Spatial Distribution and Sources of Rare Earth Elements in Urban River Water: The Indicators of Anthropogenic Inputs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analysis
3. Results and Discussion
3.1. The Content of REEs
3.2. Spatial Variation Patterns of REEs
3.3. REE Anomalies
3.3.1. Ce and Eu Anomalies
3.3.2. Gd Anomalies and Anthropogenic Gd Contribution
3.4. Relationship between Land Use and Anthropogenic REE
3.5. Identification of REE Contamination by Co-Indicators
3.6. REE Toxicological Risk for Humans and Aquatic Life
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qian, Y.; Zheng, L.; Jiang, C.; Chen, X.; Chen, Y.; Xu, Y.; Chen, Y. Environmental geochemical characteristics of rare-earth elements in surface waters in the Huainan coal mining area, Anhui Province, China. Environ. Geochem. Health 2022, 44, 3527–3539. [Google Scholar] [CrossRef] [PubMed]
- De Carlo, E.H.; Green, W.J. Rare earth elements in the water column of Lake Vanda, McMurdo Dry Valleys, Antarctica. Geochim. Cosmochim. Acta 2002, 66, 1323–1333. [Google Scholar] [CrossRef]
- Han, G.; Liu, M.; Li, X.; Zhang, Q. Sources and geochemical behaviors of rare earth elements in suspended particulate matter in a wet-dry tropical river. Environ. Res. 2023, 218, 115044. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Liu, C.-Q. Dissolved rare earth elements in river waters draining karst terrains in Guizhou Province, China. Aquat. Geochem. 2007, 13, 95–107. [Google Scholar] [CrossRef]
- Polyakov, O. Chapter 18-Technology of Ferroalloys with Rare-Earth Metals. In Handbook of Ferroalloys; Gasik, M., Ed.; Butterworth-Heinemann: Oxford, UK, 2013; pp. 459–469. [Google Scholar]
- Ebrahimi, P.; Barbieri, M. Gadolinium as an emerging microcontaminant in water resources: Threats and opportunities. Geosciences 2019, 9, 93. [Google Scholar] [CrossRef]
- Novotny, E.; Sander, A.; Mohseni, O.; Stefan, H. Chloride ion transport and mass balance in a metropolitan area using road salt. Water Resour. Res. 2009, 45, W12410. [Google Scholar] [CrossRef]
- Sholkovitz, E.R. The geochemistry of rare earth elements in the Amazon River estuary. Geochim. Cosmochim. Acta 1993, 57, 2181–2190. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, Q.; Gao, S.; Zhang, X.; Wang, Z.; Wu, P.; Zeng, J. Coupled controls of the infiltration of rivers, urban activities and carbonate on trace elements in a karst groundwater system from Guiyang, Southwest China. Ecotoxicol. Environ. Saf. 2023, 249, 114424. [Google Scholar] [CrossRef]
- Kalender, L.; Aytimur, G. REE Geochemistry of Euphrates River, Turkey. J. Chem. 2016, 2016, 1012021. [Google Scholar] [CrossRef]
- Kumar, M.; Goswami, R.; Awasthi, N.; Das, R. Provenance and fate of trace and rare earth elements in the sediment-aquifers systems of Majuli River Island, India. Chemosphere 2019, 237, 124477. [Google Scholar] [CrossRef]
- Négrel, P. Water–granite interaction: Clues from strontium, neodymium and rare earth elements in soil and waters. Appl. Geochem. 2006, 21, 1432–1454. [Google Scholar] [CrossRef]
