Geochemistry and Sources Apportionment of Major Ions and Dissolved Heavy Metals in a Small Watershed on the Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analysis
2.3. Analytical Methods
3. Results and Discussion
3.1. Physicochemical Properties
3.2. Main Ionic Components and Hydrochemical Types
3.3. Exposure Level of Heavy Metals and Assessment of Water Quality
3.4. Spatio-Temporal Distribution of Heavy Metals
3.4.1. Spatio Distribution of Heavy Metals
3.4.2. Impact of Climate Change on As Concentration in DLQ
3.5. Pollution Source Identification Based on the Pearson Correction, PCA and PCA-MLR
3.5.1. Correlation Analysis
3.5.2. Principal Component Analysis
3.5.3. Source Apportionment Using APCS-MLR
4. Practical Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giri, S. Water quality prospective in Twenty First Century: Status of water quality in major river basins, contemporary strategies and impediments: A review. Environ. Pollut. 2021, 271, 116332. [Google Scholar] [CrossRef] [PubMed]
- AWI. 2020 Mississippi River Watershed Report Card; America’s Watershed Initiative: St. Louis, MO, USA, 2011; Available online: https://americaswatershed.org/reportcard/ (accessed on 8 December 2020).
- Duan, W.L.; He, B.; Chen, Y.; Zou, S.; Wang, Y.; Nover, D.; Chen, W.; Yang, G. Identification of long-term trends and seasonality in high-frequency water quality data from the Yangtze River basin, China. PLoS ONE 2018, 13, e0188889. [Google Scholar] [CrossRef] [PubMed]
- Murty, M.; Kumar, S. Water pollution in India: An economic appraisal. India Infrastruct. Rep. 2011, 19, 285–298. [Google Scholar]
- Huang, X.; Sillanpaa, M.; Gjessing, E.T.; Vogt, R.D. Water quality in the Tibetan Plateau: Major ions and trace elements in the headwaters of four major Asian rivers. Sci. Total Environ. 2009, 407, 6242–6254. [Google Scholar] [CrossRef]
- Raymond, P.A.; Oh, N.H.; Turner, R.E.; Broussard, W. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 2008, 451, 449–452. [Google Scholar] [CrossRef] [Green Version]
- Bera, T.; Kumar, V.; Sarkar, D.J.; Devi, M.S.; Behera, B.K.; Das, B.K. Pollution assessment and mapping of potentially toxic elements (PTE) distribution in urban wastewater fed natural wetland, Kolkata, India. Environ. Sci. Pollut. R. 2022, 29, 67801–67820. [Google Scholar] [CrossRef]
- WHO. 1 in 3 People Globally Do Not Have Access to Safe Drinking Water. Available online: http://www.who.int/.2019 (accessed on 17 June 2019).
- Qu, B.; Zhang, Y.L.; Kang, S.C.; Sillanpaa, M. Water quality in the Tibetan Plateau: Major ions and trace elements in rivers of the “Water Tower of Asia”. Sci. Total Environ. 2019, 649, 571–581. [Google Scholar] [CrossRef]
- Han, G.; Tang, Y.; Liu, M.; Van Zwieten, L.; Yang, X.M.; Yu, C.G.; Wang, H.L.; Song, Z.L. Carbon-nitrogen isotope coupling of soil organic matter in a karst region under land use change, Southwest China. Agric. Ecosyst. Environ. 2020, 301, 107027. [Google Scholar] [CrossRef]
- Liu, M.; Han, G.L.; Zhang, Q.J.A. Effects of agricultural abandonment on soil aggregation, soil organic carbon storage and stabilization: Results from observation in a small karst catchment, Southwest China. Agric. Ecosyst. Environ. 2020, 288, 106719. [Google Scholar] [CrossRef]
