Detection of Water Hyacinth (Eichhornia crassipes) in Lake Tana, Ethiopia, Using Machine Learning Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Data Types and Pre-Processing
2.3. Sample Point Generation Methods
2.4. Accuracy Assessment
3. Results
3.1. Water Hyacinth Spectral Reflectance Curve
3.2. Performances of the Machine Learning Algorithms: SVM, CART, and RF
3.3. Water Hyacinth Spatial Coverage
3.4. Feature Importance
4. Discussion
5. Machine Learning Algorithms Related Work in Water Hyacinth Detection
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Worqlul, A.W.; Ayana, E.K.; Dile, Y.T.; Moges, M.A.; Gitaw, M.G.; Tegegne, G.; Kibret, S. Spatiotemporal Dynamics and Environmental Controlling Factors of the Lake Tana Water Hyacinth in Ethiopia. Remote Sens. 2020, 12, 2706. [Google Scholar] [CrossRef]
- Goshu, G.; Tewabe, D.; Adugna, B.T. Spatial and temporal distribution of commercially important fish species of Lake Tana, Ethiopia. Ecohydrol. Hydrobiol. 2010, 10, 231–240. [Google Scholar] [CrossRef]
- Karim, D.; Rachid, L.; Mamourou, D.; Ssam, M.J.H. Production and oil-emulsion formulation of Cadophora malorum and Alternaria jacinthicola, two biocontrol agents against Water Hyacinth (Eichhornia crassipes). Afr. J. Microbiol. Res. 2011, 5, 924–929. [Google Scholar] [CrossRef] [Green Version]
- Piyaboon, O.; Pawongrat, R.; Unartngam, J.; Chinawong, S.; Unartngam, A. Pathogenicity, host range and activities of a secondary metabolite and enzyme from Myrothecium roridum on water hyacinth from Thailand. Weed Biol. Manag. 2016, 16, 132–144. [Google Scholar] [CrossRef]
- Datta, A.; Maharaj, S.; Prabhu, G.N.; Bhowmik, D.; Marino, A.; Akbari, V.; Rupavatharam, S.; Sujeetha, J.A.R.P.; Anantrao, G.G.; Poduvattil, V.K.; et al. Monitoring the Spread of Water Hyacinth (Pontederia crassipes): Challenges and Future Developments. Front. Ecol. Evol. 2021, 9, 1–8. [Google Scholar] [CrossRef]
- Rakotoarisoa, T.F. Use of Water Hyacinth (Eichhornia crassipes) in Poor and Remote Regions-A Case Study From Lake Alaotra. Ph.D. Thesis, University of Hildesheim, Hildesheim, Gremany, 2017. [Google Scholar]
- Hill, M.P. The impact and control of alien aquatic vegetation in South African aquatic ecosystems. Afr. J. Aquat. Sci. 2003, 28, 19–24. [Google Scholar] [CrossRef]
- UNEP. Water hyacinth—Can its aggressive invasion be controlled? Environ. Dev. 2013, 7, 139–154. [Google Scholar] [CrossRef]
- Seburanga, J.L.; Kaplin, B.A.; Bizuru, E.; Mwavu, E.N.; Gatesire, T. Control of water hyacinth (Eichhornia crassipes) in Rwanda: A survey of local residents’ perceptions. In Proceedings of the 19th Australasian Weeds Conference, Hobart, Australia, 1–4 September 2014; Available online: https://nru.uncst.go.ug/handle/123456789/5735 (accessed on 20 October 2022).