- Hatje, V.; Bruland, K.W.; Flegal, A.R. Increases in Anthropogenic Gadolinium Anomalies and Rare Earth Element Concentrations in San Francisco Bay over a 20 Year Record. Environ. Sci. Technol. 2016, 50, 4159–4168. [Google Scholar] [CrossRef]
- Jones, N. Materials science: The pull of stronger magnets. Nature 2011, 472, 22–23. [Google Scholar] [CrossRef]
- Mondal, S.; Nguyen, V.T.; Park, S.; Choi, J.; Vo, T.M.T.; Shin, J.H.; Kang, Y.-H.; Oh, J. Rare earth element doped hydroxyapatite luminescent bioceramics contrast agent for enhanced biomedical imaging and therapeutic applications. Ceram. Int. 2020, 46, 29249–29260. [Google Scholar] [CrossRef]
- Goodenough, K.M.; Wall, F.; Merriman, D. The Rare Earth Elements: Demand, Global Resources, and Challenges for Resourcing Future Generations. Nat. Resour. Res. 2018, 27, 201–216. [Google Scholar] [CrossRef]
- Gao, S.; Wang, Z.; Wu, Q.; Wang, W.; Peng, C.; Zeng, J.; Yuqing, W. Urban geochemistry and human-impacted imprint of dissolved trace and rare earth elements in a high-tech industrial city, Suzhou. Elem. Sci. Anth. 2021, 9, 00151. [Google Scholar] [CrossRef]
- Qu, R.; Han, G. Potassium isotopes of fertilizers as potential markers of anthropogenic input in ecosystems. Environ. Chem. Lett. 2022. [Google Scholar] [CrossRef]
- Wang, J.; Deng, P.; Wei, X.; Zhang, X.; Liu, J.; Huang, Y.; She, J.; Liu, Y.; Wan, Y.; Hu, H.; et al. Hidden risks from potentially toxic metal(loid)s in paddy soils-rice and source apportionment using lead isotopes: A case study from China. Sci. Total Environ. 2023, 856, 158883. [Google Scholar] [CrossRef]
- Gwenzi, W.; Mangori, L.; Danha, C.; Chaukura, N.; Dunjana, N.; Sanganyado, E. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Sci. Total Environ. 2018, 636, 299–313. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, J.; Zhu, W.; Liu, C.; Xu, S.; Shao, P.; Wu, D.; Yang, W.; Gu, J. Chronic toxicity of rare-earth elements on human beings. Biol. Trace Elem. Res. 2000, 73, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Prince, M.R.; Zhang, H.; Morris, M.; MacGregor, J.L.; Grossman, M.E.; Silberzweig, J.; DeLapaz, R.L.; Lee, H.J.; Magro, C.M.; Valeri, A.M. Incidence of nephrogenic systemic fibrosis at two large medical centers. Radiology 2008, 248, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, H.S. Are the increasing amounts of gadolinium in surface and tap water dangerous? Acta Radiol. 2017, 58, 259–263. [Google Scholar] [CrossRef]
- Song, H.; Shin, W.-J.; Ryu, J.-S.; Shin, H.S.; Chung, H.; Lee, K.-S. Anthropogenic rare earth elements and their spatial distributions in the Han River, South Korea. Chemosphere 2017, 172, 155–165. [Google Scholar] [CrossRef]
- Jiang, C.; Li, Y.; Li, C.; Zheng, L.; Zheng, L. Distribution, source and behavior of rare earth elements in surface water and sediments in a subtropical freshwater lake influenced by human activities. Environ. Pollut. 2022, 313, 120153. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Han, G.; Zhang, S.; Liang, B.; Qu, R.; Liu, M.; Liu, J. Potentially toxic elements in cascade dams-influenced river originated from Tibetan Plateau. Environ. Res. 2022, 208, 112716. [Google Scholar] [PubMed]
