Integrating Non-Targeted Ecosystem Services into Assessment of Natural Stormwater Treatment Systems
Abstract
:1. Introduction
2. Targeted Water Services
2.1. Stormwater Infiltration
2.1.1. Flood Control
2.1.2. Groundwater Recharge
2.2. Improved Water Quality
3. Non-Targeted Ecosystem Services
3.1. Biodiversity
3.2. Climate Regulation Related to Carbon
3.3. Micro-Climate Regulation
3.4. Pollination
3.5. Other Co-Benefits
3.5.1. Recreation
3.5.2. Education and Outreach
3.5.3. Aesthetic Value and Other Non-Use Values
3.6. Disservices and Unanticipated Costs
4. Potential Quantitative Models to Assess Ecosystem Services Performance in Natural Stormwater Treatment Systems
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P., II. The Urban Stream Syndrome: Current Knowledge and the Search for a Cure. J. N. Am. Benthol. Soc. 2005, 24, 706–723. [Google Scholar] [CrossRef]
- McGrane, S.J. Impacts of Urbanisation on Hydrological and Water Quality Dynamics, and Urban Water Management: A Review. Hydrol. Sci. J. 2016, 61, 2295–2311. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.K.; Meng, Q. A Fine-Scale Spatial Analytics of the Assessment and Mapping of Buildings and Population at Different Risk Levels of Urban Flood. Land Use Policy 2020, 99, 104829. [Google Scholar] [CrossRef]
- Wendling, L.A.; Holt, E.E. Integrating Engineered and Nature-Based Solutions for Urban Stormwater Management. In Women in Water Quality. Women in Engineering and Science; O’Bannon, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Rippy, M.A.; Pierce, G.; Feldman, D.; Winfrey, B.; Mehring, A.S.; Holden, P.A.; Ambrose, R.; Levin, L.A. Perceived Services and Disservices of Natural Treatment Systems for Urban Stormwater: Insight from the next Generation of Designers. People Nat. 2022, 4, 481–504. [Google Scholar] [CrossRef]
- Mehring, A.S.; Levin, L.A. Potential Roles of Soil Fauna in Improving the Efficiency of Rain Gardens Used as Natural Stormwater Treatment Systems. J. Appl. Ecol. 2015, 52, 1445–1454. [Google Scholar] [CrossRef]
- Hamidi, A.; Ramayandi, B.; Sorial, G. Sponge City-An Emerging Concept in Sustainable Water Resource Management: A Scientometric Analysis. Resour. Environ. Sustain. 2021, 1, 100028. [Google Scholar] [CrossRef]
- Yin, D.; Xu, C.; Jia, H.; Yang, Y.; Sun, C.; Wang, Q.; Liu, S. From Pilot Exploration to Systemic Demonstration. Water 2022, 14, 1531. [Google Scholar] [CrossRef]
- Li, H.; Ding, L.; Ren, M.; Li, C.; Wang, H. Sponge City Construction in China: A Survey of the Challenges and Opportunities. Water 2017, 9, 594. [Google Scholar] [CrossRef] [Green Version]
- Millennium Ecosystem Assessment. In Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005; ISBN 1597260401.
- Haines-Young, R.; Potschin, M. CICES V5. 1. Guidance on the Application of the Revised Structure; Fabis Consulting Ltd.: Nottingham, UK, 2018. [Google Scholar]
- U.S. Environmental Protection Agency. Benefits of Low Impact Development: How LID Can Protect Your Community’s Resources; U.S. Environmental Protection Agency: Washington, DC, USA, 2012.