- Meerhoff, M.; Fosalba, C.; Bruzzone, C.; Mazzeo, N.; Noordoven, W.; Jeppesen, E. An experimental study of habitat choice by Daphnia: Plants signal danger more than refuge in subtropical lakes. Freshw. Biol. 2006, 51, 1320–1330. [Google Scholar] [CrossRef]
- Mironga, J.M.; Mathooko, J.M.; Onywere, S.M. Effects of spreading patterns of water hyacinth (Eichhornia crassipes) on zooplankton population in Lake Naivasha, Kenya. Int. J. Dev. Sustain. 2014, 3, 1971–1987. [Google Scholar]
- Villamagna, A.M.; Murphy, B.R. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): A review. Freshw. Biol. 2010, 55, 282–298. [Google Scholar] [CrossRef]
- Getnet, H.; Kifle, D.; Fetahi, T. Impact of water hyacinth (Eichhornia crassipes) on water quality and phytoplankton community structure in the littoral region of Koka Reservoir, Ethiopia. Int. J. Fish Aquat. Stud. 2021, 9, 266–276. [Google Scholar]
- Damtie, Y.A.; Mengistu, D.A.; Meshesha, D.T. Spatial coverage of water hyacinth (Eichhornia crassipes (Mart.) Solms) on Lake Tana and associated water loss. Heliyon 2021, 7, e08196. [Google Scholar] [CrossRef] [PubMed]
- Dejen, E.; Sibbing, F.A.; Vijverberg, J. Reproductive strategies of two sympatric “small barbs” (Barbus humilis and B. tanapelagius, Cyprinidae) in Lake Tana, Ethiopia. Neth. J. Zool. 2003, 52, 281–299. [Google Scholar] [CrossRef]
- Setegn, S.G.; Srinivasan, R.; Dargahi, B. Hydrological Modelling in the Lake Tana Basin, Ethiopia Using SWAT Model. Open Hydrol. J. 2008, 2, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Wondie, A.; Mengistu, S.; Vijverberg, J.; Dejen, E. Seasonal variation in primary production of a large high altitude tropical lake (Lake Tana, Ethiopia): Effects of nutrient availability and water transparency. Aquat. Ecol. 2007, 41, 195–207. [Google Scholar] [CrossRef]
- Anteneh, W.; Mengist, M.; Wondie, A.; Tewabe, D.; WoldeKidan, W.; Assefa, A.; Engida, W. Water Hyacinth Coverage Survey Report on Lake Tana; Technical Report Series 1; Bahir Dar University: Bahir Dar, Ethiopia, 2015. [Google Scholar]
- Asmare, T.; Demissie, B.; Nigusse, A.G.; GebreKidan, A. Detecting Spatiotemporal Expansion of Water Hyacinth (Eichhornia crassipes) in Lake Tana, Northern Ethiopia. J. Indian Soc. Remote Sens. 2020, 48, 751–764. [Google Scholar] [CrossRef]
- Poppe, L.; Frankl, A.; Poesen, J.; Admasu, T.; Dessie, M.; Adgo, E.; Deckers, J.; Nyssen, J. Geomorphology of the Lake Tana basin, Ethiopia. J. Maps 2013, 9, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Tibebe, D.; Kassa, Y.; Melaku, A.; Lakew, S. Investigation of spatio-temporal variations of selected water quality parameters and trophic status of Lake Tana for sustainable management, Ethiopia. Microchem. J. 2019, 148, 374–384. [Google Scholar] [CrossRef]
- Damtie, Y.A.; Berlie, A.B.; Gessese, G.M.; Ayalew, T.K. Characterization of water hyacinth (Eichhornia crassipes (Mart.) Solms) biomass in Lake Tana, Ethiopia. All Life 2022, 15, 1126–1140. [Google Scholar] [CrossRef]
- Asmare, E. Current Trend of Water Hyacinth Expansion and Its Consequence on the Fisheries around North Eastern Part of Lake Tana, Ethiopia. J. Biodivers. Endanger. Species 2017, 5, 2–5. [Google Scholar] [CrossRef]
- Ritchie, J.C.; Zimba, P.V.; Everitt, J.H. Remote Sensing Techniques to Assess Water Quality. Photogramm. Eng. Remote Sens. 2003, 69, 695–704. [Google Scholar] [CrossRef] [Green Version]
