Optimizing Low Impact Development for Stormwater Runoff Treatment: A Case Study in Yixing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Stormwater Sampling and Data Acquisition
2.3. Data from Stormwater Monitoring
2.4. Rainfall-Runoff Pollution Model Setup
2.5. Model Calibration and Uncertainty Analysis
2.6. LID Module
2.7. Optimizing LID Configuration
3. Results and Discussion
3.1. Calibration, Validation, and Sensitivity Analysis
3.1.1. Hydrologic Model
3.1.2. Water Quality Model
3.2. Impact of LID Sizes on the Volume and Pollutant Reduction of Surface Runoff
3.3. Optimization of LID Facilities
3.4. Perspectives and Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saraswat, C.; Kumar, P.; Mishra, B.K. Assessment of stormwater runoff management practices and governance under climate change and urbanization: An analysis of Bangkok, Hanoi and Tokyo. Environ. Sci. Policy 2016, 64, 101–117. [Google Scholar] [CrossRef]
- Kaykhosravi, S.; Khan, U.T.; Jadidi, A. A Comprehensive Review of Low Impact Development Models for Research, Conceptual, Preliminary and Detailed Design Applications. Water 2018, 10, 1541. [Google Scholar] [CrossRef] [Green Version]
- Krisnayanti, D.S.; Rozari, P.d.; Garu, V.C.; Damayanti, A.C.; Legono, D.; Nurdin, H. Analysis of Flood Discharge due to Impact of Tropical Cyclone. Civ. Eng. J. 2022, 8, 1752–1763. [Google Scholar] [CrossRef]
- Shi, H.; Yin, D.; Li, X.; Gong, Y.; Li, J. Urban stormwater runoff thermal characteristics and mitigation effect of low impact development measures. J. Water Clim. Chang. 2019, 10, 53–62. [Google Scholar] [CrossRef]
- Chen, Z.; Shi, X.; Zhang, J.; Wu, L.; Wei, W.; Ni, B.-J. Nanoplastics are significantly different from microplastics in urban waters. Water Res. X 2023, 19, 100169. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Lee, B.; Park, C.; Kim, Y. A colorimetric detection of polystyrene nanoplastics with gold nanoparticles in the aqueous phase. Sci. Total Environ. 2022, 850, 158058. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Dai, X.; Chen, Z.; Wu, L.; Wei, W.; Xu, Q.; Ni, B.-J. Different microplastics distinctively enriched the antibiotic resistance genes in anaerobic sludge digestion through shifting specific hosts and promoting horizontal gene flow. Water Res. 2023, 228, 119356. [Google Scholar] [CrossRef]
- Chen, Z.; Wei, W.; Liu, X.; Ni, B.J. Emerging electrochemical techniques for identifying and removing micro/nanoplastics in urban waters. Water Res. 2022, 221, 118846. [Google Scholar] [CrossRef] [PubMed]
- Chow, M.F.; Yusop, Z. Sizing first flush pollutant loading of stormwater runoff in tropical urban catchments. Environ. Earth Sci. 2014, 72, 4047–4058. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, D.; Adhityan, A.; Ng, W.J.; Dong, J.; Tan, S.K. Assessing cost-effectiveness of bioretention on stormwater in response to climate change and urbanization for future scenarios. J. Hydrol. 2016, 543, 423–432. [Google Scholar] [CrossRef]