- Liu, Z.; Yang, Y.; Hou, J.; Jia, H. Decision-Making Framework for GI Layout Considering Site Suitability and Weighted Multi-Function Effectiveness: A Case Study in Beijing Sub-Center. Water 2022, 14, 1765. [Google Scholar] [CrossRef]
- Jia, H.; Liu, Z.; Xu, C.; Chen, Z.; Zhang, X.; Xia, J.; Yu, S.L. Adaptive Pressure-Driven Multi-Criteria Spatial Decision-Making for a Targeted Placement of Green and Grey Runoff Control Infrastructures. Water Res. 2022, 212, 118126. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Liew, J.H.; Wang, P.L. Development of a Methodological Framework for Evaluating Biodiversity of Built Urban Green Infrastructures by Practitioners. J. Clean. Prod. 2021, 303, 127009. [Google Scholar] [CrossRef]
- Jia, H.; Yao, H.; Tang, Y.; Yu, S.L.; Zhen, J.X.; Lu, Y. Development of a Multi-Criteria Index Ranking System for Urban Runoff Best Management Practices (BMPs) Selection. Environ. Monit. Assess. 2013, 185, 7915–7933. [Google Scholar] [CrossRef] [PubMed]
- Kavehei, E.; Jenkins, G.A.; Lemckert, C.; Adame, M.F. Carbon Stocks and Sequestration of Stormwater Bioretention/Biofiltration Basins. Ecol. Eng. 2019, 138, 227–236. [Google Scholar] [CrossRef]
- Shafique, M.; Xue, X.; Luo, X. An Overview of Carbon Sequestration of Green Roofs in Urban Areas. Urban For. Urban Green. 2020, 47, 126515. [Google Scholar] [CrossRef]
- Erlwein, S.; Zölch, T.; Pauleit, S. Regulating the Microclimate with Urban Green in Densifiying Cities: Joint Assessment on Two Scales. Build. Environ. 2021, 205, 108233. [Google Scholar] [CrossRef]
- Dickinson, D.C.; Hobbs, R.J. Cultural Ecosystem Services: Characteristics, Challenges and Lessons for Urban Green Space Research. Ecosyst. Serv. 2017, 25, 179–194. [Google Scholar] [CrossRef]
- Houlden, V.; Weich, S.; Jarvis, S.; Rees, K. The Relationship between Greenspace and the Mental Wellbeing of Adults: A Systematic Review. PloS ONE 2018, 13, e0203000. [Google Scholar] [CrossRef] [Green Version]
- BenDor, T.K.; Shandas, V.; Miles, B.; Belt, K.; Olander, L. Ecosystem Services and U.S. Stormwater Planning: An Approach for Improving Urban Stormwater Decisions. Environ. Sci. Policy 2018, 88, 92–103. [Google Scholar] [CrossRef] [Green Version]
- Elliot, R.; Motzny, A.; Majd, S.; Chavez, F.; Laimer, D.; Orlove, B.; Culligan, P. Identifying Linkages between Urban Green Infrastructure and Ecosystem Services Using an Expert Opinion Methodology. Ambio 2020, 49, 569–583. [Google Scholar] [CrossRef]
- Kessouri, F.; McWilliams, J.C.; Bianchi, D.; Sutula, M.; Renault, L.; Deutsch, C.; Feely, R.A.; McLaughlin, K.; Ho, M.; Howard, E.M.; et al. Coastal Eutrophication Drives Acidification, Oxygen Loss, and Ecosystem Change in a Major Oceanic Upwelling System. Proc. Natl. Acad. Sci. USA 2021, 118, 1–8. [Google Scholar] [CrossRef]
- Huang, X.; Swain, D.L. Climate Change Is Increasing the Risk of a California Megaflood. Sci. Adv. 2022, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]
- County of Los Angeles Department of Public Works. Low Impact Development Standards Manual. 2014. Available online: https://dpw.lacounty.gov/ldd/lddservices/docs/Low_Impact_Development_Standards_Manual.pdf (accessed on 31 January 2023).
- Levin, L.; Le, J.; Gonzalez, J.; Ambrose, R. Biofilter Catalog and Database for the Los Angeles Region. 2017. Available online: https://dornsife.usc.edu/assets/sites/291/docs/Publications/Levin_et_al._2017_Biofilter_Report.pdf (accessed on 31 January 2023).
