Assessment of Aquifer Recharge Potential Using Remote Sensing, GIS and the Analytical Hierarchy Process (AHP) Combined with Hydrochemical and Isotope Data (Tamassari Basin, Burkina Faso)
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data
3.2. Spatial Modelling of Recharge
3.2.1. Identification and Establishment of Influencing Recharge Factors
- Lithology and lineament density mapping
- 2.
- Land use mapping
- 3.
- Hydrographic network density and slope mapping
- 4.
- Soil type mapping
3.2.2. Validation of Thematic Maps
3.2.3. Hydrodynamic Classification and Data Standardization
3.2.4. Factor Weighting with the Analytical Hierarchy Process (AHP)
3.2.5. Recharge Potential Mapping
3.3. Hydrochemical and Isotopic Analysis
4. Results
4.1. Tritium and Chloride Contents in Groundwater in the Basin
4.1.1. Tritium Contents of Groundwater
4.1.2. Chloride Contents of Groundwater
4.2. Spatial Modelling Recharge Factors
4.2.1. Recharge Factors Mapping
- Lithology and lineament density mapping
- 2.
- Land use mapping
- 3.
- Hydrographic network density and slope mapping
- 4.
- Soil type mapping
4.2.2. Validation of Thematic Maps
4.3. Assignment of Ratings and Weights Calculation of Recharge Factors
4.4. Potential Recharge Mapping
4.5. Validation of the Potential Recharge Map
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IAEA. Rapport RAF 7011. In Gestion Durable Et Intégrée Des Systèmes Aquifères Transfrontaliers Et Bassins De Région Du Sahel; IAEA: Oahu, HI, USA, 2017; Volume 42. [Google Scholar]
- Kabore, P.N.; Ouedraogo, A.; Sanon, M.; Yaka, P.; Some, L. Caractérisation de la variabilité climatique dans la région du centre-nord du Burkina Faso entre 1961 et 2015. Climatologie 2017, 14, 82–94. [Google Scholar] [CrossRef]
- Vaessen, V.; Brentführer, R. Les Eaux Souterraines Et L’environnement. Integration De La Gestion Des Eaux Souterraines Dans Les Organismes De Bassin Transfrontaliers En Afrique. 2015. pp. 1–14. Available online: https://www.bgr.bund.de/EN/Themen/Wasser/Politikberatung_GW/Downloads/Module_10_fr.pdf?__blob=publicationFile&v=8 (accessed on 24 August 2022).
- Lankoandé, O.; Sébégo, M. Monographie de la région des cascades. In Rapport Ministère De L’économie Et Du Développement; INSD: Ouagadougou, Burkina Faso, 2007; p. 163. [Google Scholar]
- Bagré, M.A.B. Burkina Faso; Détermination Des Taux De Succès De Réalisation Des Forages En Zone De Socle A L’aide Des Méthodes Géophysiques Electrique: Cas De La Province Du Bazega Mémoire; Institut International De ’’Environnement (2IE): Ouagadougou, Burkina Faso, 2019; Volume 56, Available online: http://documentation.2ie-edu.org/cdi2ie/opac_css/doc_num.php?explnum_id=2865 (accessed on 24 August 2022).
- INSD. La région des Cascades en chiffres 2019. 2020. p. 11. Available online: http://www.insd.bf/contenu/statistiques_regions/regions_en_chiffres_en_2019/Cascades%20en%20chiffres%202019.pdf (accessed on 18 October 2022).
- Scanlon, B.R.; Healy, R.W.; Cook, P.G. Choosing Appropriate Techniques for Quantifying Groundwater Recharge. Hydrogeol. J. 2002, 10, 18–39. [Google Scholar] [CrossRef]
- Simmers, I.; Hendrickx, J.M.H.; Kruseman, G.P.; Rushton, K.R. Recharge of Phreatic Aquifers in (Semi-) Arid Areas; Balkema, A.A., Ed.; Routledge: Oxford, UK, 2017; ISBN 90-5410-695-6. [Google Scholar]
- Dakouré, D. Etude Hydrogeologique Et Geochimique De La Bordure Sud-Est Du Bassin Sedimentaire De Taoudeni (Burkina Faso-Mali)—Essai De Modélisation. Ph.D. Thesis, Université Paris VI- Pierre et Marie Curie, Paris, France, 2003; p. 223. Available online: https://tel.archives-ouvertes.fr/tel-00608860 (accessed on 17 February 2020).