- Hoshino, B.; Karamalla, A.; Manayeva, K.; Yoda, K.; Suliman, M.; Elgamri, M.; Nawata, H.; Yasuda, H. Evaluating the invasion strategic of Mesquite (Prosopis juliflora) in eastern Sudan using remotely sensed technique. J. Arid. Land Stud. 2012, 22, 1–4. [Google Scholar]
- Mucheye, T.; Haro, S.; Papaspyrou, S.; Caballero, I. Water quality and water hyacinth monitoring with the Sentinel- 2A / B satellites in Lake Tana (Ethiopia). Remote Sens. 2022, 14, 4921. [Google Scholar] [CrossRef]
- Sun, Z.; Xu, R.; Du, W.; Wang, L.; Lu, D. High-resolution urban land mapping in China from sentinel 1A/2 imagery based on Google Earth Engine. Remote Sens. 2019, 11, 752. [Google Scholar] [CrossRef] [Green Version]
- Gibson, R.; Danaher, T.; Hehir, W.; Collins, L. A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sens. Environ. 2020, 240, 111702. [Google Scholar] [CrossRef]
- Pan, X.; Zhang, C.; Xu, J.; Zhao, J. Simplified object-based deep neural network for very high resolution remote sensing image classification. ISPRS J. Photogramm. Remote Sens. 2021, 181, 218–237. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Liu, L.; Guo, Y.; Li, Y.; Zhang, Q.; Li, Z.; Chen, E.; Yang, L.; Mu, X. Comparison of Machine Learning Methods Applied on Multi-Source Medium-Resolution Satellite Images for Chinese Pine (Pinus tabulaeformis) Extraction on Google Earth Engine. Forests 2022, 13, 677. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Reynolds, J.; Rezgui, Y. Predictive modelling for solar thermal energy systems: A comparison of support vector regression, random forest, extra trees and regression trees. J. Clean Prod. 2018, 203, 810–821. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, S.; Zhao, F.; Tian, L.; Zhao, Z. Comparison of machine learning algorithms for forest parameter estimations and application for forest quality assessments. For. Ecol. Manag. 2019, 434, 224–234. [Google Scholar] [CrossRef]
- Pham, T.D.; Yokoya, N.; Xia, J.; Ha, N.T.; Le, N.N.; Nguyen, T.T.T.; Dao, T.H.; Vu, T.T.P.; Takeuchi, W. Comparison of Machine Learning Methods for Estimating Mangrove Above-Ground Biomass Using Multiple Source Remote Sensing Data in the Red River Delta Biosphere Reserve, Vietnam. Remote Sens. 2020, 12, 1334. [Google Scholar] [CrossRef] [Green Version]
- Loukika, K.N.; Keesara, V.R.; Sridhar, V. Analysis of Land Use and Land Cover Using Machine Learning Algorithms on Google Earth Engine for Munneru River Basin, India. Sustainability 2021, 13, 13758. [Google Scholar] [CrossRef]
- Belgiu, M.; Dragu, L. Random forest in remote sensing: A review of applications and future directions gut. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Brieman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees, 1st ed.; Routledge: London, UK, 1984; Volume 45, pp. 5–32. [Google Scholar]
- Sewak, M.; Sahay, S.K.; Rathore, H. Comparison of deep learning and the classical machine learning algorithm for the malware detection. In Proceedings of the 19th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), Busan, Korea, 27–29 June 2018; pp. 293–296. [Google Scholar] [CrossRef] [Green Version]
- Dersseh, M.G.; Tilahun, S.A.; Worqlul, A.W.; Moges, M.A.; Abebe, W.B.; Mhiret, D.A.; Melesse, A.M. Spatial and Temporal Dynamics of Water Hyacinth and Its Linkage with Lake-Level Fluctuation: Lake Tana, a Sub-Humid Region of the Ethiopian Highlands. Water 2020, 12, 1435. [Google Scholar] [CrossRef]