- Yang, F.; Fu, D.; Zevenbergen, C.; Rene, E.R. A Comprehensive Review on the Long-Term Performance of Stormwater Biofiltration Systems (SBS): Operational Challenges and Future Directions. J. Environ. Manag. 2022, 302, 113956. [Google Scholar] [CrossRef]
- Snyder, H. Literature Review as a Research Methodology: An Overview and Guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Dudley, S.; Mannix, B. Improving Regulatory Benefit-Cost Analysis. J. Law Polit. 2018, 34, 1. [Google Scholar]
- Caro, C.; Marques, J.C.; Cunha, P.P.; Teixeira, Z. Ecosystem Services as a Resilience Descriptor in Habitat Risk Assessment Using the InVEST Model. Ecol. Indic. 2020, 115, 106426. [Google Scholar] [CrossRef]
- Tirpak, R.A.; Afrooz, A.N.; Winston, R.J.; Valenca, R.; Schiff, K.; Mohanty, S.K. Conventional and Amended Bioretention Soil Media for Targeted Pollutant Treatment: A Critical Review to Guide the State of the Practice. Water Res. 2021, 189, 116648. [Google Scholar] [CrossRef]
- Rammal, M.; Berthier, E. Runoff Losses on Urban Surfaces during Frequent Rainfall Events: A Review of Observations and Modeling Attempts. Water 2020, 12, 2777. [Google Scholar] [CrossRef]
- Berretta, C.; Aiello, A.; Jensen, H.S.; Al, E. Influenc of Design and Media Amendments on the Performance of Stormwater Biofilters. Proc. ICE-Water Manag. 2018, 171, 87–98. [Google Scholar]
- Le Coustumer, S.; Fletcher, T.D.; Deletic, A.; Barraud, S.; Poelsma, P. The Influence of Design Parameters on Clogging of Stormwater Biofilters: A Large-Scale Column Study. Water Res. 2012, 46, 6743–6752. [Google Scholar] [CrossRef]
- Sileshi, R.; Pitt, R.E.; Clark, S.E. Statistical Analyses of Flow Rates of Stormwater Treatment Bioretention Media. Water Environ. Res. 2019, 91, 877–887. [Google Scholar] [CrossRef]
- Skorobogatov, A.; He, J.; Chu, A.; Valeo, C.; van Duin, B. The Impact of Media, Plants and Their Interactions on Bioretention Performance: A Review. Sci. Total Environ. 2020, 715, 136918. [Google Scholar] [CrossRef] [PubMed]
- Askarizadeh, A.; Rippy, M.A.; Fletcher, T.D.; Feldman, D.L.; Peng, J.; Bowler, P.; Mehring, A.S.; Winfrey, B.K.; Vrugt, J.A.; Aghakouchak, A.; et al. From Rain Tanks to Catchments: Use of Low-Impact Development To Address Hydrologic Symptoms of the Urban Stream Syndrome. Environ. Sci. Technol. 2015, 49, 11264–11280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minnesota Pollution Control Agency. MPCA Bioretention Terminology. Minnesota Stormwater Man. 2015, 1–9. Available online: https://stormwater.pca.state.mn.us/index.php?title=Main_Page (accessed on 31 January 2023).