- Varade, A.M.; Khare, Y.D.; Mondal, N.C.; Muley, S.; Wankawar, P.; Raut, P. Identification of Water Conservation Sites in a Watershed (WRJ-2) of Nagpur District, Maharashtra using Geographical Information System (GIS) Technique. J. Indian Soc. Remote Sens. 2013, 41, 619–630. [Google Scholar] [CrossRef]
- Yeh, H.-F.; Cheng, Y.-S.; Lin, H.-I.; Lee, C.-H. Mapping groundwater recharge potential zone using a GIS approach in Hualian River, Taiwan. Sustain. Environ. Res. 2016, 26, 33–43. [Google Scholar] [CrossRef]
- Dahri, N.; Abida, H. Monte Carlo simulation-aided analytical hierarchy process (AHP) for flood susceptibility mapping in Gabes Basin (southeastern Tunisia). Environ. Earth Sci. 2017, 76, 302. [Google Scholar] [CrossRef]
- Castillo, J.L.U.; Cruz, D.A.M.; Leal, J.A.R.; Vargas, J.T.; Tapia, S.A.R.; Celestino, A.E.M. Delineation of Groundwater Potential Zones (GWPZs) in a Semi-Arid Basin through Remote Sensing, GIS, and AHP Approaches. Water 2022, 14, 2138. [Google Scholar] [CrossRef]
- Ake, G.E.; Kouamé, K.J.; Koffi, A.B.; Jourda, J.P. Cartographie des zones potentielles de recharge de la nappe de Bonoua (sud-est de la Côte d’Ivoire). Rev. Des Sci. L’eau J. Water Sci. 2018, 31, 129–144. [Google Scholar] [CrossRef]
- Oularé, S.; Adon, G.C.; Akpa, L.Y.; Saley, M.B.; Kouamé, F.K. Identification des zones potentielles de recharge des aquifères fracturés du bassin versant du n’Zo (Ouest de la côte d’ivoire): Contribution du SIG et de la télédétection. Eur. Sci. J. 2017, 13, 1857–7881. [Google Scholar] [CrossRef]
- Ait El Mekki, O. Spatialisation Du Potentiel De Recharge Diffuse D’un Aquifere Libre Sous Climat Semi-Aride Par Techniques Geospatiales Et Hydrochimiques: Cas De L’aquifere Du Haouz (Marrakech, Maroc). Ph.D. Thesis, Université Cadi Ayyad, Marrakesh, Morocco, 29 April 2017. Available online: https://tel.archives-ouvertes.fr/tel-01725794 (accessed on 25 April 2020).
- Reilly, T.E.; Harbaugh, A.W. Guidelines for evaluating ground-water flow models. In U.S. Geological Survey Scientific Investigations Report; US Department of the Interior: Washington, DC, USA, 2004; 30p. Available online: https://pubs.usgs.gov/sir/2004/5038/PDF/SIR20045038_ver1.01.pdf (accessed on 20 October 2022).
- Nhan, P.O.; Hung, L.V.; Le, T.T.; Khoa, T.V.L.; Nhan, D.D.; Cuong, T.Q. Zoning groundwater potential recharge using remote sensing and GIS technique in the red river delta plain. IOP Publishing. Earth Environ. Sci. 2022, 964, 012025. [Google Scholar] [CrossRef]
- PANA. Programme D’action National D’adaptation A La Variabilite Et Aux Changements Climatiques (Pana Du Burkina Faso). 2007. Available online: https://unfccc.int/resource/docs/napa/bfa01f.pdf (accessed on 17 November 2022).