- Suwarno, I.; Ma’arif, A.; Raharja, N.M.; Nurjanah, A.; Ikhsan, J.; Mutiarin, D. IoT-based lava flood early warning system with rainfall intensity monitoring and disaster communication technology. Emerg. Sci. J. 2021, 4, 154–166. [Google Scholar] [CrossRef]
- Baek, S.S.; Choi, D.H.; Jung, J.W.; Lee, H.J.; Lee, H.; Yoon, K.S.; Cho, K.H. Optimizing low impact development (LID) for stormwater runoff treatment in urban area, Korea: Experimental and modeling approach. Water Res. 2015, 86, 122–131. [Google Scholar] [CrossRef]
- Abduljaleel, Y.; Demissie, Y. Identifying Cost-Effective Low-Impact Development (LID) under Climate Change: A Multi-Objective Optimization Approach. Water 2022, 14, 3017. [Google Scholar] [CrossRef]
- Rong, Q.; Liu, Q.; Xu, C.; Yue, W.; Su, M. Optimal configuration of low impact development practices for the management of urban runoff pollution under uncertainty. J. Environ. Manag. 2022, 320, 115821. [Google Scholar] [CrossRef] [PubMed]
- Jeon, M.; Guerra, H.B.; Choi, H.; Kim, L.-H. Long-Term Monitoring of an Urban Stormwater Infiltration Trench in South Korea with Assessment Using the Analytic Hierarchy Process. Water 2022, 14, 3529. [Google Scholar] [CrossRef]
- Kaykhosravi, S.; Khan, U.T.; Jadidi, M.A. The Effect of Climate Change and Urbanization on the Demand for Low Impact Development for Three Canadian Cities. Water 2020, 12, 1280. [Google Scholar] [CrossRef]
- Chuang, W.-K.; Lin, Z.-E.; Lin, T.-C.; Lo, S.-L.; Chang, C.-L.; Chiueh, P.-T. Spatial allocation of LID practices with a water footprint approach. Sci. Total Environ. 2023, 859, 160201. [Google Scholar] [CrossRef]
- Lee, J.M.; Park, M.; Min, J.-H.; Kim, J.; Lee, J.; Jang, H.; Na, E.H. Evaluation of SWMM-LID Modeling Applicability Considering Regional Characteristics for Optimal Management of Non-Point Pollutant Sources. Sustainability 2022, 14, 14662. [Google Scholar] [CrossRef]
- Xiong, L.; Xu, Z.; Xu, J. Combined Optimization of LID Patches and the Gray Drainage System to Control Wet Weather Discharge Pollution. ACS ES&T Water 2022, 2, 1734–1746. [Google Scholar] [CrossRef]
- Gironás, J.; Roesner, L.A.; Rossman, L.A.; Davis, J. A new applications manual for the Storm Water Management Model (SWMM). Environ. Modell. Softw. 2010, 25, 813–814. [Google Scholar] [CrossRef]
- Li, J.; Zhang, B.; Mu, C.; Chen, L. Simulation of the hydrological and environmental effects of a sponge city based on MIKE FLOOD. Environ. Earth Sci. 2018, 77, 32. [Google Scholar] [CrossRef]
- Rosa, D.J.; Clausen, J.C.; Dietz, M.E. Calibration and Verification of SWMM for Low Impact Development. JAWRA J. Am. Water Resour. Assoc. 2015, 51, 746–757. [Google Scholar] [CrossRef]
- He, Q.; Chai, H.; Yan, W.; Shao, Z.; Zhang, X.; Deng, S. An integrated urban stormwater model system supporting the whole life cycle of sponge city construction programs in China. J. Water Clim. Chang. 2019, 10, 298–312. [Google Scholar] [CrossRef]
- Li, J.; Deng, C.; Li, Y.; Li, Y.; Song, J. Comprehensive Benefit Evaluation System for Low-Impact Development of Urban Stormwater Management Measures. Water Resour. Manag. 2017, 31, 4745–4758. [Google Scholar] [CrossRef]