- Bouwer, H. Artificial Recharge of Groundwater: Hydrogeology and Engineering. Hydrogeol. J. 2002, 10, 121–142. [Google Scholar] [CrossRef] [Green Version]
- Berland, A.; Shiflett, S.A.; Shuster, W.D.; Garmestani, A.S.; Goddard, H.C.; Herrmann, D.L.; Hopton, M.E. The Role of Trees in Urban Stormwater Management. Landsc. Urban Plan. 2017, 162, 167–177. [Google Scholar] [CrossRef] [Green Version]
- Hatt, B.E.; Fletcher, T.D.; Deletic, A. Hydrologic and Pollutant Removal Performance of Stormwater Biofiltration Systems at the Field Scale. J. Hydrol. 2009, 365, 310–321. [Google Scholar] [CrossRef]
- Payne, E.G.I.; Pham, T.; Deletic, A.; Hatt, B.E.; Cook, P.L.M.; Fletcher, T.D. Which Species? A Decision-Support Tool to Guide Plant Selection in Stormwater Bio Fi Lters. Adv. Water Resour. 2018, 113, 86–99. [Google Scholar] [CrossRef]
- Sharkey, L.J. The Performance of Bioretention Areas in North Caroline: A Study of Water Quality, Water Quantity, and Soil Media; North Caroline State University: Raleigh, NC, USA, 2006. [Google Scholar]
- Thom, J.K.; Szota, C.; Coutts, A.M.; Fletcher, T.D.; Livesley, S.J. Transpiration by Established Trees Could Increase the Efficiency of Stormwater Control Measures. Water Res. 2020, 173, 115597. [Google Scholar] [CrossRef]
- Minnig, M.; Moeck, C.; Radny, D.; Schirmer, M. Impact of Urbanization on Groundwater Recharge Rates in Dübendorf, Switzerland. J. Hydrol. 2018, 563, 1135–1146. [Google Scholar] [CrossRef] [Green Version]
- Sheng, J.; Wilson, J.P. Watershed Urbanization and Changing Flood Behavior across the Los Angeles Metropolitan Region. Nat. Hazards 2009, 48, 41–57. [Google Scholar] [CrossRef]
- Seager, R.; Ting, M.; Li, C.; Naik, N.; Cook, B.; Nakamura, J.; Liu, H. Projections of Declining Surface-Water Availability for the Southwestern United States. Nat. Clim. Chang. 2013, 3, 482–486. [Google Scholar] [CrossRef] [Green Version]
- Park, K.; Lee, M.H. The Development and Application of the Urban Flood Risk Assessment Model for Reflecting upon Urban Planning Elements. Water 2019, 11, 920. [Google Scholar] [CrossRef] [Green Version]
- Winston, R.J.; Dorsey, J.D.; Hunt, W.F. Quantifying Volume Reduction and Peak Flow Mitigation for Three Bioretention Cells in Clay Soils in Northeast Ohio. Sci. Total Environ. 2016, 553, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Smolek, A.P.; Anderson, A.R.; Hunt, W.F. Hydrologic and Water-Quality Evaluation of a Rapid-Flow Biofiltration Device. J. Environ. Eng. 2018, 144, 1–13. [Google Scholar] [CrossRef]
- Bonneau, J.; Fletcher, T.D.; Costelloe, J.F.; Poelsma, P.J.; James, R.B.; Burns, M.J. The Hydrologic, Water Quality and Flow Regime Performance of a Bioretention Basin in Melbourne, Australia. Urban Water J. 2020, 17, 303–314. [Google Scholar] [CrossRef]
- Ambrose, R.F.; Winfrey, B.K. Comparison of Stormwater Biofiltration Systems in Southeast Australia and Southern California. WIREs Water 2015, 2, 131–146. [Google Scholar] [CrossRef] [Green Version]
- Belden, E.; Antos, M.; Kristy, M.; Steele, N.L.C. Sustainable Infrastructure: The Elmer Avenue Neighborhood Retrofit. 2012. Available online: https://urbancoast.org/wp-content/uploads/2014/10/V3_13_EdwardBelden.pdf (accessed on 31 January 2023).