- Perrat, E.; Parant, M.; Py, J.-S.; Rosin, C.; Cossu-Leguille, C. Bioaccumulation of gadolinium in freshwater bivalves. Environ. Sci. Pollut. Res. 2017, 24, 12405–12415. [Google Scholar] [CrossRef]
- Parant, M.; Sohm, B.; Flayac, J.; Perrat, E.; Chuburu, F.; Cadiou, C.; Rosin, C.; Cossu-Leguille, C. Impact of gadolinium-based contrast agents on the growth of fish cells lines. Ecotoxicol. Environ. Saf. 2019, 182, 109385. [Google Scholar] [CrossRef]
- Bispo, F.H.A.; de Menezes, M.D.; Fontana, A.; Sarkis, J.E.d.S.; Gonçalves, C.M.; de Carvalho, T.S.; Curi, N.; Guilherme, L.R.G. Rare earth elements (REEs): Geochemical patterns and contamination aspects in Brazilian benchmark soils. Environ. Pollut. 2021, 289, 117972. [Google Scholar] [CrossRef]
- Carpenter, D.; Boutin, C.; Allison, J.E.; Parsons, J.L.; Ellis, D.M. Uptake and Effects of Six Rare Earth Elements (REEs) on Selected Native and Crop Species Growing in Contaminated Soils. PLoS ONE 2015, 10, e0129936. [Google Scholar] [CrossRef]
- Silva, L.F.O.; Oliveira, M.L.S.; Crissien, T.J.; Santosh, M.; Bolivar, J.; Shao, L.; Dotto, G.L.; Gasparotto, J.; Schindler, M. A review on the environmental impact of phosphogypsum and potential health impacts through the release of nanoparticles. Chemosphere 2022, 286, 131513. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Q.; Jia, H.; Wang, Z.; Gao, S.; Zeng, J. Anthropogenic rare earth elements in urban lakes: Their spatial distributions and tracing application. Chemosphere 2022, 300, 134534. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.H.; Brown, D.F. Understanding urban residential water use in Beijing and Tianjin, China. Habitat Int. 2005, 29, 469–491. [Google Scholar] [CrossRef]
- Jiang, J.; Zhao, G.; Xu, Y.; Zhao, J.; Liu, L.; Liu, C.; Wang, D.; Li, Y. Occurrence and distribution characteristics of heavy metals in the surface water of Yongding River Basin, China. Environ. Sci. Pollut. Res. 2022, 29, 17821–17831. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Q.; Lin, L.; Lv, H.; Wang, Y. Assessing the comprehensive restoration of an urban river: An integrated application of contingent valuation in Shanghai, China. Sci. Total Environ. 2013, 458-460, 517–526. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Li, Y.; Shen, Z.; Wang, X.; Yang, Z.; Lou, I. Is urban development an urban river killer? A case study of Yongding Diversion Channel in Beijing, China. J. Environ. Sci. 2014, 26, 1232–1237. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Long, H.; Xu, X.; Bao, Y. Monitoring the effects of land use and cover type changes on soil moisture using remote-sensing data: A case study in China’s Yongding River basin. CATENA 2010, 82, 135–145. [Google Scholar] [CrossRef]
- Jiang, B.; Wong, C.P.; Lu, F.; Ouyang, Z.; Wang, Y. Drivers of drying on the Yongding River in Beijing. J. Hydrol. 2014, 519, 69–79. [Google Scholar] [CrossRef]
- Sun, K.; Hu, L.; Guo, J.; Yang, Z.; Zhai, Y.; Zhang, S. Enhancing the understanding of hydrological responses induced by ecological water replenishment using improved machine learning models: A case study in Yongding River. Sci. Total Environ. 2021, 768, 145489. [Google Scholar] [CrossRef]