- Fan, G.; Lin, R.; Wei, Z.; Xiao, Y.; Shangguan, H.; Song, Y. Effects of low impact development on the stormwater runoff and pollution control. Sci. Total Environ. 2022, 805, 150404. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Gu, J.; Zhang, G.; Ma, W.; Zhao, L.; Ning, P.; Shen, J. Design of urban runoff pollution control based on the Sponge City concept in a large-scale high-plateau mountainous watershed: A case study in Yunnan, China. J. Water Clim. Chang. 2021, 12, 201–222. [Google Scholar] [CrossRef] [Green Version]
- Kong, F.; Ban, Y.; Yin, H.; James, P.; Dronova, I. Modeling stormwater management at the city district level in response to changes in land use and low impact development. Environ. Modell. Softw. 2017, 95, 132–142. [Google Scholar] [CrossRef]
- Urich, C.; Rauch, W. Modelling the urban water cycle as an integrated part of the city: A review. Water Sci. Technol. 2014, 70, 1857–1872. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yang, X. Global Sensitivity Analysis of SWMM Parameters Based on Sobol Method. China Water Wastewater 2020, 36, 95–102. [Google Scholar]
- Shen, H.B.; Xu, Z.X. Monitoring and Evaluating Rainfall-Runoff Control Effects of a Low Impact Development System in Future Science Park of Beijing. J. Am. Water Resour. Assoc. 2021, 57, 638–651. [Google Scholar] [CrossRef]
- Ho, H.C.; Lee, H.Y.; Tsai, Y.J.; Chang, Y.S. Numerical Experiments on Low Impact Development for Urban Resilience Index. Sustainability 2022, 14, 8696. [Google Scholar] [CrossRef]
- de Macedo, M.B.; Pereira de Oliveira, T.R.; Oliveira, T.H.; Gomes Junior, M.N.; Texeira Brasil, J.A.; Ferreira do Lago, C.A.; Mendiondo, E.M. Evaluating low impact development practices potentials for increasing flood resilience and stormwater reuse through lab-controlled bioretention systems. Water Sci. Technol. 2021, 84, 1103–1124. [Google Scholar] [CrossRef] [PubMed]
- Deletic, A.; Dotto, C.B.S.; McCarthy, D.T.; Kleidorfer, M.; Freni, G.; Mannina, G.; Uhl, M.; Henrichs, M.; Fletcher, T.D.; Rauch, W.; et al. Assessing uncertainties in urban drainage models. Phys. Chem. Earth Parts A/B/C 2012, 42-44, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Ouellet, V.; Khamis, K.; Croghan, D.; Gonzalez, L.M.H.; Rivera, V.A.; Phillips, C.B.; Packman, A.I.; Miller, W.M.; Hawke, R.G.; Hannah, D.M.; et al. Green roof vegetation management alters potential for water quality and temperature mitigation. Ecohydrology 2021, 14, e2321. [Google Scholar] [CrossRef]
- Malekinezhad, H.; Sepehri, M.; Hosseini, S.Z.; Santos, C.A.G.; Rodrigo-Comino, J.; Meshram, S.G. Role and Concept of Rooftop Disconnection in Terms of Runoff Volume and Flood Peak Quantity. Int. J. Environ. Res. 2021, 15, 935–946. [Google Scholar] [CrossRef]
- Koc, K.; Ekmekcioglu, O.; Ozger, M. An integrated framework for the comprehensive evaluation of low impact development strategies. J. Environ. Manag. 2021, 294, 113023. [Google Scholar] [CrossRef]
Previous Dry Duration (h) | Depth (mm) | Duration (min) | Average Intensity (mm/h) | Characterization | |
---|---|---|---|---|---|