- Mao, G.; Zhao, Y.; Zhang, F.; Liu, J.; Huang, X. Spatiotemporal variability of heavy metals and identification of potential source tracers in the surface water of the Lhasa River basin. Environ. Sci. Pollut. Res. Int. 2019, 26, 7442–7452. [Google Scholar] [CrossRef]
- Qin, H.H.; Gao, B.; He, L.; Hu, X.H.; Dong, L.; Sanjay, D.; Dong, A.; Sun, Z.X.; Wan, W. Hydrogeochemical Characteristics and Controlling Factors of the Lhasa River under the Influence of Anthropogenic Activities. Water 2019, 11, 948. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, Y.; Liu, W. B, As, and F contamination of river water due to wastewater discharge of the Yangbajing geothermal power plant, Tibet, China. Environ. Geol. 2007, 56, 197–205. [Google Scholar] [CrossRef]
- Wang, G.; Zeng, C.; Zhang, F.; Zhang, Y.; Scott, C.; Yan, X. Traffic-related trace elements in soils along six highway segments on the Tibetan Plateau: Influence factors and spatial variation. Sci. Total Environ. 2017, 581, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhao, L.Y.; Li, Q.Y.; Hu, Y.; Huang, H.W.; Zou, J.Y.; Gao, F.; Tao, J.X.; Zhang, Y.Z.; Xu, P. Distribution characteristics, enrichment patterns and health risk assessment of dissolved trace elements in river water in the source region of the Yangtze River. J. Water Clim. Change 2021, 12, 2288–2298. [Google Scholar] [CrossRef]
- Huang, X.; Sillanpaa, M.; Gjessing, E.T.; Peraniemi, S.; Vogt, R.D. Environmental impact of mining activities on the surface water quality in Tibet: Gyama valley. Sci. Total Environ. 2010, 408, 4177–4184. [Google Scholar] [CrossRef]
- Fuoco, I.; Figoli, A.; Criscuoli, A.; Brozzo, G.; De Rosa, R.; Gabriele, B.; Apollaro, C. Geochemical modeling of chromium release in natural waters and treatment by RO/NF membrane processes. Chemosphere 2020, 254, 126696. [Google Scholar] [CrossRef]
- Fuoco, I.; Marini, L.; De Rosa, R.; Figoli, A.; Gabriele, B.; Apollaro, C. Use of reaction path modelling to investigate the evolution of water chemistry in shallow to deep crystalline aquifers with a special focus on fluoride. Sci. Total Environ. 2022, 830, 154566. [Google Scholar] [CrossRef]
- Mohamed, A.; Asmoay, A.; Alshehri, F.; Abdelrady, A.; Othman, A. Hydro-geochemical applications and multivariate analysis to assess the water–rock interaction in arid environments. Appl. Sci. 2022, 12, 6340. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Liu, J.F.; Jin, J.L.; Ma, T.; Wang, G.Q.; Liu, H.W.; Min, X.; Wang, H.; Lin, J.; Bao, Z.X.; et al. Evolution and trend of water resources in Qinghai-Tibet Plateau. Bull. Chin. Acad. Sci. Chin. Version 2019, 34, 1264–1273. [Google Scholar] [CrossRef]
- Huang, X.; Sillanpää, M.; Gjessing, E.T.; Peräniemi, S.; Vogt, R.D. Water quality in the southern Tibetan Plateau: Chemical evaluation of the Yarlung Tsangpo (Brahmaputra). River Res. Appl. 2011, 27, 113–121. [Google Scholar] [CrossRef]
- Li, C.L.; Kang, S.C.; Chen, P.F.; Zhang, Q.G.; Mi, J.; Gao, S.P.; Sillanpää, M. Geothermal spring causes arsenic contamination in river waters of the southern Tibetan Plateau, China. Environ. Earth Sci. 2013, 71, 4143–4148. [Google Scholar] [CrossRef]