- Li, X.; Han, G.; Liu, M.; Liu, J.; Zhang, Q.; Qu, R. Potassium and its isotope behaviour during chemical weathering in a tropical catchment affected by evaporite dissolution. Geochim. Cosmochim. Acta 2022, 316, 105–121. [Google Scholar] [CrossRef]
- McLennan, S.M. Chapter 7. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes. In Geochemistry and Mineralogy of Rare Earth Elements; Bruce, R.L., McKay, G.A., Eds.; De Gruyter: Berlin, Germany, 1989; pp. 169–200. [Google Scholar]
- Bolhar, R.; Van Kranendonk, M.J. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates. Precambrian Res. 2007, 155, 229–250. [Google Scholar] [CrossRef]
- Kulaksız, S.; Bau, M. Anthropogenic dissolved and colloid/nanoparticle-bound samarium, lanthanum and gadolinium in the Rhine River and the impending destruction of the natural rare earth element distribution in rivers. Earth Planet. Sci. Lett. 2013, 362, 43–50. [Google Scholar] [CrossRef]
- Wang, L.; Han, X.; Ding, S.; Liang, T.; Zhang, Y.; Xiao, J.; Dong, L.; Zhang, H. Combining multiple methods for provenance discrimination based on rare earth element geochemistry in lake sediment. Sci. Total Environ. 2019, 672, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.; Liu, X.-M. Spatial and temporal distribution of rare earth elements in the Neuse River, North Carolina. Chem. Geol. 2018, 488, 34–43. [Google Scholar] [CrossRef]
- Kulaksız, S.; Bau, M. Rare earth elements in the Rhine River, Germany: First case of anthropogenic lanthanum as a dissolved microcontaminant in the hydrosphere. Environ. Int. 2011, 37, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Wang, W.-X. Dissolved rare earth elements in the Pearl River Delta: Using Gd as a tracer of anthropogenic activity from river towards the sea. Sci. Total Environ. 2023, 856, 159241. [Google Scholar] [CrossRef]
- Han, R.; Wang, Z.; Shen, Y.; Wu, Q.; Liu, X.; Cao, C.; Gao, S.; Zhang, J. Anthropogenic Gd in urban river water: A case study in Guiyang, SW China. Elem. Sci. Anthr. 2021, 9, 147. [Google Scholar] [CrossRef]
- Zaharescu, D.G.; Burghelea, C.I.; Dontsova, K.; Presler, J.K.; Maier, R.M.; Huxman, T.; Domanik, K.J.; Hunt, E.A.; Amistadi, M.K.; Gaddis, E.E.; et al. Ecosystem Composition Controls the Fate of Rare Earth Elements during Incipient Soil Genesis. Sci. Rep. 2017, 7, 43208. [Google Scholar] [CrossRef]
- Shiller, A.M. Dissolved rare earth elements in a seasonally snow-covered, alpine/subalpine watershed, Loch Vale, Colorado. Geochim. Cosmochim. Acta 2010, 74, 2040–2052. [Google Scholar] [CrossRef]
- Lerat-Hardy, A.; Coynel, A.; Schafer, J.; Marache, A.; Pereto, C.; Bossy, C.; Capdeville, M.-J.; Granger, D. Impacts of Highway Runoff on Metal Contamination Including Rare Earth Elements in a Small Urban Watershed: Case Study of Bordeaux Metropole (SW France). Arch. Environ. Contam. Toxicol. 2022, 82, 206–226. [Google Scholar] [CrossRef]
- Zeng, J.; Han, G.; Zhang, S.; Xiao, X.; Li, Y.; Gao, X.; Wang, D.; Qu, R. Rainwater chemical evolution driven by extreme rainfall in megacity: Implication for the urban air pollution source identification. J. Clean. Prod. 2022, 372, 133732. [Google Scholar] [CrossRef]