22 August 2015 | 39 | 20.2 | 420 | 2.89 | Moderate |
11 July 2015 | 18 | 13.0 | 150 | 5.20 | Heavy |
4 May 2018 | 22 | 9.0 | 160 | 3.38 | Moderate |
23 April 2018 | 3 | 55.0 | 576 | 5.73 | Heavy |
Objective | Weights | Minimum | Maximum | |
---|---|---|---|---|
Quantity reduction | Maximize | 4 | 0 | 100 |
Pollutant removal | Maximize | 2 | 0 | 100 |
Cost | Minimize | 4 | 0 | 15 |
Design Matrix | Solutions | Solutions | |||||||
---|---|---|---|---|---|---|---|---|---|
Run | X1 | X2 | X3 | ||||||
1 | 7.6 | 10 | 30 | 44.95 | 84.43 | 6.74 | 35.15 | 83.12 | 6.74 |
2 | 7.6 | 30 | 10 | 49.86 | 92.50 | 6.97 | 38.57 | 91.30 | 6.97 |
3 | 7.6 | 20 | 20 | 66.49 | 95.58 | 11.19 | 56.54 | 95.00 | 11.19 |
4 | 7.6 | 10 | 10 | 71.35 | 97.62 | 11.42 | 59.94 | 97.68 | 11.42 |
5 | 6.6 | 20 | 30 | 47.43 | 84.43 | 7.08 | 39.74 | 83.12 | 7.08 |
6 | 8.6 | 20 | 30 | 52.34 | 92.50 | 7.30 | 43.16 | 91.30 | 7.30 |
7 | 8.6 | 10 | 20 | 63.99 | 85.66 | 10.86 | 51.95 | 95.00 | 10.86 |
8 | 8.6 | 20 | 10 | 68.85 | 97.62 | 11.08 | 55.35 | 97.68 | 11.08 |
9 | 7.6 | 20 | 20 | 39.14 | 82.77 | 4.96 | 30.64 | 81.04 | 4.96 |
10 | 7.6 | 30 | 30 | 60.69 | 94.10 | 9.41 | 52.16 | 93.21 | 9.41 |
11 | 7.6 | 20 | 20 | 55.72 | 94.10 | 8.75 | 42.97 | 93.21 | 8.75 |
12 | 8.6 | 30 | 20 | 77.11 | 98.52 | 13.20 | 64.37 | 98.51 | 13.20 |
13 | 6.6 | 30 | 20 | 58.21 | 94.10 | 9.08 | 47.56 | 93.21 | 9.08 |
14 | 6.6 | 10 | 20 | 58.21 | 94.10 | 9.08 | 47.56 | 93.21 | 9.08 |
15 | 7.6 | 20 | 20 | 58.21 | 94.10 | 9.08 | 47.56 | 93.21 | 9.08 |
16 | 6.6 | 20 | 10 | 58.21 | 94.10 | 9.08 | 47.56 | 93.21 | 9.08 |
17 | 7.6 | 20 | 20 | 58.21 | 94.10 | 9.08 | 47.56 | 93.21 | 9.08 |
Models | Parameters | Value |
---|---|---|
Runoff model | Runoff coefficients for impervious pavements | 0.93 |
F0 (Horton) initial infiltration (mm/h) | 76.20 | |
Fc (Horton) Permeability rate (mm/h) | 3.81 | |
K (Horton) reduction rate (L/h) | 0.01 | |
Horton recover rate (L/h) | 0.014 | |
Routing model | Slope of the impermeable surface (m/m) | 0.003 |
Slope of the permeable surface (m/m) | 0.00 | |
Manning roughness of the impermeable pavement | 0.013 | |
Manning roughness of the permeable surface | 0.15 | |
Initial loss the impermeable surface (mm) | 0.7 | |
Initial loss the permeable surface (mm) | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Q.; Cao, J.; Xu, R. Optimizing Low Impact Development for Stormwater Runoff Treatment: A Case Study in Yixing, China. Water 2023, 15, 989. https://doi.org/10.3390/w15050989
Cao Q, Cao J, Xu R. Optimizing Low Impact Development for Stormwater Runoff Treatment: A Case Study in Yixing, China. Water. 2023; 15(5):989. https://doi.org/10.3390/w15050989
Chicago/Turabian StyleCao, Qian, Jiashun Cao, and Runze Xu. 2023. "Optimizing Low Impact Development for Stormwater Runoff Treatment: A Case Study in Yixing, China" Water 15, no. 5: 989. https://doi.org/10.3390/w15050989
APA StyleCao, Q., Cao, J., & Xu, R. (2023). Optimizing Low Impact Development for Stormwater Runoff Treatment: A Case Study in Yixing, China. Water, 15(5), 989. https://doi.org/10.3390/w15050989