- Pahlevan, N.; Mangin, A.; Balasubramanian, S.V.; Smith, B.; Alikas, K.; Arai, K.; Barbosa, C.; Bélanger, S.; Binding, C.; Bresciani, M.; et al. ACIX-Aqua: A global assessment of atmospheric correction methods for Landsat-8 and Sentinel-2 over lakes, rivers, and coastal waters. Remote Sens. Environ. 2021, 258, 112366. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Dersseh, M.G.; Kibret, A.A.; Tilahun, S.A.; Worqlul, A.W.; Moges, M.A.; Dagnew, D.C.; Abebe, W.B.; Melesse, A.M. Potential of Water Hyacinth Infestation on Lake Tana, Ethiopia: A Prediction Using a GIS-Based Multi-Criteria Technique. Water 2019, 11, 1921. [Google Scholar] [CrossRef] [Green Version]
- Kandpal, K.C.; Kumar, S.; Venkat, G.S.; Meena, R.; Pal, P.K.; Kumar, A. Onsite age discrimination of an endangered medicinal and aromatic plant species Valeriana jatamansi using field hyperspectral remote sensing and machine learning techniques. Int. J. Remote Sens. 2021, 42, 3777–3796. [Google Scholar] [CrossRef]
- Setegn, S.G.; Srinivasan, R.; Dargahi, B.; Melesse, A.M. Spatial delineation of soil erosion vulnerability in the Lake Tana Basin, Ethiopia. Hydrol Process 2009, 2274, 2267–2274. [Google Scholar] [CrossRef]
- Birara, H.; Pandey, R.P.; Mishra, S.K. Trend and variability analysis of rainfall and temperature in the tana basin region, Ethiopia. J. Water Clim. Chang. 2018, 9, 555–569. [Google Scholar] [CrossRef] [Green Version]
- Alemu, M.M.; Bawoke, G.T. Analysis of spatial variability and temporal trends of rainfall in Amhara Region, Ethiopia. J. Water Clim. Chang. 2019, 11, 1505–1520. [Google Scholar] [CrossRef]
- Setegn, S.G.; Rayner, D.; Melesse, A.M.; Dargahi, B.; Srinivasan, R. Impact of climate change on the hydroclimatology of Lake Tana Basin, Ethiopia. Water Resour. Res. 2011, 47, 1–13. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index ( NDWI ) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 14–3025. [Google Scholar] [CrossRef]
- Zeng, H.; Wu, B.; Wang, S.; Musakwa, W.; Tian, F.; Mashimbye, Z.E.; Poona, N.; Syndey, M. A Synthesizing Land-cover Classification Method Based on Google Earth Engine: A Case Study in Nzhelele and Levhuvu Catchments, South Africa. Chin. Geogr. Sci. 2020, 30, 397–409. [Google Scholar] [CrossRef]
- Thomas, L.; Ralph, W.; Kiefer, J.C. Remote Sensing and Image Interpretation (Fifth Edition). Geogr. J. 2004, 146, 448–449. [Google Scholar]
- Kamal, M.; Jamaluddin, I.; Parela, A.; Farda, N.M. Comparison of Google Earth Engine (GEE)-based machine learning classifiers for mangrove mapping. In Proceedings of the 40th Asian Conf Remote Sensing, ACRS 2019 Prog Remote Sens Technol Smart Future, Daejeon, Korea, 14–18 October 2019. [Google Scholar]
- Pal, M.; Mather, P. Assessment of the effectiveness of support vector machines for hyperspectral data. Futur. Gener. Comput. Syst. 2004, 20, 1215–1225. [Google Scholar] [CrossRef]
- Huang, C.; Davis, L.S.; Townshend, J.R.G. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar]
- Oommen, T.; Misra, D.; Twarakavi, N.K.C.; Prakash, A.; Sahoo, B.; Bandopadhyay, S. An Objective Analysis of Support Vector Machine Based Classification for Remote Sensing. Math. Geosci. 2008, 40, 409–424. [Google Scholar] [CrossRef]
- Mashao, D.J. Comparing SVM and GMM on Parametric Feature-Sets. In Proceedings of the 14th Annual Symposium of the Pattern Recognition Association of South Africa. Citeseer. 2003. Available online: http://www.prasa.org/proceedings/2003/prasa03-02.pdf (accessed on 20 October 2022).