- Zhu, M.Z.; Kuang, X.X.; Feng, Y.Q.; Hao, Y.L.; He, Q.L.; Zhou, H.; Chen, J.X.; Zou, Y.; Zheng, C. Hydrochemistry of the Lhasa River, Tibetan Plateau: Spatiotemporal Variations of Major Ions Compositions and Controlling Factors Using Multivariate Statistical Approaches. Water 2021, 13, 3660. [Google Scholar] [CrossRef]
- Li, Z.; Liu, J.J.; Chen, H.L.; Li, Q.Q.; Yu, C.; Huang, X.; Guo, H.C. Water environment in the Tibetan Plateau: Heavy metal distribution analysis of surface sediments in the Yarlung Tsangpo River Basin. Environ. Geochem. Health 2020, 42, 2451–2469. [Google Scholar] [CrossRef]
- Zhang, G.P.; Liu, C.Q.; Liu, H.; Jin, Z.S.; Han, G.L.; Li, L. Geochemistry of the Rehai and Ruidian geothermal waters, Yunnan Province, China. Geothermics 2008, 37, 73–83. [Google Scholar] [CrossRef]
- Guo, Q.H.; Wang, Y.X.; Liu, W. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China. J. Volcanol. Geoth. Res. 2007, 166, 255–268. [Google Scholar] [CrossRef]
- Apollaro, C.; Tripodi, V.; Vespasiano, G.; De Rosa, R.; Dotsika, E.; Fuoco, I.; Critelli, S.; Muto, F. Chemical, isotopic and geotectonic relations of the warm and cold waters of the Galatro and Antonimina thermal areas, southern Calabria, Italy. Mar. Petrol. Geol. 2019, 109, 469–483. [Google Scholar] [CrossRef]
- Dittmar, T. Hydrochemical processes controlling arsenic and heavy metal contamination in the Elqui river system (Chile). Sci. Total Environ. 2004, 325, 193–207. [Google Scholar] [CrossRef]
- Timperley, M.H.; Huser, B.A. Inflows of geothermal fluid chemicals to the Waikato River catchment, New Zealand. New Zeal. J. Mar. Fresh 1996, 30, 525–535. [Google Scholar] [CrossRef]
- Demirel, Z.; Yildirim, N. Boron pollution due to geothermal wastewater discharge into the Buyuk Menderes River, Turkey. Int. J. Environ. Pollut. 2002, 18, 602–608. [Google Scholar] [CrossRef]
- McCleskey, R.B.; Roth, D.A.; Mahony, D.; Nordstrom, D.K.; Kinsey, S. Sources, fate, and flux of geothermal solutes in the Yellowstone and Gardner Rivers, Yellowstone National Park, WY. Appl. Geochem. 2019, 111, 104458. [Google Scholar] [CrossRef]
- Romero, L.; Alonso, H.; Campano, P.; Fanfani, L.; Farago, M. Arsenic enrichment in waters and sediments of the Rio Loa (Second Region, Chile). Appl. Geochem. 2003, 18, 1399–1416. [Google Scholar] [CrossRef]
- Robinson, B.; Outred, H.; Brooks, R.; Kirkman, J. The distribution and fate of arsenic in the Waikato River system, North Island, New Zealand. Chem. Spec. Bioavailab. 1995, 7, 89–96. [Google Scholar] [CrossRef]
- Sorey, M.L.; Colvard, E.M. Hydrologic investigations in the Mammoth corridor, Yellowstone National Park and vicinity, USA. Geothermics 1997, 26, 221–249. [Google Scholar] [CrossRef]
- Wang, Y.C.; Li, L.; Wen, H.G.; Hao, Y.L. Geochemical evidence for the nonexistence of supercritical geothermal fluids at the Yangbajing geothermal field, southern Tibet. J. Hydrol. 2022, 604, 127243. [Google Scholar] [CrossRef]
- Gad, M.; Saleh, A.H.; Hussein, H.; Farouk, M.; Elsayed, S. Appraisal of Surface Water Quality of Nile River Using Water Quality Indices, Spectral Signature and Multivariate Modeling. Water 2022, 14, 1131. [Google Scholar] [CrossRef]