- Sidibé, N. Profil environnemental de la egion des cascades. In Cadre De Concertation Régionale Rapport; European Union: Ouagadougou, Burkina Faso, 2015. [Google Scholar]
- IGB. Base Nationale De Donnees Topographique Du Burkina Faso A L’echelle 1/200 000; IGB: Ouagadougou, Burkina Faso, 2014. [Google Scholar]
- Dembele, Y.; Some, L. Propriétés hydrodynamiques des principaux types de sol du Burkina Faso. In Soil Water Balance in Vie Sudano-Sahdian Zone (Proceedings of the Niamey Workshop); IAHS, INERA: Ouagadougou, Burkina Faso, 1991; pp. 217–227. [Google Scholar]
- Gramont, H.M.; Savadogo, A.N.; Dakoure, D. Amelioration De La Connaissance Et De La Gestion Des Eaux Au Burkina Faso. Diagnostic Sur Les Eaux Souterraines. 2017. p. 68. Available online: https://documents1.worldbank.org/curated/ru/125061522099341105/pdf/Annexe-1-Diagnostic-sur-les-Eaux-Souterraines.pdf (accessed on 9 March 2021).
- Millogo, C. Caracterisation Hydrologique Et Hydrogeologique Du Bassin Versant Du Lac Bam Au Centre Nord Du Burkina Faso (Afrique De L’ouest): Perspectives D’amelioration Des Techniques D’implantation De Forages D’eau En Terrains Cristallins. Ph.D. Thesis, Université Joseph KI-ZERBO, Ouagadougou. Burkina Faso, 28 November 2019. [Google Scholar]
- Sauret, E.S.G. Contribution à la Compréhension du Fonctionnement Hydrogéologique du Système Aquifère Dans le Bassin du Kou. Mémoire, Diplôme d’Etudes Approfondies; Université de Liège: Liège, Belgique, 2008; p. 96. [Google Scholar]
- Koussoubé, Y.; Upton, K.; Dochartaigh, B.Ó.; Bellwood-Howard, I. Atlas De L’eau Souterraine En Afrique: Hydrogeologie du Burkina Faso. British Geological Survey. 2018. Available online: https://earthwise.bgs.ac.uk/index.php/Hydrog%C3%A9ologie_du_Burkina_Faso (accessed on 18 October 2022).
- INSD. Analyse Des Résultats De L’enquête Annuelle Sur Les Conditions De Vie Des Ménages Et Du Suivi De La Pauvrété. 2005. p. 199. Available online: http://cns.bf/IMG/pdf/eaquibb_2005.pdf (accessed on 20 October 2022).
- BUMIGEB. Carte De Synthese Geologique, Structurale Et Des Substances Minerales Du Burkina Faso A L’echelle 1/1,000,000; BUMIGEB: Ouagadougou, Burkina Faso, 2018. [Google Scholar]
- Haouchine, A.; Abderrahmane Boudoukha, A.; Haouchine, F.Z.; Nedjaï, R. Cartographie de la recharge potentielle des aquifères en zone aride. Cas De La Plaine D’el Outaya Biskra-Alger. Eurojournals 2010, 45, 1–13. Available online: https://www.researchgate.net/publication/50603232 (accessed on 27 April 2021).
- Koussoubé, Y. Hydrogeologie Des Series Sedimentaires De La Depression Piezometrique Du Gondo (Bassin Du Sourou)—Bur-Kina Faso/Mali. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France, 2010. [Google Scholar]
- El Atillah, A.; El Morjani, Z.E.A.; Souhassou, M. Utilisation de l’image multispectrale pour l’exploration et la recherche des ressources minérales: Etat des connaissances et proposition d’un modèle de traitement. Eur. Sci. J. 2018, 14, 1857–7881. [Google Scholar] [CrossRef]
- Djemai, S.; Bendaoud, A.; Haddoum, H.; Ouzegane, K.; Kienast, J.-K. Apport Des Images Landsat 7 Etm+ Pour La Cartogra-phie Geologique Des Terrains Archeens En Zone Aride: Exemple De Terrane De L’in Ouzzal (Hoggar Occidental), Algerie. Journee D’animation Scientifique (Jas09) De L’auf. 2009. pp. 1–7. Available online: https://docplayer.fr/19372158-Journees-d-animation-scientifique-jas09-de-l-auf-alger-novembre-2009-s-djemai-1-a-bendaoud-1-h-haddoum-1-k-ouzegane-1-j-r.html (accessed on 9 March 2021).
