Capillary Imbibition in Layered Sandstone
Abstract
:1. Introduction
2. Methodology
2.1. Sample Preparation
2.2. Background Theory of Nuclear Magnetic Resonance (NMR)
- (1)
- Measurement of pore size distribution
- (2)
- Measurement of stratified moisture distribution
- (3)
- Nuclear magnetic resonance imaging (MRI)
2.3. Experimental Design
2.3.1. Capillary Imbibition Test
- (1)
- Water absorption mass and height rising of the water absorption front
- (2)
- Lightness of the sample’s top surface
- (3)
- NMR T2 spectra and stratified moisture content of samples
2.3.2. Observations of the Layer Structures and Pore Structures of Samples
3. Results
3.1. Water-Absorption Mass Changes with Time
3.2. Variation in the Height of the Absorption Front
3.3. Water Distribution at the Top of Samples According to Lightness
3.4. Variation in T2 Spectra during Water Adsorption
3.5. Variation in Stratified Moisture Distribution during Capillary Imbibition
4. Pore Structure of Layered Sandstone
4.1. Layer Structure According to MRI
4.2. Pore Structure Observed in Cast Thin Sections
5. Discussion
5.1. Basic Theories of Capillary Rise in a Tube and Calculation of the Equivalent Radius
5.2. Interpretating the Effects of the Bedding Plane on Moisture Migration with the Representative Pore-Structure Element
6. Conclusions
- (1)
- The layer structure had a significant effect on the capillary imbibition process by altering the water-absorption rate and water-redistribution mode. The water-migration rate along the axis of the cylindrical core was faster in the Par samples, which is evidenced by the variation in water-absorption mass and water height increase. The change of lightness on the top of the samples with time indicated different moisture-redistribution modes in Par samples and Per samples.
- (2)
- Vapor diffused and condensed to fill partial micropores and adsorb on the surface of pores ahead of the water-absorption front. This was more obvious in samples with well-developed bedding. The content of bound water as measured by NMR signals achieved stability before the visible water-absorption front reached the samples’ top; this was attributed to vapor diffusion and condensation above the capillary water front.
- (3)
- In Per sandstone, internal water migration lagged behind superficial water migration. This time lag was longer in sandstones with well-developed beddings. In the Per sample, variation in the NMR-derived height lagged behind the measured height.
- (4)
- According to the calculated results from the Lucas–Washburn equation, the equivalent radius was larger along the bedding plane than perpendicular to the bedding plane. Combining this with the direct observation of the pore structure of layered sandstone, we proposed the concept of the representative pore-structure element (RPE). Water migration in RPEs follows the migration laws in capillary stipulated by both the positive correlation between the pore radius and water-movement rate and the capillary competition effect.
- (5)