- Liu, L.L.; Tang, Z.; Kong, M.; Chen, X.; Zhou, C.C.; Huang, K.; Wang, Z.P. Tracing the potential pollution sources of the coastal water in Hong Kong with statistical models combining APCS-MLR. J. Environ. Manag. 2019, 245, 143–150. [Google Scholar] [CrossRef]
- Thurston, G.D.; Spengler, J. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos. Environ. 1985, 19, 9–25. [Google Scholar] [CrossRef]
- Zhang, T.H.; Huang, Q.Z. Research on geothermal wastewater pollution from Yangbajing Geothermal Test Power Plant in Tibet. J. Environ. Sci. 1997, 17, 252–255. (In Chinese) [Google Scholar]
- Coetsiers, M.; Walraevens, K. Chemical characterization of the Neogene Aquifer, Belgium. Hydrogeol. J. 2006, 14, 1556–1568. [Google Scholar] [CrossRef]
- Ji, D.; Zhao, P.J. Characteristics and genesis of the Yangbajing geothermal field, Tibet. In Proceedings of the World Geothermal Congress, Kyushu-Tohoku, Japan, 28 May–10 June 2000. [Google Scholar]
- Pi, X.H.; Feng, L.; Li, W.F.; Liu, J.G.; Kuang, X.X.; Shi, K.; Qi, W.; Chen, D.; Tang, J. Chlorophyll-a concentrations in 82 large alpine lakes on the Tibetan Plateau during 2003–2017: Temporal-spatial variations and influencing factors. Int. J. Digit. Earth 2021, 14, 714–735. [Google Scholar] [CrossRef]
- Liu, X.L.; Han, G.L.; Zeng, J.; Liu, J.K.; Li, X.; Boeckx, P. The effects of clean energy production and urbanization on sources and transformation processes of nitrate in a subtropical river system: Insights from the dual isotopes of nitrate and Bayesian model. J. Clean. Prod. 2021, 325, 129317. [Google Scholar] [CrossRef]
- Liu, X.L.; Han, G.; Zeng, J.; Liu, M.; Li, X.Q.; Boeckx, P. Identifying the sources of nitrate contamination using a combined dual isotope, chemical and Bayesian model approach in a tropical agricultural river: Case study in the Mun River, Thailand. Sci. Total Environ. 2021, 760, 14393836. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.K.; Han, G.L. Tracing Riverine particulate black carbon sources in Xijiang river Basin: Insight from stable isotopic composition and Bayesian mixing model. Water Res. 2021, 194, 116932. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, Z.W.; Lin, L.; Zhao, L.Y.; Dong, L.; Jin, H.Y.; Zou, J.Y.; Li, R.; He, Y.J. The Content Level, Spatial and Temporal Distribution Characteristics, and Health-Risk Assessment of Trace Elements in Upper Lancang River (Changdu Section). Water 2022, 14, 1115. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Liu, X.L.; Yang, X.; Zhang, W.; Wang, J.; Niu, Y.Q. Composition characteristics and source analysis of major ions in four small lake-watersheds on the Tibetan Plateau, China. Huan Jing ke Xue 2015, 36, 430–437. (In Chinese) [Google Scholar]
- Wu, Z.Y. Study on the Pollution Control Scheme of Yangbajing Geothermal Power Plant Drainage. Master’s Degree, Sichuan University, Chengdu, China, 2002. (In Chinese). [Google Scholar]
- Li, S.L.; Xia, X.H.; Zhou, B.; Zhang, S.B.; Zhang, L.W.; Mou, X.L. Chemical balance of the Yellow River source region, the northeastern Qinghai-Tibetan Plateau: Insights about critical zone reactivity. Appl. Geochem. 2018, 90, 1–12. [Google Scholar] [CrossRef]