- Ouedraogo, B.; Pale, S.; Ki, I. Apport de la Télédétection et des SIG à l’exploration d’un site aurifère: Cas de Dodougou au Burkina Faso. In Science et Technique, Sciences Naturelles et Appliquées; Science et Technique; Centre National de la Recherche Scientifique et Technologique (CNRST): Ouagadougou, Burkina Faso, 2020; Volume 39, pp. 1011–6028. Available online: https://www.researchgate.net/publication/342992510_Apport_de_la_teledetection_et_des_SIG_a_l’exploration_d’un_site_aurifere_cas_de_Dodougou_au_Burkina_Faso (accessed on 27 April 2021).
- GéoBretagne. Comprendre Une Image Satellitaire. Available online: https://cms.geobretagne.fr/sites/default/files/documents/fiches_2_comprendre_une_image_satellitaire_1.pdf (accessed on 21 October 2022).
- Richards, J.A. Remote Sensing Digital Image Analysis: An Introduction; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Nikolakopoulos, K.G.; Choussiafis, C.; Karathanassi, V. Assessing the quality of DSM from ALOS optical and radar data for automatic drainage extraction. Earth Sci. Inform. 2015, 8, 293–307. [Google Scholar] [CrossRef]
- Shaban, A.; Khawlie, M.; Abdallah, C. Use of remote sensing and GIS to determine recharge potential zones: The case of Occidental Lebanon. Hydrogeol. J. 2006, 14, 433–443. [Google Scholar] [CrossRef]
- Nakolendousse, S. Methode D’evaluation De La Productivite Des Sites Aquiferes Au Burkina Faso: Geologie, Geophysique, Te-Ledetection. Hydrologie. Ph.D. Thesis, Université Joseph-Fourier, Grenoble, France, 1991. Available online: https://tel.archives-ouvertes.fr/tel-00756438 (accessed on 26 November 2020).
- Koudou, A.; Adiaffi, B.; Assoma, T.V.; Sombo, A.P.; Amani, E.M.E.; Biemi, J. Apport de l’analyse multicritère à la cartographie des zones favorables à l’implantation de forages dans la région de Gagnoa (Centre-ouest de la Côte d’Ivoire). Geo-Eco-Trop. 2013, 37, 211–226. Available online: https://www.geoecotrop.be/uploads/publications/pub_372_05.pdf (accessed on 9 March 2021).
- Saaty, T. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; Mcgraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Chakroun, H. Atelier: Spatial Decision Support System (SDSS) in QGIS.; ENIT: Tunis, Tunisia, 2018/2019. [Google Scholar]
- Edmunds, W.M. Palaeoclimate and groundwater evolution in Africa-implications for adaptation and management. Hydrol. Sci. J. 2009, 54, 781–792. [Google Scholar] [CrossRef]
- Babayé, A. Evaluation Des Ressources En Eau Souterraine Dans Le Bassin De Dargol (Liptako-Niger). Ph.D. Thesis, Université de Liège, Liège, Belgium, 2012. [Google Scholar]
- BRGM. Interprétation Des Résultats Des Analyses Isotopiques De La Source De St-Antonin-Noble-Val; BRGM: Orléans, France, 1992; Volume R 36339, pp. 1–17. [Google Scholar]
- BRGM. Etude du potentiel aquacole des nappes de la pointe de grave (Gironde). In Interprétation Des Résultats Des Analyses Isotopiques; BRGM: Orléans, France, 1993; Volume R 37127, pp. 1–26. [Google Scholar]
- Woodward, L. Chlorures (Cl-) Et Eau Minérale. 2009. Available online: https://www.doctissimo.fr/html/nutrition/dossiers/eau/articles/13256-chlorures.htm (accessed on 2 November 2022).