- Effects of the layer structure on moisture migration in sandstone were embedded in the different water-migration modes in Par and Per samples. The water-migration mode in Par samples can be simplified as primary upward intra-layer migration followed by intra-layer horizontal migration and then inter-layer horizontal migration. Meanwhile, the mode in Per samples can be simplified as primary intra-layer horizontal migration followed by intra-layer upward migration and then inter-layer horizontal migration.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, X.; He, P.; Qin, Z. Strength Weakening and energy mechanism of rocks subjected to wet–Dry cycles. Geotech. Geol. Eng. 2019, 37, 3915–3923. [Google Scholar] [CrossRef]
- Hall, K.; Hall, A. Weathering by wetting and drying: Some experimental results. Earth Surf. Process. Landf. 1996, 21, 365–376. [Google Scholar] [CrossRef]
- Jiang, Q.; Deng, H.; Li, J.; Luo, Z.; Assefa, E.; Fang, J.; Xiao, Y. The degradation effect and mechanism by water-rock interaction in the layered sandstone in the Three Gorges reservoir area. Arab. J. Geosci. 2019, 12, 1–11. [Google Scholar] [CrossRef]
- Nishiyama, N.; Yokoyama, T.; Takeuchi, S. Size distributions of pore water and entrapped air during drying infiltration processes of sandstone characterized by water expulsion porosimetry. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Ni, H.; Zhang, L.; Zhang, D.; Wu, X.; Fu, X. Weathering of Pisha-sandstones in the wind-water erosion crisscross region on the Loess Plateau. J. Mt. Sci. 2008, 5, 340–349. [Google Scholar] [CrossRef]
- Shi, Q.; Cui, S.; Wang, S.; Mi, Y.; Sun, Q.; Wang, S.; Yu, J. Experiment study on CO2 adsorption performance of thermal treated coal: Inspiration for CO2 storage after underground coal thermal treatment. Energy 2022, 254, 124392. [Google Scholar] [CrossRef]
- Van der Hoven, S.J.; Solomon, D.K.; Moline, G.R. Modeling unsaturated flow and transport in the saprolite of fractured sedimentary rocks: Effects of periodic wetting and drying. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, A.; Wang, X.; Liu, G. Quantitative determination of the effect of temperature on mudstone decay during wet–dry cycles: A case study of ‘purple mudstone’from south-western China. Geomorphology 2015, 246, 1–6. [Google Scholar] [CrossRef]
- Zhao, F.; Sun, Q.; Zhang, W. Combined effects of salts and wetting–drying cycles on granite weathering. Bull. Eng. Geol. Environ. 2020, 79, 3707–3720. [Google Scholar] [CrossRef]
- Boumaiza, L.; Chesnaux, R.; Walter, J.; Stumpp, C. Assessing groundwater recharge and transpiration in a humid northern region dominated by snowmelt using vadose-zone depth profiles. Hydrogeol. J. 2020, 28, 2315–2329. [Google Scholar] [CrossRef]
- Du, C.; Yu, J.; Wang, P.; Zhang, Y. Analysing the mechanisms of soil water and vapor transport in the desert vadose zone of the extremely arid region of northern China. J. Hydrol. 2018, 558, 592–606. [Google Scholar] [CrossRef]
- Grinevskii, S.O. Modeling root water uptake when calculating unsaturated flow in the vadose zone and groundwater recharge. Mosc. Univ. Geol. Bull. 2011, 66, 189–201. [Google Scholar] [CrossRef]
- Larsbo, M.; Roulier, S.; Stenemo, F.; Kasteel, R.; Jarvis, N. An improved dual-permeability model of water flow and solute transport in the vadose zone. Vadose Zone J. 2005, 4, 398–406. [Google Scholar] [CrossRef]
- Stephens, D.B.; Kron, A.J.; Kron, A. Vadose Zone Hydrology; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Zeng, Y.; Wan, L.; Su, Z.; Saito, H.; Huang, K.; Wang, X. Diurnal soil water dynamics in the shallow vadose zone (field site of China University of Geosciences, China). Environ. Geol. 2009, 58, 11–23. [Google Scholar] [CrossRef]