- Zhao, L.Y.; Li, W.; Lin, L.; Guo, W.J.; Zhao, W.H.; Tang, X.Q.; Gong, D.D.; Li, Q.Y.; Xu, P. Field investigation on river hydrochemical characteristics and larval and juvenile fish in the source region of the Yangtze River. Water 2019, 11, 1342. [Google Scholar] [CrossRef] [Green Version]
- Bundschuh, J.; Maity, J.P. Geothermal arsenic: Occurrence, mobility and environmental implications. Renew. Sust. Energy Rev. 2015, 42, 1214–1222. [Google Scholar] [CrossRef]
- Spence, J.; Telmer, K. The role of sulfur in chemical weathering and atmospheric CO2 fluxes: Evidence from major ions, δ13CDIC, and δ34SSO4 in rivers of the Canadian Cordillera. Geochim. Cosmochim. Acta 2005, 69, 5441–5458. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms controlling world water chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef]
- Tian, Y.; Yu, C.Q.; Zha, X.J.; Gao, X.; Dai, E.F. Hydrochemical characteristics and controlling factors of natural water in the border areas of the Qinghai-Tibet Plateau. J. Geogr. Sci. 2019, 29, 1876–1894. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Han, G.; Liu, M.; Liu, J.; Zhang, Q.; Qu, R. Potassium and its isotope behaviour during chemical weathering in a tropical catchment affected by evaporite dissolution. Geochim. Cosmochim. Acta 2022, 316, 105–121. [Google Scholar] [CrossRef]
- Guo, Q.H.; Cao, Y.W.; Li, J.X.; Zhang, X.B.; Wang, Y.X. Natural attenuation of geothermal arsenic from Yangbajain power plant discharge in the Zangbo River, Tibet, China. Appl. Geochem. 2015, 62, 164–170. [Google Scholar] [CrossRef]
- Fuoco, I.; De Rosa, R.; Barca, D.; Figoli, A.; Gabriele, B.; Apollaro, C. Arsenic polluted waters: Application of geochemical modelling as a tool to understand the release and fate of the pollutant in crystalline aquifers. J. Environ. Manag. 2022, 301, 113796. [Google Scholar] [CrossRef] [PubMed]
- He, L. Hydrogeochemical Characteristics and Weathering Indicators in Lhasa River Basin. Master’s Degree, East China University of Technology, Fuzhou, China, 2019. (In Chinese). [Google Scholar]
- Li, S.L.; Liu, X.; Yue, F.J.; Yan, Z.F.; Wang, T.J.; Li, S.J.; Liu, C.Q. Nitorgen dynamics in the Critical Zones of China. Prog. Phys. Geog. 2022, accepted. [Google Scholar]
- Tian, Y.; Yu, C.Q.; Luo, K.L.; Zha, X.J.; Wu, J.S.; Zhang, X.Z.; Ni, R.X. Hydrochemical characteristics and element of natural waters in Tibet, China. J. Geogr. Sci. 2015, 25, 669–686. [Google Scholar] [CrossRef]
- Gaillardet, J.; Viers, J.; Dupré, B. Trace elements in river waters. In Treatise on Geochemistry, 2nd ed.; Holland, H., Turekian, K., Eds.; Elsevier Science Ltd.: Amsterdam, The Netherlands, 2014; Volume 7, pp. 195–235. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality; WHO Chronicle; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- GB 3838-2002; Chinese Standards for Surface Water Quality. Ministry of Public Health of China: Beijing, China, 2002. (In Chinese)
- GB 5749-2006; Chinese Standards for Drinking Water Quality. Ministry of Public Health of China: Beijing, China, 2006. (In Chinese)
- EPA816-F-09-004; National Primary Drinking Water Standards. National Secondary Drinking Water Standards. Environmental Protection Agency: Washington, DC, USA, 2009.