- Sandwidi, W.J.P. Groundwater Potentiel to Supply Population Demand within the Kompienga Dam Basin in Burkina Faso. Ph.D. Thesis, Rheinische Friedrich-Wilhelms-University, Bonn, Germany, 2007. [Google Scholar]
- Lerner, D.N.; Issar, A.S.; Simmers, I. Groundwater Recharge. In A Guide to Understanding and Estimating Natural Recharge; IAH International Contributions to Hydrogeology: Hannover, Germany, 1990. [Google Scholar]
- Favreau, G. Caractérisation Et Modelisaton D’une Nappe Phreatique En Hausse Au Sahel: Dynamique Et Geochimie De La De-Pression Piezometrique Naturelle Du Kori De Dantiandou (Sud-Ouest Du Niger). Ph.D. Thesis, Université Paris Sud-Paris XI, Paris, France, 2000. Available online: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_7/dvers2/010027464.pdf (accessed on 22 October 2022).
- Chardon, D.; Bamba, O.; Traoré, K. Schéma de déformation éburnéenne du Burkina Faso et importance tectonique des zones de cisaillement dans le craton ouest-africain. Champ de déformation éburnéen du Burkina Faso et signification tectonique des zones de cisaillement du craton ouest-africain. BSGF Earth Sci. Bull. 2020, 191, 1–18. [Google Scholar] [CrossRef]
- Méheust, Y. Écoulements Dans Les Fractures Ouvertes. Hydrologie. Ph.D. Thesis, Université Paris Sud-Paris XI, Paris, France, 2002. Available online: https://tel.archives-ouvertes.fr/tel-00008477v3 (accessed on 6 September 2022).
- Derouane, J.; Dakoure, D. Gestion des grands aquifères. In Proceedings of the Etude Hydrogéologique Et Modélisation Mathématique Du Systeme Aquifere Du Bassin Sedimentaire De Taoudeni Au Burkina Faso Colloque International, Dijon, France, 30 May–1 June 2006. [Google Scholar]
- Kutangila, M.S. Burkina Faso; Caractérisation hydrogéologique des aquifères du bassin sédimentaire de taoudeni (bordure Sud-Est, Burkina Faso). Mémoire; Institut International de l’environnement (2IE): Ouagadougou, Burkina Faso, 2019; p. 78. [Google Scholar]
- Mengistu, T.D.; Chung, I.-M.; Kim, M.-G.; Chang, S.W.; Lee, J.E. Impacts and Implications of Land Use Land Cover Dynamics on Groundwater Recharge and Surface Runoff in East African Watershed. Water 2022, 14, 2068. [Google Scholar] [CrossRef]
- Abdelaziz, K.K.; Nicaise, Y.; Séguis, L.; Ouattara, I.; Moussa, O.; Auguste, K.K.; Kamagaté, B.; Diakaria, K. Influence of Land Use Land Cover Change on Groundwater Recharge in the Continental Terminal Area of Abidjan, Ivory Coast. J. Water Resour. Prot. 2020, 12, 431–453. [Google Scholar] [CrossRef]
- Derouane, J.; Talbaoui, M. Modélisation hydrogéologique du bassin sédimentaire. In Addendum au Rapport final: Exploitation du modèle hydrogéologique regional; Programme de Valorisation des Ressources en Eau de l’Ouest (VREO): Ouagadougou, Burkina Faso, 2003. [Google Scholar]
- Jourda, J.P.; Saley, M.B.; Djagoua, E.V.; Kouame, K.J.; Biemi, J.; Razack, M. Utilisation des données ETM+ de Landsat et d’un SIG pour l’évaluation du potentiel en eau souterraine dans le milieu fissuré précambrien de la région de Korhogo (nord de la Côte d’Ivoire): Approche par analyse multicritère et test de validation. Télédétection 2006, 5, 339–357. Available online: https://www.researchgate.net/publication/242482166 (accessed on 6 September 2022).