- Hsu, C.W.; Chang, C.C.; Lin, C.J. A Practical Guide to Support Vector Classification; Technical Report; University of National Taiwan: Taipei, Taiwan, 2016. [Google Scholar]
- Li, C.; Ma, Z.; Wang, L.; Yu, W.; Tan, D.; Gao, B.; Feng, Q.; Guo, H.; Zhao, Y. Improving the Accuracy of Land Cover Mapping by Distributing Training Samples. Remote Sens. 2021, 13, 4594. [Google Scholar] [CrossRef]
- Nasiri, V.; Deljouei, A.; Moradi, F.; Sadeghi, S.M.M.; Borz, S.A. Land Use and Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Comparison of Two Composition Methods. Remote Sens. 2022, 14, 1977. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Hurskainen, P.; Adhikari, H.; Siljander, M.; Pellikka, P.; Hemp, A. Auxiliary datasets improve accuracy of object-based land use/land cover classification in heterogeneous savanna landscapes. Remote Sens. Environ. 2019, 233, 111354. [Google Scholar] [CrossRef]
- Elmahdy, S.; Mohamed, M.; Ali, T. Land Use/Land Cover Changes Impact on Groundwater Level and Quality in the Northern Part of the United Arab Emirates. Remote Sens. 2020, 12, 1715. [Google Scholar] [CrossRef]
- Ha, N.T.; Manley-Harris, M.; Pham, T.D.; Hawes, I. A Comparative Assessment of Ensemble-Based Machine Learning and Maximum Likelihood Methods for Mapping Seagrass Using Sentinel-2 Imagery in Tauranga Harbor, New Zealand. Remote Sens. 2020, 12, 355. [Google Scholar] [CrossRef] [Green Version]
- Verma, R.; Singh, S.P.; Ganesha Raj, K. Assessment of changes in water-hyacinth coverage of water bodies in northern part of Bangalore city using temporal remote sensing data. Curr. Sci. 2003, 84, 795–804. [Google Scholar]
- Jin, Y.; Liu, X.; Chen, Y.; Liang, X. Land-cover mapping using Random Forest classification and incorporating NDVI time-series and texture: A case study of central Shandong. Int. J. Remote Sens. 2018, 39, 8703–8723. [Google Scholar] [CrossRef]
- Chang, K.-T.; Merghadi, A.; Yunus, A.P.; Pham, B.T.; Dou, J. Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques. Sci. Rep. 2019, 9, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, Y.; Lunetta, R.S. Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS J. Photogramm. Remote Sens. 2012, 70, 78–87. [Google Scholar] [CrossRef]
- Mukarugwiro, J.; Newete, S.; Adam, E.; Nsanganwimana, F.; Abutaleb, K.; Byrne, M. Mapping distribution of water hyacinth (Eichhornia crassipes) in Rwanda using multispectral remote sensing imagery. Afr. J. Aquat. Sci. 2019, 44, 339–348. [Google Scholar] [CrossRef]
- Shetty, S.; Gupta, P.; Belgiu, M.; Srivastav, S. Assessing the Effect of Training Sampling Design on the Performance of Machine Learning Classifiers for Land Cover Mapping Using Multi-Temporal Remote Sensing Data and Google Earth Engine. Remote Sens. 2021, 13, 1433. [Google Scholar] [CrossRef]