- Zeng, J.; Han, G.; Zhang, S.; Xiao, X.; Li, Y.; Gao, X.; Wang, D.; Qu, R. Response of dissolved organic carbon in rainwater during extreme rainfall period in megacity: Status, potential source, and deposition flux. Sustain. Cities Soc. 2023, 88, 104299. [Google Scholar] [CrossRef]
- Zeng, J.; Han, G.; Zhang, S.; Qu, R. Nitrate dynamics and source identification of rainwater in Beijing during rainy season: Insight from dual isotopes and Bayesian model. Sci. Total Environ. 2023, 856, 159234. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.; Cui, Y.; Zhang, S.; Chao, W.; Shao, J. Evaluation of the Impact of Ecological Water Supplement on Groundwater Restoration Based on Numerical Simulation: A Case Study in the Section of Yongding River, Beijing Plain. Water 2021, 13, 3059. [Google Scholar] [CrossRef]
- Liu, M.; Han, G.; Zeng, J.; Liang, B.; Zhang, Q. Effect of cascade reservoirs on geochemical characteristics of rare earth elements in suspended particle matter in Lancangjiang River, Southwest China. Aquat. Sci. 2022, 84, 19. [Google Scholar] [CrossRef]
- Bayon, G.; Toucanne, S.; Skonieczny, C.; Andre, L.; Bermell, S.; Cheron, S.; Dennielou, B.; Etoubleau, J.; Freslon, N.; Gauchery, T.; et al. Rare earth elements and neodymium isotopes in world river sediments revisited. Geochim. Cosmochim. Acta 2015, 170, 17–38. [Google Scholar] [CrossRef]
- Pereto, C.; Coynel, A.; Lerat-Hardy, A.; Gourves, P.-Y.; Schäfer, J.; Baudrimont, M. Corbicula fluminea: A sentinel species for urban Rare Earth Element origin. Sci. Total Environ. 2020, 732, 138552. [Google Scholar] [CrossRef]
- Wei, J.; Zheng, X.; Liu, J.; Zhang, G.; Zhang, Y.; Wang, C.; Liu, Y. The Levels, Sources, and Spatial Distribution of Heavy Metals in Soils from the Drinking Water Sources of Beijing, China. Sustainability 2021, 13, 3719. [Google Scholar]
- Han, G.; Xu, Z.; Tang, Y.; Zhang, G. Rare Earth Element Patterns in the Karst Terrains of Guizhou Province, China: Implication for Water/Particle Interaction. Aquat. Geochem. 2009, 15, 457. [Google Scholar] [CrossRef]
- Han, G.; Yang, K.; Zeng, J. Spatio-Temporal Distribution and Environmental Behavior of Dissolved Rare Earth Elements (REE) in the Zhujiang River, Southwest China. Bull. Environ. Contam. Toxicol. 2022, 108, 555–562. [Google Scholar] [CrossRef]
- Möller, P.; Morteani, G.; Dulski, P. Anomalous Gadolinium, Cerium, and Yttrium Contents in the Adige and Isarco River Waters and in the Water of Their Tributaries (Provinces Trento and Bolzano/Bozen, NE Italy). Acta Hydrochim. Hydrobiol. 2003, 31, 225–239. [Google Scholar] [CrossRef]
- Kandarakis, I.; Cavouras, D.; Panayiotakis, G.S.; Triantis, D.; Nomicos, C.D. Europium-activated phosphors for use in X-ray detectors of medical imaging systems. Eur. Radiol. 1998, 8, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Bau, M.; Dulski, P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res. 1996, 79, 37–55. [Google Scholar] [CrossRef]
- Guo, W.; Fu, Y.; Ruan, B.; Ge, H.; Zhao, N. Agricultural non-point source pollution in the Yongding River Basin. Ecol. Indic. 2014, 36, 254–261. [Google Scholar] [CrossRef]