- Karagiannis, N.; Karoglou, M.; Bakolas, A.; Krokida, M.; Moropoulou, A. Drying kinetics of building materials capillary moisture. Constr. Build. Mater. 2017, 137, 441–449. [Google Scholar] [CrossRef]
- Stück, H.L.; Platz, T.; Müller, A.; Siegesmund, S. Natural stones of the Saale–Unstrut Region (Germany): Petrography and weathering phenomena. Environ. Earth Sci. 2018, 77, 1–29. [Google Scholar] [CrossRef]
- Yang, L.; Gao, D.; Zhang, Y.; Tang, J.; Li, Y. Relationship between sorptivity and capillary coefficient for water absorption of cement-based materials: Theory analysis and experiment. R. Soc. Open Sci. 2019, 6, 190112. [Google Scholar] [CrossRef]
- Beck, K.; Al-Mukhtar, M.; Rozenbaum, O.; Rautureau, M. Characterization, water transfer properties and deterioration in tuffeau: Building material in the Loire valley—France. Build. Environ. 2003, 38, 1151–1162. [Google Scholar] [CrossRef]
- El-Badry, A. Deterioration mechanisms affecting the bricks used in the building of the water wells at karnak temples, luxor, egypt. Egypt. J. Archaeol. Restor. Stud. 2019, 9, 13–25. [Google Scholar]
- Liu, X.; Meng, H.; Wang, Y.; Katayama, Y.; Gu, J.D. Water is a critical factor in evaluating and assessing microbial colonization and destruction of Angkor sandstone monuments. Int. Biodeterior. Biodegrad. 2018, 133, 9–16. [Google Scholar] [CrossRef]
- Martínez-Martínez, J.; Pola, A.; García-Sánchez, L.; Reyes Agustin, G.; Osorio Ocampo, L.S.; Macías Vázquez, J.L.; Robles-Camacho, J. Building stones used in the architectural heritage of Morelia (México): Quarries location, rock durability and stone compatibility in the monument. Environ. Earth Sci. 2018, 77, 1–16. [Google Scholar] [CrossRef]
- Wang, K.; Xu, G.; Li, S.; Ge, C. Geo-environmental characteristics of weathering deterioration of red sandstone relics: A case study in Tongtianyan Grottoes, Southern China. Bull. Eng. Geol. Environ. 2018, 77, 1515–1527. [Google Scholar] [CrossRef]
- Wedekind, W.; Ruedrich, J.; Siegesmund, S. Natural building stones of Mexico–Tenochtitlán: Their use, weathering and rock properties at the Templo Mayor, Palace Heras Soto and the Metropolitan Cathedral. Environ. Earth Sci. 2011, 63, 1787–1798. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Li, L.; Liu, J.; Liu, D.; Shao, M. Study on weathering mechanism of sandstone statues in Southwest China: Example from the sandstone of Niche of Sakyamuni Entering Nirvana at Dazu Rock Carvings. Nat. Hazards 2021, 108, 775–797. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Huang, J. Experimental study on capillary water absorption of sandstones from different grotto heritage sites in China. Herit. Sci. 2022, 10, 1–17. [Google Scholar] [CrossRef]
- Angeli, M.; Bigas, J.P.; Benavente, D.; Menéndez, B.; Hébert, R.; David, C. Salt crystallization in pores: Quantification and estimation of damage. Environ. Geol. 2007, 52, 205–213. [Google Scholar] [CrossRef]
- Cardenes, V.; Mateos, F.J.; Fernández-Lorenzo, S. Analysis of the correlations between freeze–thaw and salt crystallization tests. Environ. Earth Sci. 2014, 71, 1123–1134. [Google Scholar] [CrossRef]
- Oguchi, C.T.; Yu, S. A review of theoretical salt weathering studies for stone heritage. Prog. Earth Planet. Sci. 2021, 8, 1–23. [Google Scholar] [CrossRef]
