cause of runoff decline in Haihe basin. J. Hydrol. 2014, 510, 530–540. [Google Scholar] [CrossRef]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Samaras, A.G.; Koutitas, C.G. Modeling the impact of climate change on sediment transport and morphology in coupled watershed-coast systems: A case study using an integrated approach. Int. J. Sediment Res. 2014, 29, 304–315. [Google Scholar] [CrossRef]
- Guo, L.; Su, N.; Townend, I.; Wang, Z.B.; Zhu, C.; Wang, X.; Zhang, Y.; He, Q. From the headwater to the delta: A synthesis of the basin-scale sediment load regime in the Changjiang River. Earth-Sci. Rev. 2019, 197, 102900. [Google Scholar] [CrossRef]
- Mu, X.; Zhang, X.; Shao, H.; Gao, P.; Wang, F.; Jiao, J.; Zhu, J. Dynamic Changes of Sediment Discharge and the Influencing Factors in the Yellow River, China, for the Recent 90 Years. Clean Soil Air Water 2012, 40, 303–309. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, H.; Shi, X.; Ran, X.; Cui, T.; Qiao, S.; Liu, Y. New discharge regime of the Huanghe (Yellow River): Causes and implications. Cont. Shelf Res. 2013, 69, 62–72. [Google Scholar] [CrossRef]
- Miao, C.-Y.; Ni, J.-R. Variation of Natural Streamflow since 1470 in the Middle Yellow River, China. Int. J. Environ. Res. Public Health 2009, 6, 2849–2864. [Google Scholar] [CrossRef]
- Gao, P.; Deng, J.; Chai, X.; Mu, X.; Zhao, G.; Shao, H.; Sun, W. Dynamic sediment discharge in the Hekou–Longmen region of Yellow River and soil and water conservation implications. Sci. Total Environ. 2017, 578, 56–66. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Z.; Saito, Y.; Liu, J.P.; Sun, X. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impacts from ENSO events and dams. Glob. Planet. Chang. 2006, 50, 212–225. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, B.; Li, W.; Liu, M. Response of streamflow to climate change and human activity in Xitiaoxi river basin in China. Hydrol. Process. 2014, 28, 43–50. [Google Scholar] [CrossRef]
- Bao, Z.; Zhang, J.; Wang, G.; Fu, G.; He, R.; Yan, X.; Jin, J.; Liu, Y.; Zhang, A. Attribution for decreasing streamflow of the Haihe River basin, northern China: Climate variability or human activities? J. Hydrol. 2012, 460, 117–129. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, G.; Xue, S.; Wang, G. Changes in rhizospheric microbial community structure and function during the natural recovery of abandoned cropland on the Loess Plateau, China. Ecol. Eng. 2015, 75, 161–171. [Google Scholar] [CrossRef]
- Zhao, G.; Mu, X.; Wen, Z.; Wang, F.; Gao, P. Soil Erosion, Conservation, and Eco-Environment Changes in the Loess Plateau of China. Land Degrad. Dev. 2013, 24, 499–510. [Google Scholar] [CrossRef]
- Cai, H.; Piccolroaz, S.; Huang, J.; Liu, Z.; Liu, F.; Toffolon, M. Quantifying the impact of the Three Gorges Dam on the thermal dynamics of the Yangtze River. Environ. Res. Lett. 2018, 13, 054016. [Google Scholar] [CrossRef]
- Lu, X.; Higgitt, D.L. Recent Changes of Sediment Yield in the Upper Yangtze, China. Environ. Manag. 1998, 22, 697–709. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.L.; Milliman, J.D.; Xu, K.H.; Deng, B.; Zhang, X.Y.; Luo, X.X. Downstream sedimentary and geomorphic impacts of the Three Gorges Dam on the Yangtze River. Earth-Sci. Rev. 2014, 138, 469–486. [Google Scholar] [CrossRef]