- Birka, M.; Wehe, C.A.; Telgmann, L.; Sperling, M.; Karst, U. Sensitive quantification of gadolinium-based magnetic resonance imaging contrast agents in surface waters using hydrophilic interaction liquid chromatography and inductively coupled plasma sector field mass spectrometry. J. Chromatogr. A 2013, 1308, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Wiche, O.; Zertani, V.; Hentschel, W.; Achtziger, R.; Midula, P. Germanium and rare earth elements in topsoil and soil-grown plants on different land use types in the mining area of Freiberg (Germany). J. Geochem. Explor. 2017, 175, 120–129. [Google Scholar] [CrossRef]
- Han, G.; Li, F.; Tang, Y. Organic Matter Impact on Distribution of Rare Earth Elements in Soil Under Different Land Uses. CLEAN Soil Air Water 2017, 45, 1600235. [Google Scholar] [CrossRef]
- Hoshyari, E.; Hassanzadeh, N.; Keshavarzi, B.; Jaafarzadeh, N.; Rezaei, M. Spatial distribution, source apportionment, and ecological risk assessment of elements (PTEs, REEs, and ENs) in the surface soil of shiraz city (Iran) under different land-use types. Chemosphere 2023, 311, 137045. [Google Scholar] [CrossRef]
- Ullah, Z.; Khan, H.; Waseem, A.; Mahmood, Q.; Farooq, U. Water quality assessment of the River Kabul at Peshawar, Pakistan: Industrial and urban wastewater impacts. J. Water Chem. Technol. 2013, 35, 170–176. [Google Scholar] [CrossRef]
- Keeney, D.R.; DeLuca, T.H. Des Moines River Nitrate in Relation to Watershed Agricultural Practices: 1945 Versus 1980s. J. Environ. Qual. 1993, 22, 267–272. [Google Scholar]
- Yang, Y.; Liu, Y.; Li, Y.; Li, J. Measure of urban-rural transformation in Beijing-Tianjin-Hebei region in the new millennium: Population-land-industry perspective. Land Use Policy 2018, 79, 595–608. [Google Scholar] [CrossRef]
- Liu, C.; Pan, C.; Chang, Y.; Luo, M. An integrated autoregressive model for predicting water quality dynamics and its application in Yongding River. Ecol. Indic. 2021, 133, 108354. [Google Scholar] [CrossRef]
- Hao, Q.; Shao, J.; Cui, Y.; Xie, Z. Applicability of artificial recharge of groundwater in the Yongding River alluvial fan in Beijing through numerical simulation. J. Earth Sci. 2014, 25, 575–586. [Google Scholar] [CrossRef]
- Fu, Y.; Gao, T.; Yan, L.; Zhang, A.; Ruan, B. Agro-ecological compensation standard based on emergy analysis in Yongding River basin. Nongye Gongcheng Xuebao Trans. Chin. Soc. Agric. Eng. 2013, 29, 209–217. [Google Scholar] [CrossRef]
- Malhotra, N.; Hsu, H.-S.; Liang, S.-T.; Roldan, M.J.M.; Lee, J.-S.; Ger, T.-R.; Hsiao, C.-D. An Updated Review of Toxicity Effect of the Rare Earth Elements (REEs) on Aquatic Organisms. Animals 2020, 10, 1663. [Google Scholar] [CrossRef] [PubMed]
- González, V.; Vignati, D.A.L.; Pons, M.-N.; Montarges-Pelletier, E.; Bojic, C.; Giamberini, L. Lanthanide ecotoxicity: First attempt to measure environmental risk for aquatic organisms. Environ. Pollut. 2015, 199, 139–147. [Google Scholar] [CrossRef]
- Romero-Freire, A.; Minguez, L.; Pelletier, M.; Cayer, A.; Caillet, C.; Devin, S.; Gross, E.M.; Guérold, F.; Pain-Devin, S.; Vignati, D.A.L.; et al. Assessment of baseline ecotoxicity of sediments from a prospective mining area enriched in light rare earth elements. Sci. Total Environ. 2018, 612, 831–839. [Google Scholar] [CrossRef]