- Quinn, N.; Bates, P.D.; Neal, J.; Smith, A.; Wing, O.; Sampson, C.; Smith, J.; Heffernan, J. The Spatial Dependence of Flood Hazard and Risk in the United States. Water Resour. Res. 2019, 55, 1890–1911. [Google Scholar] [CrossRef] [Green Version]
- Nofal, O.M.; van de Lindt, J.W. Understanding Flood Risk in the Context of Community Resilience Modeling for the Built Environment: Research Needs and Trends. Sustain. Resilient Infrastruct. 2022, 7, 171–187. [Google Scholar] [CrossRef]
- Qin, Y. Urban Flooding Mitigation Techniques: A Systematic Review and Future Studies. Water 2020, 12, 3579. [Google Scholar] [CrossRef]
- Aerts, J.C.J.H.; Barnard, P.L.; Botzen, W.; Grifman, P.; Hart, J.F.; De Moel, H.; Mann, A.N.; de Ruig, L.T.; Sadrpour, N. Pathways to Resilience: Adapting to Sea Level Rise in Los Angeles. Ann. N. Y. Acad. Sci. 2018, 1427, 1–90. [Google Scholar] [CrossRef] [Green Version]
- Barbier, E.B. The Value of Coastal Wetland Ecosystem Services; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780444638939. [Google Scholar]
- Brander, L.M.; Van Beukering, P.; Cesar, H.S.J. The Recreational Value of Coral Reefs: A Meta-Analysis. Ecol. Econ. 2007, 63, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Watson, K.B.; Ricketts, T.; Galford, G.; Polasky, S.; O’Niel-Dunne, J. Quantifying Flood Mitigation Services: The Economic Value of Otter Creek Wetlands and Floodplains to Middlebury, VT. Ecol. Econ. 2016, 130, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Maupin, M.A.; Kenny, J.F.; Hutson, S.S.; Lovelace, J.K.; Barber, N.L.; Linsey, K.S. Estimated Use of Water in the United States in 2010. 2014; U.S. Geological Survey Circular 1405. Available online: https://pubs.usgs.gov/circ/1405/pdf/circ1405.pdf (accessed on 31 January 2023).
- Lindt, R.; Callahan, C.; DeShazo, J.R.; Bieber, E. Lessons Learned from Previous Projects for Green Alley Development in Los Angeles & Beyond. LA, USA. 2014. Available online: https://www.tpl.org/wp-content/uploads/2015/05/ca-green-alley-avalon-green-alleys-demo-project.pdf (accessed on 31 January 2023).
- Kazmierczak, J.; Muller, S.; Nilsson, B.; Postma, D.; Czejak, J.; Sebok, E.; Jessen, S.; Karan, S.; Stenvig Jensen, C.; Edelvang, K.; et al. Groundwater Flow and Heterogeneous Discharge into a Seepage Lake: Combined Use of Physical Methods and Hydrochemical Tracers. Water Resour. Res. 2016, 52, 9109–9130. [Google Scholar] [CrossRef]
- Reitz, M.; Sanford, W.E.; Senay, G.B.; Cazenas, J. Annual Estimates of Recharge, Quick-Flow Runoff, and Evapotranspiration for the Contiguous U.S. Using Empirical Regression Equations. J. Am. Water Resour. Assoc. 2017, 53, 961–983. [Google Scholar] [CrossRef]
- Masoner, J.R.; Kolpin, D.W.; Cozzarelli, I.M.; Barber, L.B.; Burden, D.S.; Foreman, W.T.; Forshay, K.J.; Furlong, E.T.; Groves, J.F.; Hladik, M.L.; et al. Urban Stormwater: An Overlooked Pathway of Extensive Mixed Contaminants to Surface and Groundwaters in the United States. Environ. Sci. Technol. 2019, 53, 10070–10081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deletic, A. The First Flush Load of Urban Surface Runoff. Water Res. 1998, 32, 2462–2470. [Google Scholar] [CrossRef]