- Haleem, K.; Khan, A.U.; Ahmad, S.; Khan, M.; Khan, F.A.; Khan, W.; Khan, J. Hydrological impacts of climate and land-use change on flow regime variations in upper Indus basin. J. Water Clim. Chang. 2022, 13, 758–770. [Google Scholar] [CrossRef]
- Hayashi, S.; Murakami, S.; Xu, K.-Q.; Watanabe, M. Simulation of the reduction of runoff and sediment load resulting from the Gain for Green Program in the Jialingjiang catchment, upper region of the Yangtze River, China. J. Environ. Manag. 2015, 149, 126–137. [Google Scholar] [CrossRef]
- Wu, X.W.; Li, L.; Qu, Y.G. Modelling and Analysis of River Networks Based on Complex Networks Theory. Adv. Mater. Res. 2013, 756–759, 2728–2733. [Google Scholar] [CrossRef]
- Shiono, K.; Knight, D.W. Turbulent open-channel flows with variable depth across the channel. J. Fluid Mech. 1991, 222, 617–646. [Google Scholar] [CrossRef]
- Pu, J.H. Turbulent rectangular compound open channel flow study using multi-zonal approach. Environ. Fluid Mech. 2019, 19, 785–800. [Google Scholar] [CrossRef]
- Pu, J.H.; Pandey, M.; Hanmaiahgari, P.R. Analytical modelling of sidewall turbulence effect on streamwise velocity profile using 2D approach: A comparison of rectangular and trapezoidal open channel flows. J. Hydro-Environ. Res. 2020, 32, 17–25. [Google Scholar] [CrossRef]
- Pu, J.H.; Wei, J.; Huang, Y. Velocity Distribution and 3D Turbulence Characteristic Analysis for Flow over Water-Worked Rough Bed. Water 2017, 9, 668. [Google Scholar] [CrossRef]
- Cooper, J.R.; Tait, S.J. Examining the physical components of boundary shear stress for water-worked gravel deposits. Earth Surf. Process. Landforms 2010, 35, 1240–1246. [Google Scholar] [CrossRef]
- Pu, J.H. Velocity Profile and Turbulence Structure Measurement Corrections for Sediment Transport-Induced Water-Worked Bed. Fluids 2021, 6, 86. [Google Scholar] [CrossRef]
IHA Parameter Group | Parametric Index |
---|---|
Monthly median (No. 1–12) | Median monthly flow (sediment load) |
Annual extreme value size (No. 13~23) | Annual 1, 3, 7, 30, 90 d minimum and maximum flow (sediment load), base flow index |
The occurrence time of annual extreme value status (No. 24~25) | Date of maximum and minimum 1 day of the year (Rome Day) |
High, low Frequency and duration (No. 26~29) | High and low pulses per year and average pulse duration |
Change rate and frequency (No. 30–32) | Annual median of increase (rate of increase), decrease (rate of decrease) and number of reversals |
Hydrological Stations | PS | GC | BB | WL | YC | |
---|---|---|---|---|---|---|
Runoff | 0.83 | −1.62 | −0.97 | −1.43 | −1.74 | |
Test discrimination | ||||||
Trendiness | Non-significant increase | Non-significant reduction | Non-significant reduction | Non-significant reduction | Non-significant reduction | |
Sediment | −2.88 | −4.64 | −6.53 | −6.76 | −6.85 | |
Test discrimination | ||||||
Trendiness | Significant reduction | Significant reduction | Significant reduction | Significant reduction | Significant reduction |
Hydrological Stations | Category | Year | Base Year | Mutation Index | Statistical Quantities |
---|---|---|---|---|---|
PS | Runoff | 1998 | 42 | 0.10 | 0.36 |
Sediment delivery volume | 2009 | 44 | 0.79 | 3.67 *** | |
GC | Runoff | 1993 | 37 | 0.24 | 0.59 |
Sediment delivery volume | 2007 | 42 | 0.76 | 2.57 ** | |
BB | Runoff | 1985 | 29 | 0.26 | 0.83 |
Sediment delivery volume | 1993 | 28 | 0.91 | 4.65 *** | |
WC | Runoff | 2008 | 52 | 0.13 | 0.31 |