- Cai, J.; Yu, B. A discussion of the effect of tortuosity on the capillary imbibition in porous media. Transp. Porous Media 2011, 89, 251–263. [Google Scholar] [CrossRef]
- Cai, J.; Yu, B.; Mei, M.; Luo, L. Capillary Rise in a Single Tortuous Capillary. Chin. Phys. Lett. 2010, 27, 054701. [Google Scholar] [CrossRef]
- Cai, J.; Yu, B.; Zou, M.; Luo, L. Fractal characterization of spontaneous co-current imbibition in porous media. Energy Fuels 2010, 24, 1860–1867. [Google Scholar] [CrossRef]
- Cai, J.; Jin, T.; Kou, J.; Zou, S.; Xiao, J.; Meng, Q. Lucas–Washburn equation-based modeling of capillary-driven flow in porous systems. Langmuir 2021, 37, 1623–1636. [Google Scholar] [CrossRef] [PubMed]
- Erickson, D.; Li, D.; Park, C.B. Numerical simulations of capillary-driven flows in nonuniform cross-sectional capillaries. J. Colloid Interface Sci. 2002, 250, 422–430. [Google Scholar] [CrossRef]
- Mosquera, M.J.; Rivas, T.; Prieto, B.; Silva, B. Capillary rise in granitic rocks: Interpretation of kinetics on the basis of pore structure. J. Colloid Interface Sci. 2000, 222, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Grant, S.A.; Bachmann, J. Effect of temperature on capillary pressure. Geophys. Monogr.-Am. Geophys. Union 2002, 129, 199–212. [Google Scholar] [CrossRef]
- She, H.Y.; Sleep, B.E. The effect of temperature on capillary pressure-saturation relationships for air-water and perchloroethylene-water systems. Water Resour. Res. 1998, 34, 2587–2597. [Google Scholar] [CrossRef]
- Wilkinson, G.E.; Klute, A. The temperature effect on the equilibrium energy status of water held by porous media. Soil Sci. Soc. Am. J. 1960, 26, 535–540. [Google Scholar] [CrossRef]
- Arbatan, T.; Shen, W. Measurement of the surface tension of liquid marbles. Langmuir 2011, 27, 12923–12929. [Google Scholar] [CrossRef]
- Bell, J.M.; Cameron, F.K. The flow of liquids through capillary spaces. J. Phys. Chem. 2002, 10, 658–674. [Google Scholar] [CrossRef]
- Lucas, R. Rate of capillary ascension of liquids. Kolloid Z. 1918, 23, 15–22. [Google Scholar] [CrossRef]
- Washburn, E.W. The dynamics of capillary flow. Phys. Rev. 1921, 17, 273. [Google Scholar] [CrossRef]
- Dullien, F.A.L. Porous Media: Fluid Transport and Pore Structure; Academic Press: New York, NY, USA, 1979; pp. 291–300. [Google Scholar]
- Hammecker, C.; Jeannette, D. Modelling the capillary imbibition kinetics in sedimentary rocks: Role of petrographical features. Transp. Porous Media 1994, 17, 285–303. [Google Scholar] [CrossRef]
- Hammecker, C.; Mertz, J.D.; Fischer, C.; Jeannette, D. A geometrical model for numerical simulation of capillary imbibition in sedimentary rocks. Transp. Porous Media 1993, 12, 125–141. [Google Scholar] [CrossRef]
- Levine, S.; Lowndes, J.; Reed, P. Two-phase fluid flow and hysteresis in a periodic capillary tube. J. Colloid Interface Sci. 1980, 77, 253–263. [Google Scholar] [CrossRef]
- Leventis, A.; Verganelakis, D.A.; Halse, M.R.; Webber, J.B.; Strange, J.H. Capillary imbibition and pore characterisation in cement pastes. Transp. Porous Media 2000, 39, 143–157. [Google Scholar] [CrossRef]
- Szekely, J.; Neumann, A.W.; Chuang, Y.K. The rate of capillary penetration and the applicability of the Washburn equation. J. Colloid Interface Sci. 1971, 35, 273–278. [Google Scholar] [CrossRef]