- Coates, G.; Rahimifard, S. Modelling of post-fragmentation waste stream processing within UK Shredder facilities. Waste Manag. 2009, 29, 44–53. [Google Scholar] [CrossRef]
- Lake, R.J.; Cressey, P.J.; Campbell, D.M.; Oakley, E. Risk ranking for food borne microbial hazards in New Zealand: Burden of disease estimates. Risk Anal. 2010, 30, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Jing, L.; Zheng, J.S.; Li, P. Integrated management of nonpoint source pollution in the City of Chongzhou, China. In Technical Rep: Prepared for the Water Governance Program of United Nations Development Program (UNDP); Technical Rep: Beijing, China, 2011. [Google Scholar]
Nature of Rocks | Absolute Maximum Flow Rate (m3/h) | Hydrodynamic Classification |
---|---|---|
Sandstone | 12 | Excellent |
Volcano-sedimentary | 3 | Moderate |
Shale | 1.6 | Low |
Green rocks (basalt, andesite, gabbro) | 5 | Average |
Granite | 6.6 | Good |
Hydrodynamic Classification | Low | Moderate | Average | Good | Excellent |
---|---|---|---|---|---|
Standardised rating | 1 | 3 | 5 | 7 | 10 |
Long | Lat | Code | Tritium Content (TU) |
---|---|---|---|
05′17′1″7″ W | 10′36′4″9″ -N | F13 | 0.64 |
05′18′1″6″ W | 10′37′3″3″ -N | F10 | 0.20 |
05′19′0″7″ W | 10′39′4″7″ -N | F2 | 1.35 |
05′20′3″6″ W | 10′36′1″9″ -N | F15 | 1.98 |
05′18′2″5″ W | 10′36′0″5″ -N | F17 | 0.63 |
05′18′4″5″ W | 10′34′3″7″ -N | F7 | 0.46 |
05′16′5″3″ W | 10′45′5″8″ -N | F22 | 1.30 |
05′19′0″8″ W | 10′45′1″0″ -N | F1 | 0.88 |
Long | Lat | Code | Chloride Content (mg/L) |
---|---|---|---|
05′17′1″7″ W | 10′36′4″9″ -N | F13 | 0.02 |
05′18′1″6″ W | 10′37′3″3″ -N | F10 | 1.01 |
05′19′0″7″ W | 10′39′4″7″ -N | F2 | 3.50 |
05′20′3″6″ W | 10′36′1″9″ -N | F15 | 0.02 |
05′18′2″5″ W | 10′36′0″5″ -N | F17 | 0.02 |
05′18′4″5″ W | 10′34′3″7″ -N | F7 | 0.02 |
05′16′5″3″ W | 10′45′5″8″ -N | F22 | 0.72 |
05′19′0″8″ W | 10′45′1″0″ -N | F1 | 0.02 |
Classified Image (SVM) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Class | Crops | Rocky Outcrops | Gallery Forests | Bare Soils | Wooded Savannahs | Bodies of Water | Marshy Areas | Total | |
Test areas | Crops | 34 | 0 | 0 | 0 | 1 | 0 | 0 | 35 |
Rocky outcrops | 0 | 247 | 0 | 0 | 1 | 0 | 0 | 248 | |
Gallery forests | 0 | 0 | 67 | 0 | 23 | 0 | 0 | 90 | |
Bare soils | 0 | 0 | 0 | 122 | 5 | 0 | 0 | 127 | |
Wooded savannas | 3 | 0 | 7 | 1 | 479 | 2 | 0 | 492 | |
Bodies of water | 0 | 0 | 0 | 0 | 6 | 40 | 0 | 46 | |
Marshy areas | 0 | 0 | 0 | 0 | 0 | 1 | 44 | 45 | |
Total | 37 | 247 | 74 | 123 | 515 | 43 | 44 | 1083 |
Parameters | Hydrodynamic Classification | Standardised Ratings |
---|---|---|
Lithology (LT) | ||
Andesite | Low | 1 |
Dolerite | Good | 7 |
Gneiss | Moderate | 3 |
Sandstone | Excellent | 10 |
Lineament density (LD) | ||
0–0.01 km−1 | Low | 1 |
0.01–0.02 km−1 | Moderate | 3 |
0.02–0.03 km−1 | Average | 5 |
0.03–0.05 km−1 | Good | 7 |
0.05–0.07 km−1 | Excellent | 10 |