Site | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
YD-1 | 1.53 | 3.77 | 0.90 | 4.94 | 1.08 | 0.75 | 5.15 | 0.30 | 3.08 | 0.72 | 2.49 | 0.48 | 4.58 | 0.90 |
YD-2 | 5.79 | 5.67 | 1.78 | 8.81 | 1.90 | 0.83 | 11.84 | 0.42 | 4.01 | 1.04 | 3.32 | 0.53 | 4.01 | 0.83 |
YD-3 | 2.61 | 3.42 | 0.84 | 4.02 | 0.96 | 0.63 | 4.44 | 0.21 | 2.07 | 0.39 | 1.71 | 0.39 | 3.54 | 0.81 |
YD-4 | 15.79 | 14.50 | 3.35 | 15.71 | 3.71 | 1.74 | 8.50 | 0.65 | 6.94 | 1.65 | 5.18 | 0.88 | 6.38 | 1.29 |
YD-5 | 5.43 | 5.46 | 4.87 | 16.19 | 0.71 | 0.50 | 12.45 | 0.15 | 1.65 | 0.44 | 1.74 | 0.29 | 2.98 | 0.71 |
YD-6 | 5.85 | 8.20 | 1.51 | 7.25 | 2.35 | 0.77 | 7.46 | 0.45 | 4.28 | 0.92 | 2.91 | 0.50 | 4.81 | 1.19 |
YD-7 | 4.41 | 4.71 | 1.43 | 6.50 | 1.16 | 0.60 | 4.29 | 0.27 | 2.15 | 0.54 | 1.73 | 0.30 | 1.67 | 0.30 |
YD-8 | 2.24 | 3.35 | 0.57 | 2.60 | 0.66 | 0.78 | 7.81 | 0.12 | 0.87 | 0.24 | 0.81 | 0.15 | 1.05 | 0.24 |
YD-9 | 1.28 | 3.81 | 0.66 | 2.71 | 0.74 | 0.36 | 3.40 | 0.15 | 1.58 | 0.36 | 1.34 | 0.21 | 1.49 | 0.27 |
YD-10 | 0.87 | 0.99 | 0.33 | 1.53 | 0.45 | 0.54 | 0.96 | 0.09 | 0.81 | 0.24 | 0.78 | 0.12 | 0.75 | 0.09 |
YD-11 | 3.98 | 5.93 | 1.05 | 3.92 | 0.39 | 0.30 | 20.51 | 0.06 | 0.51 | 0.15 | 0.45 | 0.09 | 0.57 | 0.15 |
YD-12 | 0.99 | 1.61 | 0.24 | 0.90 | 0.15 | 0.27 | 1.37 | 0.03 | 0.24 | 0.06 | 0.15 | 0.03 | 0.15 | 0.09 |
YD-13 | 1.35 | 2.93 | 0.36 | 1.44 | 0.33 | 0.30 | 2.18 | 0.03 | 0.27 | 0.03 | 0.15 | 0.03 | 0.15 | 0.06 |
YD-14 | 1.70 | 2.62 | 0.36 | 1.43 | 0.21 | 0.27 | 0.48 | 0.03 | 0.30 | 0.06 | 0.09 | 0.03 | 0.12 | 0.03 |
YD-15 | 1.96 | 3.75 | 0.60 | 3.01 | 0.74 | 0.57 | 4.43 | 0.15 | 1.64 | 0.39 | 1.64 | 0.27 | 1.99 | 0.48 |
YD-16 | 2.07 | 3.93 | 0.66 | 3.63 | 0.69 | 0.54 | 5.22 | 0.21 | 2.01 | 0.48 | 1.98 | 0.30 | 2.49 | 0.51 |
YD-17 | 0.89 | 2.08 | 0.65 | 3.59 | 0.98 | 0.53 | 19.83 | 0.27 | 3.53 | 0.98 | 3.53 | 0.65 | 6.61 | 1.66 |
Sample | ∑REE | LREE/HREE | LaSN/YbSN | δCe | δGd | δEu | Gdanth | Cl− | NO3− | Na+ | pH | DO |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ng L−1 | ng L−1 | mg/L | mg/L | mg/L | mg/L | |||||||
YD-1 | 30.66 | 0.29 | 0.02 | 0.61 | 3.42 | 1.50 | 4.83 | 223.90 | 11.59 | 178.60 | 7.72 | 2.65 |
YD-2 | 50.77 | 0.41 | 0.11 | 0.35 | 5.38 | 0.83 | 11.37 | 226.81 | 10.50 | 184.60 | 7.73 | 2.95 |
YD-3 | 26.01 | 0.45 | 0.05 | 0.47 | 3.99 | 1.44 | 4.20 | 176.10 | 10.31 | 148.80 | 7.64 | 2.75 |
YD-4 | 86.26 | 0.63 | 0.18 | 0.41 | 2.34 | 1.46 | 7.72 | 261.42 | 9.34 | 212.30 | 7.75 | 3.18 |
YD-5 | 53.57 | 0.90 | 0.13 | 0.26 | 15.73 | 0.80 | 12.28 | 211.04 | 3.96 | 164.30 | 7.59 | 1.83 |
YD-6 | 48.45 | 0.57 | 0.09 | 0.56 | 3.05 | 0.87 | 6.93 | 270.95 | 3.33 | 224.90 | 7.58 | 2.85 |
YD-7 | 30.06 | 0.62 | 0.20 | 0.39 | 3.06 | 1.26 | 3.99 | 125.22 | 4.44 | 96.33 | 7.79 | 4.90 |
YD-8 | 21.48 | 0.57 | 0.16 | 0.62 | 11.74 | 1.62 | 7.66 | 46.00 | 0 | 35.05 | 8.67 | 6.76 |
YD-9 | 18.35 | 0.39 | 0.06 | 0.91 | 4.21 | 1.06 | 3.22 | 169.41 | 0 | 177.40 | 9.04 | 8.00 |
YD-10 | 8.53 | 0.46 | 0.09 | 0.38 | 1.97 | 3.87 | 0.85 | 79.97 | 8.14 | 50.88 | 8.45 | 8.10 |