- Lu, H.; Yan, Y.; Zhu, J.; Jin, T.; Liu, G.; Wu, G.; Stringer, L.C.; Dallimer, M. Spatiotemporal Water Yield Variations and Influencing Factors in the Lhasa River Basin, Tibetan Plateau. Water 2020, 12, 1498. [Google Scholar] [CrossRef]
- Qiu, D.R.; Du, X.H.; Zha, X.L.J.; La, B.R.C.; Gu, S.Y.J.; Cui, J.Y. Analysis of Climatic Characteristics of Precipitation in Lhasa from 1980 to 2019. J. Anhui Agric. Sci. 2022, 50, 193–196. (In Chinese) [Google Scholar] [CrossRef]
- Yu, T.T.; Gan, Y.Q.; Zhou, A.G.; Liu, C.F.; Liu, Y.D.; Li, X.Q.; Cai, H.S. Characteristics of oxygen and hydrogen isotope distribution of surface runoff in the Lhasa River basin. Earth Sci. 2010, 35, 873–878. (In Chinese) [Google Scholar]
- Nimick, D.A.; Moore, J.N.; Dalby, C.E.; Savka, M.W. The fate of geothermal arsenic in the Madison and Missouri Rivers, Montana and Wyoming. Water Resour. Res. 1998, 34, 3051–3067. [Google Scholar] [CrossRef]
- Qin, H.H.; Gao, B.; Huang, B.X.; Zhang, S.Q.; Dong, L.; Sun, Z.X. Distribution characteristics and pollution risk assessment of heavy metals in river water in Lhasa River Basin. Nonferrous Met. Smelt. Part 2020, 79–86. (In Chinese) [Google Scholar]
- Zwolsman, J.J.; van Bokhoven, A.J. Impact of summer droughts on water quality of the Rhine River—A preview of climate change? Water Sci. Technol. 2007, 56, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Z.F.; Zhang, Y.L.; Ding, M.J.; Li, L.H. Identification of traffic-related metals and the effects of different environments on their enrichment in roadside soils along the Qinghai-Tibet highway. Sci. Total Environ. 2015, 521–522, 160–172. [Google Scholar] [CrossRef] [PubMed]
Sites | pH | T (°C) | DO (mg·L−1) | Chl-a (µg·L−1) | EC (mS·cm−1) | TDS (mg·L−1) | Reference | |
---|---|---|---|---|---|---|---|---|
YBJ | 9.5 | 80 | 2.9 | 1422 | This study | |||
LR 01 | 7.5 | 20.4 | 6.4 | 2.2 | 0.1 | 83 | ||
LR 02 | 7.1 | 20.7 | 6.3 | 2.6 | 0.2 | 106 | ||
DLQ (n = 20) | Min | 7.0 | 20.0 | 6.3 | 0.5 | 0.04 | 33 | |
Mean | 7.6 | 20.5 | 6.4 | 10.1 | 0.1 | 84.5 | ||
Max | 8.4 | 21.1 | 6.6 | 23.9 | 0.2 | 150 | ||
Requ River (Source region of the Yellow River) | Mean | / | / | 6.0 | / | 0.2 | 417 | [50] |
Chumaer River (Source region of the Yangtze River) | Mean | 8.5 | 19.46 | 5.6 | / | 0.2 | 1884 | [51] |
Mekong River | Mean | / | / | / | / | 0.3 | 302 | [5] |
Yarlung Tsangpo River | Mean | / | / | / | / | 0.1 | 112 |
Sites | K+ | Na+ | Ca2+ | Mg2+ | Cl– | Si | ||||
---|---|---|---|---|---|---|---|---|---|---|
YBJ | 137.2 | 376.0 | 4.3 | 0.4 | 440.7 | 71.8 | 357.2 | 0.4 | 237.5 | |