Hydrographic network density (HD) | ||
3–4 km−1 | Low | 1 |
2–3 km−1 | Moderate | 3 |
1–2 km−1 | Average | 5 |
0.5–1 km−1 | Good | 7 |
0–0.5 km−1 | Excellent | 10 |
Soil type (ST) | ||
Hydromorphic soils | Low | 1 |
Poorly developed | Moderate | 3 |
Tropical ferruginous soils | Good | 7 |
Fersiallitic soils | Excellent | 10 |
Slope (SP) | ||
25–65% | Low | 1 |
15–25% | Moderate | 3 |
10–15% | Average | 5 |
5–10% | Good | 7 |
0–5% | Excellent | 10 |
Land use (LU) | ||
Bare soils | Low | 1 |
Rocky outcrops | Low | 1 |
Water body | Moderate | 3 |
Marshy areas | Moderate | 3 |
Wooded savannah | Average | 5 |
Crops | Good | 7 |
Gallery forest | Excellent | 10 |
Parameters | LU | LD | HD | SP | ST | LT | Weights | Consistency Indices |
---|---|---|---|---|---|---|---|---|
LU | 1 | 1 | 3 | 3 | 5 | 5 | 0.298 | = 6.295 |
LD | 1 | 1 | 3 | 5 | 5 | 7 | 0.343 | = 0.059 |
HD | 1/3 | 1/3 | 1 | 1 | 3 | 5 | 0.134 | = 0.048 |
SP | 1/3 | 1/5 | 1 | 1 | 3 | 5 | 0.126 | |
ST | 1/5 | 1/5 | 1/3 | 1/3 | 1 | 3 | 0.063 | |
LT | 1/5 | 1/7 | 1/5 | 1/5 | 1/3 | 1 | 0.036 |
Tritium content (TU) | Recharge Areas | |||||
Class | Very Low | Low | Average | Average to High | High | |
Very low (0–0.20) | F10 | |||||
Low (0.20–0.5) | F7 | |||||
Average (0.5–1) | F13, F17 | F1 | ||||
Average-to-high (1–1.5) | F2, F22 | |||||
High (>1.5) | F15 |
Chloride content (mg/L) | Recharge Areas | |||||
Class | Very Low | Low | Average | Average to High | High | |
Very low (0–0.02) | F7 | F13, F17 | F1, F15 | |||
Low (0.02–1) | F22 | |||||
Average (1–1.5) | F10 | |||||
Average to high (1.5–2) | ||||||
High (>2) | F2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ki, I.; Chakroun, H.; Koussoube, Y.; Zouari, K. Assessment of Aquifer Recharge Potential Using Remote Sensing, GIS and the Analytical Hierarchy Process (AHP) Combined with Hydrochemical and Isotope Data (Tamassari Basin, Burkina Faso). Water 2023, 15, 650. https://doi.org/10.3390/w15040650
Ki I, Chakroun H, Koussoube Y, Zouari K. Assessment of Aquifer Recharge Potential Using Remote Sensing, GIS and the Analytical Hierarchy Process (AHP) Combined with Hydrochemical and Isotope Data (Tamassari Basin, Burkina Faso). Water. 2023; 15(4):650. https://doi.org/10.3390/w15040650
Chicago/Turabian StyleKi, Issan, Hedia Chakroun, Youssouf Koussoube, and Kamel Zouari. 2023. "Assessment of Aquifer Recharge Potential Using Remote Sensing, GIS and the Analytical Hierarchy Process (AHP) Combined with Hydrochemical and Isotope Data (Tamassari Basin, Burkina Faso)" Water 15, no. 4: 650. https://doi.org/10.3390/w15040650
APA StyleKi, I., Chakroun, H., Koussoube, Y., & Zouari, K. (2023). Assessment of Aquifer Recharge Potential Using Remote Sensing, GIS and the Analytical Hierarchy Process (AHP) Combined with Hydrochemical and Isotope Data (Tamassari Basin, Burkina Faso). Water, 15(4), 650. https://doi.org/10.3390/w15040650