YD-11 | 38.05 | 0.60 | 0.52 | 0.67 | 58.70 | 0.50 | 20.43 | 75.31 | 5.78 | 62.16 | 8.77 | 9.41 |
YD-12 | 6.27 | 0.94 | 0.49 | 0.77 | 8.49 | 2.79 | 1.34 | 55.50 | 19.04 | 55.53 | 8.24 | 8.24 |
YD-13 | 9.60 | 1.28 | 0.66 | 0.94 | 10.31 | 1.66 | 2.14 | 80.23 | 14.38 | 77.11 | 8.56 | 8.69 |
YD-14 | 7.72 | 1.84 | 1.05 | 0.75 | 2.68 | 4.00 | 0.44 | 25.18 | 24.15 | 23.77 | 8.32 | 11.07 |
YD-15 | 21.61 | 0.37 | 0.07 | 0.69 | 5.50 | 1.47 | 4.26 | 123.62 | 2.88 | 120.80 | 8.63 | 8.78 |
YD-16 | 24.72 | 0.33 | 0.06 | 0.64 | 5.03 | 1.34 | 5.00 | 142.11 | 2.80 | 140.70 | 8.60 | 6.79 |
YD-17 | 45.77 | 0.13 | 0.01 | 0.52 | 14.72 | 0.57 | 19.54 | 141.75 | 5.74 | 125.40 | 8.20 | 7.00 |
Buffer Zone | Woodland | Grassland | Cropland | Urban Land | Unused Land | Wetland |
---|---|---|---|---|---|---|
1 | 0.11 | 0.50 | 0.27 | 0.05 | 0.07 | 0.00 |
2 | 0.17 | 0.55 | 0.19 | 0.03 | 0.05 | 0.00 |
3 | 0.15 | 0.53 | 0.21 | 0.04 | 0.06 | 0.01 |
4 | 0.24 | 0.50 | 0.17 | 0.04 | 0.05 | 0.00 |
5 | 0.14 | 0.50 | 0.21 | 0.08 | 0.06 | 0.00 |
6 | 0.28 | 0.37 | 0.16 | 0.13 | 0.06 | 0.00 |
7 | 0.27 | 0.32 | 0.17 | 0.16 | 0.07 | 0.00 |
8 | 0.26 | 0.27 | 0.21 | 0.17 | 0.08 | 0.00 |
9 | 0.25 | 0.23 | 0.28 | 0.15 | 0.08 | 0.00 |
10 | 0.23 | 0.21 | 0.35 | 0.14 | 0.08 | 0.00 |
11 | 0.20 | 0.17 | 0.39 | 0.15 | 0.08 | 0.00 |
12 | 0.19 | 0.17 | 0.39 | 0.17 | 0.08 | 0.00 |
13 | 0.19 | 0.16 | 0.39 | 0.17 | 0.09 | 0.00 |
14 | 0.18 | 0.15 | 0.41 | 0.16 | 0.09 | 0.01 |
15 | 0.17 | 0.14 | 0.41 | 0.18 | 0.09 | 0.01 |
Cropland | Urban Land | Grassland | Woodland | |
---|---|---|---|---|
La | 0.59 * | 0.24 | −0.55 * | −0.01 |
Ce | 0.51 * | 0.38 | −0.60 ** | 0.12 |
Pr | 0.69 ** | 0.51 * | −0.74 ** | 0.05 |
Nd | 0.72 ** | 0.55 * | −0.78 ** | 0.03 |
Sm | 0.73 ** | 0.58 * | −0.74 ** | 0.04 |
Eu | 0.68 ** | 0.51 * | −0.71 ** | 0.04 |
Gd | 0.45 * | 0.37 | −0.56 * | 0.15 |
Tb | 0.74 ** | 0.56 * | −0.74 ** | −0.06 |
Dy | 0.80 ** | 0.55 * | −0.76 ** | −0.13 |
Ho | 0.80 ** | 0.59 * | −0.76 ** | −0.16 |
Er | 0.80 ** | 0.58 * | −0.77 ** | −0.15 |
Tm | 0.79 ** | 0.56 * | −0.76 ** | −0.14 |
Yb | 0.78 ** | 0.59 * | −0.76 ** | −0.15 |
Lu | 0.78 ** | 0.58 * | −0.75 ** | −0.18 |
∑REE | 0.65 ** | 0.51 * | −0.74 ** | 0.06 |
Gdanth | 0.44 * | 0.33 | −0.54 * | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Han, G.; Liu, J.; Zhang, S. Spatial Distribution and Sources of Rare Earth Elements in Urban River Water: The Indicators of Anthropogenic Inputs. Water 2023, 15, 654. https://doi.org/10.3390/w15040654
Gao X, Han G, Liu J, Zhang S. Spatial Distribution and Sources of Rare Earth Elements in Urban River Water: The Indicators of Anthropogenic Inputs. Water. 2023; 15(4):654. https://doi.org/10.3390/w15040654
Chicago/Turabian StyleGao, Xi, Guilin Han, Jinke Liu, and Shitong Zhang. 2023. "Spatial Distribution and Sources of Rare Earth Elements in Urban River Water: The Indicators of Anthropogenic Inputs" Water 15, no. 4: 654. https://doi.org/10.3390/w15040654
APA StyleGao, X., Han, G., Liu, J., & Zhang, S. (2023). Spatial Distribution and Sources of Rare Earth Elements in Urban River Water: The Indicators of Anthropogenic Inputs. Water, 15(4), 654. https://doi.org/10.3390/w15040654