Sediment delivery volume | 2003 | 38 | 1.16 | 2.71 *** | |
YC | Runoff | 2002 | 46 | 0.42 | 2.68 ** |
Sediment delivery volume | 2002 | 37 | 2.58 | 14.41 *** |
Hydrological Stations | PS | GC | BB | WL | YC | |
---|---|---|---|---|---|---|
SI | −1.09 | −0.10 | −0.09 | −0.52 | −5.78 | |
Test discrimination | ||||||
Trendiness | No significant decline | No significant decline | No significant decline | No significant decline | Significant decline |
Hydrological Stations | Stage | ||||||||
---|---|---|---|---|---|---|---|---|---|
PS | Ta-Tb | 1.683 | −0.683 | −33.888 | 8.187 | −35.801 | 55.10 | −13.31 | 58.21 |
Tb-Tc | −31.382 | 10.139 | −39.206 | 51.92 | −16.77 | 64.85 | |||
GC | Ta-Tb | 1.294 | −0.294 | −32.144 | 6.457 | −31.646 | 56.07 | −11.26 | 55.20 |
Tb-Tc | −30.906 | 6.189 | −36.451 | 50.53 | −10.12 | 59.59 | |||
BB | Ta-Tb | 2.181 | −1.181 | −40.964 | 9.186 | −51.019 | 49.48 | −11.09 | 61.62 |
Tb-Tc | −41.127 | 10.558 | −56.566 | 47.20 | −12.12 | 64.92 | |||
WL | Ta-Tb | 1.315 | −0.315 | −24.164 | 4.903 | −36.867 | 43.05 | −8.74 | 65.68 |
Tb-Tc | −23.768 | 5.099 | −99.553 | 20.10 | −4.31 | 84.21 | |||
YC | Ta-Tb | 1.731 | −0.731 | −29.926 | 7.613 | −24.694 | 63.66 | −16.20 | 52.53 |
Tb-Tc | −30.960 | 7.889 | −42.582 | 47.16 | −12.02 | 64.86 |
Hydrological Stations | Stage | Rate of Change in Proportion (%/a) | Contribution Rate (%) | |||||
---|---|---|---|---|---|---|---|---|
S | P | r | s | P | r | s | ||
PS | Ta-Tc | −1.06 | 0.09 | −0.1 | −1.05 | −8.49 | 9.43 | 99.06 |
Ta-Tb | 0.39 | 0.3 | −0.16 | 0.25 | 76.92 | −41.03 | 64.10 | |
Tb-Tc | −4.48 | −0.53 | −0.16 | −3.79 | 11.83 | 3.57 | 84.60 | |
GC | Ta-Tc | −1.76 | 0.05 | −0.11 | −1.7 | −2.85 | 6.25 | 96.60 |
Ta-Tb | −1.27 | −0.09 | −0.13 | −1.05 | 7.10 | 10.24 | 82.66 | |
Tb-Tc | −1.19 | 0.39 | 0.07 | −1.65 | −32.77 | −5.88 | 138.65 | |
BB | Ta-Tc | −4.08 | 0.07 | −0.09 | −4.06 | −1.72 | 2.21 | 99.51 |
Ta-Tb | −4.14 | −0.14 | −0.59 | −3.42 | 3.37 | 14.22 | 82.41 | |
Tb-Tc | −4.15 | 0.18 | 0.27 | −4.59 | −4.35 | −6.52 | 110.87 | |
WL | Ta-Tc | −3.73 | 0.05 | −0.25 | −3.53 | −1.34 | 6.70 | 94.64 |
Ta-Tb | −2.27 | −0.04 | 0.12 | −2.35 | 1.76 | −5.29 | 103.52 | |
Tb-Tc | −8.25 | 0.05 | −0.82 | −7.48 | −0.61 | 9.94 | 90.67 | |
YC | Ta-Tc | −3.61 | 0.05 | −0.13 | −3.53 | −1.39 | 3.60 | 97.79 |
Ta-Tb | −1.1 | −0.09 | 0.11 | −1.12 | 8.18 | −10 | 101.82 | |
Tb-Tc | −13.22 | 0.14 | −0.02 | −13.34 | −1.06 | 0.15 | 100.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Ma, Y.; Hong, F.; Yang, H.; Huang, L.; Jiao, X.; Guo, W. Evolution of Water–Sediment Situation and Attribution Analysis in the Upper Yangtze River, China. Water 2023, 15, 574. https://doi.org/10.3390/w15030574
Wang H, Ma Y, Hong F, Yang H, Huang L, Jiao X, Guo W. Evolution of Water–Sediment Situation and Attribution Analysis in the Upper Yangtze River, China. Water. 2023; 15(3):574. https://doi.org/10.3390/w15030574
Chicago/Turabian StyleWang, Hongxiang, Yinchu Ma, Fengtian Hong, Huan Yang, Lintong Huang, Xuyang Jiao, and Wenxian Guo. 2023. "Evolution of Water–Sediment Situation and Attribution Analysis in the Upper Yangtze River, China" Water 15, no. 3: 574. https://doi.org/10.3390/w15030574
APA StyleWang, H., Ma, Y., Hong, F., Yang, H., Huang, L., Jiao, X., & Guo, W. (2023). Evolution of Water–Sediment Situation and Attribution Analysis in the Upper Yangtze River, China. Water, 15(3), 574. https://doi.org/10.3390/w15030574