- Fisher, J.R.B.; Acosta, E.A.; Dennedy-Frank, P.J.; Kroeger, T.; Boucher, T.M. Impact of satellite imagery spatial resolution on land use classification accuracy and modeled water quality. Remote Sens. Ecol. Conserv. 2018, 4, 137–149. [Google Scholar] [CrossRef]
- Thamaga, K.H.; Dube, T. Testing two methods for mapping water hyacinth (Eichhornia crassipes) in the Greater Letaba river system, South Africa: Discrimination and mapping potential of the polar-orbiting Sentinel-2 MSI and Landsat 8 OLI sensors. Int. J. Remote Sens. 2018, 39, 8041–8059. [Google Scholar] [CrossRef]
- Cai, J.; Jiao, C.; Mekonnen, M.; Legesse, S.A.; Ishikawa, K.; Wondie, A.; Sato, S. Water hyacinth infestation in Lake Tana, Ethiopia: A review of population dynamics. Limnology 2022, 23, 51–60. [Google Scholar] [CrossRef]
- Dube, T.; Mutanga, O.; Sibanda, M.; Bangamwabo, V.; Shoko, C. Testing the detection and discrimination potential of the new Landsat 8 satellite data on the challenging water hyacinth (Eichhornia crassipes) in freshwater ecosystems. Appl. Geogr. 2017, 84, 11–22. [Google Scholar] [CrossRef]
- Pádua, L.; Antão-Geraldes, A.M.; Sousa, J.J.; Rodrigues, M.; Oliveira, V.; Santos, D.; Miguens, M.F.P.; Castro, J.P. Water Hyacinth (Eichhornia crassipes) Detection Using Coarse and High Resolution Multispectral Data. Drones 2022, 6, 47. [Google Scholar] [CrossRef]
- Thamaga, K.H.; Dube, T. Understanding seasonal dynamics of invasive water hyacinth (Eichhornia crassipes) in the Greater Letaba river system using Sentinel-2 satellite data. GIScience Remote Sens. 2019, 56, 1355–1377. [Google Scholar] [CrossRef]
- Ade, C.; Khanna, S.; Lay, M.; Ustin, S.L.; Hestir, E.L. Genus-Level Mapping of Invasive Floating Aquatic Vegetation Using Sentinel-2 Satellite Remote Sensing. Remote Sens. 2022, 14, 3013. [Google Scholar] [CrossRef]
- Singh, G.; Reynolds, C.; Byrne, M.; Rosman, B. A Remote Sensing Method to Monitor Water, Aquatic Vegetation, and Invasive Water Hyacinth at National Extents. Remote Sens. 2000, 12, 4021. [Google Scholar] [CrossRef]
Sentinel 2 | Landsat 8 | ||||
---|---|---|---|---|---|
Band | Resolution (m) | Wavelength (nm) | Band | Resolution (m) | Wavelength (μm) |
B2 (Blue) | 10 | 496.6 | B2 (Blue) | 30 | 0.45–0.51 |
B3 (Green) | 10 | 560 | B3 (Green) | 30 | 0.53–0.59 |
B4 (Red) | 10 | 664.5 | B4 (Red) | 30 | 0.64–0.67 |
B5 (Red edge 1) | 20 | 703.9 | B5 (Near-infrared) | 30 | 0.85–0.88 |
B6 (Red edge 2) | 20 | 740.2 | B6 (Shortwave infrared 1) | 30 | 1.57–1.65 |
B7 (Red edge 3) | 20 | 782.5 | B7 (Shortwave infrared 2) | 30 | 2.11–2.29 |
B8 (Near-infrared) | 10 | 835.1 | |||
B8A (Red edge 4) | 20 | 864.8 | |||
B11 (Shortwave infrared 1) | 20 | 1613.7 | |||
B12 (Shortwave infrared 2) | 20 | 2202.4 |
Land-Use/Cover Type | Area of Land-Use/Cover (km2) | |||||
---|---|---|---|---|---|---|
Sentinel 2 | Landsat 8 | |||||
RF | CART | SVM | RF | CART | SVM | |
Autumn | ||||||