- Mason, G.; Morrow, N.R. Capillary behavior of a perfectly wetting liquid in irregular triangular tubes. J. Colloid Interface Sci. 1991, 141, 262–274. [Google Scholar] [CrossRef]
- Mason, G.; Morrow, N.R. Effect of contact angle on capillary displacement curvatures in pore throats formed by spheres. J. Colloid Interface Sci. 1994, 168, 130–141. [Google Scholar] [CrossRef]
- Turian, R.M.; Kessler, F.D. Capillary flow in a noncircular tube. AIChE J. 2000, 46, 695–706. [Google Scholar] [CrossRef]
- Li, C.; Shen, Y.; Ge, H.; Yang, Z.; Su, S.; Ren, K.A.I.; Huang, H. Analysis of capillary rise in asymmetric branch-like capillary. Fractals 2016, 24, 1650024. [Google Scholar] [CrossRef]
- Benavente, D.; Lock, P.; Ángeles García Del Cura, M.; Ordóñez, S. Predicting the capillary imbibition of porous rocks from microstructure. Transp. Porous Media 2002, 49, 59–76. [Google Scholar] [CrossRef]
- Doyen, P.M. Permeability, conductivity, and pore geometry of sandstone. J. Geophys. Res. Solid Earth 1988, 93, 7729–7740. [Google Scholar] [CrossRef]
- Yu, B.; Cheng, P. A fractal permeability model for bi-dispersed porous media. Int. J. Heat Mass Transf. 2002, 45, 2983–2993. [Google Scholar] [CrossRef]
- Yu, B.; Cai, J.; Zou, M. On the physical properties of apparent two-phase fractal porous media. Vadose Zone J. 2009, 8, 177–186. [Google Scholar] [CrossRef]
- Lundblad, A.; Bergman, B. Determination of contact angle in porous molten-carbonate fuel-cell electrodes. J. Electrochem. Soc. 1997, 144, 984. [Google Scholar] [CrossRef]
- Sadjadi, Z.; Jung, M.; Seemann, R.; Rieger, H. Meniscus arrest during capillary rise in asymmetric microfluidic pore junctions. Langmuir 2015, 31, 2600–2608. [Google Scholar] [CrossRef]
- Mehrabian, H.; Gao, P.; Feng, J.J. Wicking flow through microchannels. Phys. Fluids 2011, 23, 122108. [Google Scholar] [CrossRef]
- Liu, F.; Yang, L.; Jia, H. Variation in Anisotropy with Dehydration in Layered Sandstone. Water 2021, 13, 2224. [Google Scholar] [CrossRef]
- Zhao, J.; Plagge, R. Characterization of hygrothermal properties of sandstones—Impact of anisotropy on their thermal and moisture behaviors. Energy Build. 2015, 107, 479–494. [Google Scholar] [CrossRef]
- Keppert, M.; Žumár, J.; Čáchová, M.; Koňáková, D.; Svora, P.; Pavlík, Z.; Černý, R. Water vapor diffusion and adsorption of sandstones: Influence of rock texture and composition. Adv. Mater. Sci. Eng. 2016, 2016, 8039748. [Google Scholar] [CrossRef] [Green Version]
- Pavlík, Z.; Žumár, J.; Medved, I.; Černý, R. Water vapor adsorption in porous building materials: Experimental measurement and theoretical analysis. Transp. Porous Media 2012, 91, 939–954. [Google Scholar] [CrossRef]
- Duan, S.; Li, G. Equilibrium and kinetics of water vapor adsorption on shale. J. Energy Resour. Technol. 2018, 140, 122001. [Google Scholar] [CrossRef]
- Bai, J.; Kang, Y.; Chen, M.; Chen, Z.; You, L.; Li, X.; Chen, G. Impact of surface chemistry and pore structure on water vapor adsorption behavior in gas shale. Chem. Eng. J. 2020, 402, 126238. [Google Scholar] [CrossRef]
- Liang, K.; Zeng, X.; Zhou, X.; Ling, C.; Wang, P.; Li, K.; Ya, S. Investigation of the capillary rise in cement-based materials by using electrical resistivity measurement. Constr. Build. Mater. 2018, 173, 811–819. [Google Scholar] [CrossRef]