LR 01 | 1.4 | 6.8 | 31.25 | 5.5 | 14.4 | 21.6 | 86.5 | 0.6 | 3.2 | |
LR 02 | 1.4 | 4.9 | 19.39 | 1.6 | 7.3 | 12.1 | 54.6 | 1.8 | 3.2 | |
DLQ (n = 20) | Min | 0.7 | 1.3 | 6.2 | 0.3 | 1.2 | 1.5 | 20.4 | 0.2 | 1.8 |
Mean | 1.6 | 4.2 | 18.6 | 1.66 | 4.3 | 16.1 | 41.5 | 1.2 | 3.0 | |
Max | 4.5 | 8.2 | 33.0 | 2.8 | 13.4 | 52.1 | 75.8 | 3.2 | 4.7 |
Cd | Cr | Mn | Fe | Ni | Cu | Zn | Pb | As | Reference | |
---|---|---|---|---|---|---|---|---|---|---|
YBJ | 0.10 | 1.53 | 38.85 | 358.79 | 2.15 | 8.13 | 17.94 | 4.88 | 3532.21 | This study |
LR 01 | 0.04 | 1.45 | 5.19 | 39.27 | 0.75 | 2.89 | 4.20 | 0.32 | 3.06 | |
LR 02 | 0.05 | 1.99 | 13.43 | 47.19 | 1.10 | 0.91 | 2.44 | 0.50 | 5.05 | |
DLQ (n = 20) | 0.05 ± 0.01 | 1.65 ± 0.42 | 7.30 ± 3.65 | 78.36 ± 40.93 | 0.84 ± 0.4 | 1.03 ± 0.62 | 5.26 ± 3.58 | 0.53 ± 0.27 | 3.33 ± 2.98 | |
Source region of the Yangtze River | 0.02 | 1.83 | / | / | 1.73 | 5.87 | 3.52 | 1.06 | 10.02 | [16] |
Natural waters in Tibet | 4.13 | 0.77 | 95.57 | 1.01 | 0.38 | 4.91 | 0.03 | 6.11 | [61] | |
World average | 0.08 | 0.7 | 34 | 66 | 0.8 | 1.48 | 10 | 0.03 | 0.62 | [62] |
WHO | 3 | 50 (P) | 400 (C) | 3000 | 70 | 2000 | 3000 | 10 | 10 | [63] |
GB I/V | 1 | 10 | / | / | 20 | 10 | 50 | 10 | 50/100 | [64] |
GB5749-2006 | 5 | 50 | 100 | 300 | / | 1000 | 1000 | 10 | 50 | [65] |
NPDWR | 5 | 100 | / | / | / | / | 15 | 10 | [66] | |
NSDWR | - | 50 | 300 | / | 1000 | 5000 | / | 100 | / |
Cd | Cr | Mn | Fe | Ni | Cu | Zn | Pb | As | Ca2+ | K+ | Mg2+ | Na+ | Si | Cl– | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr | 0.12 | ||||||||||||||||
Mn | 0.34 | 0.14 | |||||||||||||||
Fe | 0.43 * | 0.11 | 0.67 ** | ||||||||||||||
Ni | 0.06 | 0.18 | 0.09 | −0.21 | |||||||||||||
Cu | −0.12 | −0.06 | 0.07 | 0.04 | 0.52 * | ||||||||||||
Zn | 0.22 | 0.00 | 0.39 | 0.71 ** | −0.22 | 0.29 | |||||||||||
Pb | 0.39 | 0.31 | 0.64 ** | 0.90 ** | −0.18 | 0.11 | 0.72 ** | ||||||||||
As | 0.26 | 0.07 | 0.29 | 0.24 | −0.05 | 0.02 | 0.04 | 0.39 | |||||||||
Ca2+ | −0.21 | −0.20 | 0.18 | −0.09 | 0.00 | 0.17 | −0.02 | 0.03 | 0.52 * | ||||||||
K+ | −0.04 | 0.52 * | 0.17 | −0.06 | 0.48 * | −0.08 | −0.31 | −0.07 | −0.21 | 0.03 | |||||||
Mg2+ | −0.47 * | −0.23 | 0.03 | −0.22 | −0.06 | 0.33 | −0.14 | −0.16 | 0.35 | 0.84 ** | −0.01 | ||||||
Na+ | −0.46 * | 0.29 | −0.08 | −0.37 | 0.47 * | 0.10 | −0.38 | −0.30 | −0.32 | 0.10 | 0.71 ** | 0.21 | |||||
Si | −0.33 | −0.13 | 0.31 | −0.08 | 0.35 | 0.06 | −0.13 | −0.02 | 0.09 | 0.59 ** | 0.33 | 0.40 | 0.51 * | ||||
Cl– | −0.53 * | −0.01 | −0.02 | −0.23 | 0.16 | 0.10 | −0.31 | −0.34 | −0.28 | 0.19 | 0.54 ** | 0.42 | 0.61 ** | 0.26 | |||