- Maniquiz-Redillas, M.; Robles, M.E.; Cruz, G.; Reyes, N.J.; Kim, L.H. First Flush Stormwater Runoff in Urban Catchments: A Bibliometric and Comprehensive Review. Hydrology 2022, 9, 63. [Google Scholar] [CrossRef]
- Fanelli, R.M.; Prestegaard, K.L.; Palmer, M.A. Urban Legacies: Aquatic Stressors and Low Aquatic Biodiversity Persist despite Implementation of Regenerative Stormwater Conveyance Systems. Freshw. Sci. 2019, 38, 818–833. [Google Scholar] [CrossRef]
- Guo, J.C.Y.; Luu, T.M. Operation of Cap Orifice in a Rain Garden. J. Hydrol. Eng. 2015, 20, 1–6. [Google Scholar] [CrossRef]
- Hunt, W.F.; Greenway, M.; Moore, T.C.; Brown, R.A.; Kennedy, S.G.; Line, D.E.; Lord, W.G. Constructed Storm-Water Wetland Installation and Maintenance: Are We Getting It Right? J. Irrig. Drain. Eng. 2011, 137, 469–474. [Google Scholar] [CrossRef]
- Müller, A.; Österlund, H.; Marsalek, J.; Viklander, M. The Pollution Conveyed by Urban Runoff: A Review of Sources. Sci. Total Environ. 2020, 709, 136125. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Gogoi, A.; Kumari, D.; Borah, R. Review of Perspective, Problems, Challenges, and Future Scenario of Metal Contamination in the Urban Environment. J. Hazard. Toxic Radioact. Waste 2017, 21, 290–307. [Google Scholar] [CrossRef]
- Hallett, C.S.; Valesini, F.J.; Clarke, K.R.; Hoeksema, S.D. Effects of a Harmful Algal Bloom on the Community Ecology, Movements and Spatial Distributions of Fishes in a Microtidal Estuary. Hydrobiologia 2016, 763, 267–284. [Google Scholar] [CrossRef]
- Lim, H.S.; Lim, W.; Hu, J.Y.; Ziegler, A.; Ong, S.L. Comparison of Filter Media Materials for Heavy Metal Removal from Urban Stormwater Runoff Using Biofiltration Systems. J. Environ. Manag. 2015, 147, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Searcy, R.T.; Boehm, A.B. A Day at the Beach: Enabling Coastal Water Quality Prediction with High-Frequency Sampling and Data-Driven Models. Environ. Sci. Technol. 2021, 55, 1908–1918. [Google Scholar] [CrossRef]
- Pendleton, L.; Kildow, J. The Non-Market Value of California’s Beaches. Shore Beach 2006, 74, 34–37. [Google Scholar]
- Rathi, B.S.; Kumar, P.S. Application of Adsorption Process for Effective Removal of Emerging Contaminants from Water and Wastewater. Environ. Pollut. 2021, 280, 116995. [Google Scholar] [CrossRef]
- Payne, E.G.I.; Fletcher, T.D.; Russell, D.G.; Grace, M.R.; Cavagnaro, T.R.; Evrard, V.; Deletic, A.; Hatt, B.E.; Cook, P.L.M. Temporary Storage or Permanent Removal? The Division of Nitrogen between Biotic Assimilation and Denitrification in Stormwater Biofiltration Systems. PLoS ONE 2014, 9, e90890. [Google Scholar] [CrossRef] [Green Version]
- Badin, A.; Monier, A.; Volatier, L.; Geremia, R.; Delolme, C.; Bedell, J. Structural Stability, Microbial Biomass and Community Composition of Sediments Affected by the Hydric Dynamics of an Urban Stormwater Infiltration Basin. Environ. Microbiol. 2011, 61, 885–897. [Google Scholar] [CrossRef]
- Bogati, K.; Walczak, M. The Impact of Drought Stress on Soil Microbial Community, Enzyme Activities and Plants. Agronomy 2022, 12, 189. [Google Scholar] [CrossRef]