- Carpenter, T.A.; Davies, E.S.; Hall, C.; Hall, L.D.; Hoff, W.D.; Wilson, M.A. Capillary water migration in rock: Process and material properties examined by NMR imaging. Mater. Struct. 1993, 26, 286–292. [Google Scholar] [CrossRef]
- Standnes, D.C. Spontaneous imbibition of water into cylindrical cores with high aspect ratio: Numerical and experimental results. J. Pet. Sci. Eng. 2006, 50, 151–160. [Google Scholar] [CrossRef]
- Alyafei, N.; Al-Menhali, A.; Blunt, M.J. Experimental and analytical investigation of spontaneous imbibition in water-wet carbonates. Transp. Porous Media 2016, 115, 189–207. [Google Scholar] [CrossRef]
- Poulsen, M.M.; Kueper, B.H. A field experiment to study the behavior of tetrachloroethylene in unsaturated porous media. Environ. Sci. Technol. 1992, 26, 889–895. [Google Scholar] [CrossRef]
- Ringrose, P.S.; Sorbie, K.S.; Corbett, P.W.M.; Jensen, J.L. Immiscible flow behaviour in laminated and cross-bedded sandstones. J. Pet. Sci. Eng. 1993, 9, 103–124. [Google Scholar] [CrossRef]
- Delage, P. Microstructure features in the behaviour of engineered barriers for nuclear waste disposal. Exp. Unsaturated Soil Mech. 2007, 112, 11–32. [Google Scholar] [CrossRef]
- Romero, E.; Simms, P.H. Microstructure investigation in unsaturated soils: A review with special attention to contribution of mercury intrusion porosimetry and environmental scanning electron microscopy. Geotech. Geol. Eng. 2008, 26, 705–727. [Google Scholar] [CrossRef]
- Romero, E. A microstructural insight into compacted clayey soils and their hydraulic properties. Eng. Geol. 2013, 165, 3–19. [Google Scholar] [CrossRef]
- Lakirouhani, A.; Bakhshi, M.; Zohdi, A.; Medzvieckas, J.; Gadeikis, S. Physical and mechanical properties of sandstones from Southern Zanjan, north-western Iran. Balt. J. 2022, 35, 23–36. [Google Scholar] [CrossRef]
- Jia, H.; Zi, F.; Yang, G.; Li, G.; Shen, Y.; Sun, Q.; Yang, P. Influence of pore water (ice) content on the strength and deformability of frozen argillaceous siltstone. Rock Mech. Rock Eng. 2020, 53, 967–974. [Google Scholar] [CrossRef]
- Wang, T.; Sun, Q.; Jia, H.; Shen, Y.; Li, G. Fracture Mechanical Properties of Frozen Sandstone at Different Initial Saturation Degrees. Rock Mech. Rock Eng. 2022, 55, 3235–3252. [Google Scholar] [CrossRef]
- Jia, H.; Ding, S.; Wang, Y.; Zi, F.; Sun, Q.; Yang, G. An NMR-based investigation of pore water freezing process in sandstone. Cold Reg. Sci. Technol. 2019, 168, 102893. [Google Scholar] [CrossRef]
- Jia, H.; Ding, S.; Zi, F.; Li, G.; Yao, Y. Development of anisotropy in sandstone subjected to repeated frost action. Rock Mech. Rock Eng. 2021, 54, 1863–1874. [Google Scholar] [CrossRef]
- Jia, H.; Ding, S.; Zi, F.; Dong, Y.; Shen, Y. Evolution in sandstone pore structures with freeze-thaw cycling and interpretation of damage mechanisms in saturated porous rocks. Catena 2020, 195, 104915. [Google Scholar] [CrossRef]
- Kristensen, L.; Hjuler, M.L.; Frykman, P.; Olivarius, M.; Weibel, R.; Nielsen, L.H.; Mathiesen, A. Pre-drilling assessments of average porosity and permeability in the geothermal reservoirs of the Danish area. Geotherm. Energy 2016, 4, 1–27. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, R.; Xie, H.; Gao, M. The relationships among stress, effective porosity and permeability of coal considering the distribution of natural fractures: Theoretical and experimental analyses. Environ. Earth Sci. 2015, 73, 5997–6007. [Google Scholar] [CrossRef]