0.24 | −0.17 | 0.15 | 0.00 | −0.08 | −0.18 | −0.23 | 0.12 | 0.58 ** | 0.57 ** | −0.25 | 0.30 | −0.26 | 0.28 | −0.30 | |||
0.17 | −0.02 | 0.04 | 0.04 | −0.13 | 0.04 | 0.14 | 0.12 | 0.67 ** | 0.70 ** | −0.06 | 0.54 ** | −0.18 | 0.06 | −0.10 | 0.39 | ||
−0.51 * | −0.17 | 0.18 | −0.22 | 0.19 | 0.26 | −0.19 | −0.12 | 0.14 | 0.82 ** | 0.20 | 0.75 ** | 0.43 * | 0.78 ** | 0.439 * | 0.37 | 0.19 |
PC1 | PC2 | PC3 | |
---|---|---|---|
Cd | 0.297 | 0.606 | –0.100 |
Cr | –0.049 | 0.643 | 0.143 |
Mn | 0.624 | 0.457 | 0.108 |
Fe | 0.902 | 0.273 | –0.104 |
Ni | –0.256 | 0.251 | 0.866 |
Cu | 0.261 | –0.235 | 0.864 |
Zn | 0.906 | –0.148 | 0.052 |
Pb | 0.866 | 0.397 | –0.038 |
As | 0.185 | 0.558 | –0.074 |
Eigenvalue | 3.46 | 1.56 | 1.25 |
% of variance | 33.71 | 18.61 | 17.34 |
Cumulative % | 33.71 | 52.32 | 69.66 |
PC1 | PC2 | PC3 | Unidentified Sources (%) | Estimated Mean Concentration (mg/L) | Observed Mean Concentration (mg/L) | Ratio (E/O) | |
---|---|---|---|---|---|---|---|
Cd | — | 2.12% | — | 97.88% | 0.05 | 0.05 | 1.0000 |
Cr | — | 93.07% | 6.93% | — | 1.65 | 1.65 | 1.0000 |
Mn | 20.67% | 73.53% | 5.80% | — | 7.30 | 7.30 | 1.0000 |
Fe | 40.46% | 59.54% | — | — | 78.36 | 78.36 | 1.0000 |
Ni | — | 46.39% | 53.61% | — | 0.84 | 0.84 | 1.0000 |
Cu | 15.64% | — | 84.36% | — | 1.03 | 1.03 | 1.0007 |
Zn | 91.41% | — | 8.59% | — | 5.26 | 5.26 | 0.9996 |
Pb | 26.15% | 58.28% | — | 15.57% | 0.53 | 0.53 | 0.9999 |
As | 6.37% | 93.63% | — | — | 3.33 | 3.33 | 0.9995 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, W.; Wei, L.; Ma, W.; Li, J.; Liu, X.; Hu, J.; Wang, X. Geochemistry and Sources Apportionment of Major Ions and Dissolved Heavy Metals in a Small Watershed on the Tibetan Plateau. Water 2022, 14, 3856. https://doi.org/10.3390/w14233856
Xing W, Wei L, Ma W, Li J, Liu X, Hu J, Wang X. Geochemistry and Sources Apportionment of Major Ions and Dissolved Heavy Metals in a Small Watershed on the Tibetan Plateau. Water. 2022; 14(23):3856. https://doi.org/10.3390/w14233856
Chicago/Turabian StyleXing, Wencong, Lai Wei, Wenmin Ma, Jun Li, Xiaolong Liu, Jian Hu, and Xiaoxia Wang. 2022. "Geochemistry and Sources Apportionment of Major Ions and Dissolved Heavy Metals in a Small Watershed on the Tibetan Plateau" Water 14, no. 23: 3856. https://doi.org/10.3390/w14233856
APA StyleXing, W., Wei, L., Ma, W., Li, J., Liu, X., Hu, J., & Wang, X. (2022). Geochemistry and Sources Apportionment of Major Ions and Dissolved Heavy Metals in a Small Watershed on the Tibetan Plateau. Water, 14(23), 3856. https://doi.org/10.3390/w14233856