Water | 3029.3 | 3031.1 | 3042.9 | 3047.12 | 3014.59 | 3059.82 |
Water hyacinth | 22.4 | 25.1 | 29 | 19.87 | 17.77 | 21.06 |
Other vegetation | 553.6 | 548.3 | 554.5 | 440.14 | 478.42 | 445.22 |
Bare land | 122.1 | 122.8 | 100.8 | 219.47 | 215.80 | 200.49 |
Winter | ||||||
Water | 3006.5 | 2970.4 | 3009 | 3044.16 | 3019.87 | 3034.68 |
Water hyacinth | 11.2 | 9.5 | 6 | 14.12 | 17.55 | 16.72 |
Other vegetation | 318.1 | 441.4 | 382.7 | 264.60 | 339.09 | 330.89 |
Bare land | 391.4 | 306 | 329.7 | 403.80 | 350.16 | 344.41 |
Spring | ||||||
Water | 3014.3 | 3008.9 | 3028.8 | 3023.18 | 3016.33 | 3038.96 |
Water hyacinth | 4.2 | 7 | 4.6 | 5.35 | 5.45 | 6.81 |
Other vegetation | 294.2 | 306.6 | 264.5 | 258.10 | 282.93 | 256.99 |
Bare land | 414.6 | 404.8 | 429.4 | 440.07 | 421.98 | 423.89 |
Summer | ||||||
Water | 2983.1 | 2970.8 | 2999.5 | 3005.10 | 2999.32 | 3016.59 |
Water hyacinth | 2.2 | 2.5 | 4.4 | 4.09 | 14.22 | 12.68 |
Other vegetation | 310.4 | 340.4 | 272.2 | 463.99 | 499.27 | 448.31 |
Bare land | 431.6 | 413.6 | 451.3 | 254.27 | 214.64 | 249.87 |
Literature | Methods | Data Sets | Overall Accuracy |
---|---|---|---|
Dube et al. [78] | DA and PDA ensemble | Landsat 8 | 95% |
Mukarugwiro et al. [72] | RF | Landsat 8 | 85% |
SVM | 65% | ||
Pádua et al. [79] | RF | Sentinel 2 | 90% |
SVM | 83% | ||
NB | 87% | ||
KNN | 87% | ||
ANN | 90% | ||
Thamaga and Dube [80] | LDA | Wet season Sentinel 2 | 81% |
Dry season sentinel 2 | 79% | ||
Thamaga and Dube [72] | DA | Landsat 8 | 68% |
Sentinel 2 | 78 | ||
Ade et al. [81] | RF | Sentinel-2 | 90%, |
Present study | RF | Sentinel 2 | 98 |
CART | 97.6 | ||
SVM | 97.5 | ||
RF | Landsat 8 | 97 | |
CART | 95 | ||
SVM | 95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayable, G.; Cai, J.; Mekonnen, M.; Legesse, S.A.; Ishikawa, K.; Imamura, H.; Kuwahara, V.S. Detection of Water Hyacinth (Eichhornia crassipes) in Lake Tana, Ethiopia, Using Machine Learning Algorithms. Water 2023, 15, 880. https://doi.org/10.3390/w15050880
Bayable G, Cai J, Mekonnen M, Legesse SA, Ishikawa K, Imamura H, Kuwahara VS. Detection of Water Hyacinth (Eichhornia crassipes) in Lake Tana, Ethiopia, Using Machine Learning Algorithms. Water. 2023; 15(5):880. https://doi.org/10.3390/w15050880
Chicago/Turabian StyleBayable, Getachew, Ji Cai, Mulatie Mekonnen, Solomon Addisu Legesse, Kanako Ishikawa, Hiroki Imamura, and Victor S. Kuwahara. 2023. "Detection of Water Hyacinth (Eichhornia crassipes) in Lake Tana, Ethiopia, Using Machine Learning Algorithms" Water 15, no. 5: 880. https://doi.org/10.3390/w15050880
APA StyleBayable, G., Cai, J., Mekonnen, M., Legesse, S. A., Ishikawa, K., Imamura, H., & Kuwahara, V. S. (2023). Detection of Water Hyacinth (Eichhornia crassipes) in Lake Tana, Ethiopia, Using Machine Learning Algorithms. Water, 15(5), 880. https://doi.org/10.3390/w15050880