- MacNaughton, R.; Beauchamp, B.; Dewing, K.; Smith, I.; Wilson, N.; Zonneveld, J.P. Encyclopedia of sediments and sedimentary rocks. Geosci. Can. 2005, 32, 139–140. [Google Scholar]
- Siegel, R. Transient Capillary Rise in Reduced and Zero-Gravity Fields. J. Appl. Mech. 1961, 28, 165. [Google Scholar] [CrossRef]
- Bosanquet, C.H. LV. On the flow of liquids into capillary tubes. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1923, 45, 525–531. [Google Scholar] [CrossRef]
- Pallas, N.R.; Pethica, B.A. The surface tension of water. Colloids Surf. 1983, 6, 221–227. [Google Scholar] [CrossRef]
- Korosi, A.; Fabuss, B.M. Viscosity of liquid water from 25 to 150. degree. measurements in pressurized glass capillary viscometer. Anal. Chem. 1968, 40, 157–162. [Google Scholar] [CrossRef]
- Englert, A.H.; Rodrigues, R.T.; Rubio, J. Dissolved air flotation (DAF) of fine quartz particles using an amine as collector. Int. J. Miner. Process. 2009, 90, 27–34. [Google Scholar] [CrossRef]
- Záleská, M.; Pavlíková, M.; Pavlík, Z.; Černý, R. Retention curves of different types of sandstone. Adv. Mater. Res. 2014, 982, 44–48. [Google Scholar] [CrossRef]
- Charola, A.E.; Wendler, E. An overview of the water-porous building materials interactions. Restor. Build. Monum. 2015, 21, 55–65. [Google Scholar] [CrossRef]
Mineral Name | Content Proportion (%) |
---|---|
Quartz | 47.0 |
Plagioclase | 19.9 |
Potassium feldspar | 6.4 |
Calcite | 19.8 |
Dolomite | 3.6 |
Chlorite | 3.0 |
hematite | 0.3 |
Mineral Name | Content Proportion (%) |
---|---|
Quartz | 71 |
Potassium feldspar | 18 |
Calcite | 6 |
Chlorite | 5 |
Sample | Variable (Units) | Stage 1 | Stage 2 | Stage 3 |
---|---|---|---|---|
A1 | T (min) | 160 | 960 | 8510 |
M (g) | 20.62 | 1.22 | 3.50 | |
MR (%) | 81.37% | 4.81% | 13.81% | |
R (g/min) | 0.12 | 0.0013 | 0.00041 | |
A2 | T (min) | 140 | 980 | 8510 |
M (g) | 11.73 | 12.49 | 4.15 | |
MR (%) | 41.35% | 44.03% | 14.63% | |
R (g/min) | 0.077 | 0.015 | 0.00022 | |
B1 | T (min) | 220 | 800 | 7780 |
M (g) | 10.2 | 8.48 | 3.37 | |
MR (%) | 46.42% | 38.39% | 15.34% | |
R (g/min) | 0.046 | 0.0106 | 0.00043 | |
B2 | T (min) | 220 | 1640 | 6940 |
M (g) | 7.67 | 10.71 | 2.8 | |
MR (%) | 36.21% | 50.57% | 13.22% | |
R (g/min) | 0.035 | 0.0065 | 0.00040 |
Sample | Bound Water Content Stabilization Time (min) | Mass of Absorption Water Stabilization Time (min) | Height of Absorption Front Stabilization Time (min) |
---|---|---|---|
A1 | 120 | 1120 | 120 |
A2 | 360 | 1120 | 540 |
B1 | 500 | 1020 | 780 |
B2 | 1020 | 1860 | 1380 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, H.; Dong, B.; Wu, D.; Shi, Q.; Wei, Y. Capillary Imbibition in Layered Sandstone. Water 2023, 15, 737. https://doi.org/10.3390/w15040737
Jia H, Dong B, Wu D, Shi Q, Wei Y. Capillary Imbibition in Layered Sandstone. Water. 2023; 15(4):737. https://doi.org/10.3390/w15040737
Chicago/Turabian StyleJia, Hailiang, Biwen Dong, Di Wu, Qingmin Shi, and Yao Wei. 2023. "Capillary Imbibition in Layered Sandstone" Water 15, no. 4: 737. https://doi.org/10.3390/w15040737
APA StyleJia, H., Dong, B., Wu, D., Shi, Q., & Wei, Y. (2023). Capillary Imbibition in Layered Sandstone. Water, 15(4), 737. https://doi.org/10.3390/w15040737