- Ma, Y.; Rajkumar, M.; Zhang, C.; Freitas, H. Inoculation of Brassica Oxyrrhina with Plant Growth Promoting Bacteria for the Improvement of Heavy Metal Phytoremediation under Drought Conditions. J. Hazard. Mater. 2016, 320, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Al-Ameri, M.; Hatt, B.; Le Coustumer, S.; Fletcher, T.; Payne, E.; Deletic, A. Accumulation of Heavy Metals in Stormwater Bioretention Media: A Field Study of Temporal and Spatial Variation. J. Hydrol. 2018, 567, 721–731. [Google Scholar] [CrossRef]
- Irvine, K.N.; Chua, L.H.C.; Hua’an, Z.; Qi, L.E.; Xuan, L.Y. Nature-Based Solutions to Manage Particle-Bound Metals in Urban Stormwater Runoff: Current Design Practices and Knowledge Gaps. J. Soils Sediments 2022, 1–18. [Google Scholar] [CrossRef]
- Al-Rubaei, A.M.; Engström, M.; Viklander, M.; Blecken, G.T. Long-Term Hydraulic and Treatment Performance of a 19-Year Old Constructed Stormwater Wetland—Finally Maturated or in Need of Maintenance? Ecol. Eng. 2016, 95, 73–82. [Google Scholar] [CrossRef]
- Waara, S.; Johansson, F. Ecological Risk Assessment of Trace Elements Accumulated in Stormwater Ponds within Industrial Areas. Environ. Sci. Pollut. Res. 2022, 29, 27026–27041. [Google Scholar] [CrossRef]
- Søberg, L.C.; Vollertsen, J.; Blecken, G.T.; Nielsen, A.H.; Viklander, M. Bioaccumulation of Heavy Metals in Two Wet Retention Ponds. Urban Water J. 2016, 13, 697–709. [Google Scholar] [CrossRef]
- Zinger, Y.; Blecken, G.T.; Fletcher, T.D.; Viklander, M.; Deletić, A. Optimising Nitrogen Removal in Existing Stormwater Biofilters: Benefits and Tradeoffs of a Retrofitted Saturated Zone. Ecol. Eng. 2013, 51, 75–82. [Google Scholar] [CrossRef]
- Kuoppamäki, K.; Pflugmacher Lima, S.; Scopetani, C.; Setälä, H. The Ability of Selected Filter Materials in Removing Nutrients, Metals, and Microplastics from Stormwater in Biofilter Structures. J. Environ. Qual. 2021, 50, 465–475. [Google Scholar] [CrossRef]
- Boehm, A.B.; Bell, C.D.; Fitzgerald, N.J.M.; Gallo, E.; Higgins, C.P.; Hogue, T.S.; Luthy, R.G.; Portmann, A.C.; Ulrich, B.A.; Wolfand, J.M. Biochar-Augmented Biofilters to Improve Pollutant Removal from Stormwater-Can They Improve Receiving Water Quality? Environ. Sci. Water Res. Technol. 2020, 6, 1520–1537. [Google Scholar] [CrossRef] [Green Version]
- Stanford Natural Capital Project. Available online: https://naturalcapitalproject.stanford.edu/software/invest (accessed on 4 March 2023).
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xio, Y.; Rao, E.; et al. Improvements in Ecosystem Services from Investments in Natural Capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Redhead, J.W.; Stratford, C.; Sharps, K.; Jones, L.; Ziv, G.; Clarke, D.; Oliver, T.H.; Bullock, J.M. Empirical Validation of the InVEST Water Yield Ecosystem Service Model at a National Scale. Sci. Total Environ. 2016, 569–570, 1418–1426. [Google Scholar] [CrossRef] [Green Version]
- Benra, F.; De Frutos, A.; Gaglio, M.; Álvarez-Garretón, C.; Felipe-Lucia, M.; Bonn, A. Mapping Water Ecosystem Services: Evaluating InVEST Model Predictions in Data Scarce Regions. Environ. Model. Softw. 2021, 138, 104982. [Google Scholar] [CrossRef]
- Salata, S.; Garnero, G.; Barbieri, C.A.; Giaimo, C. The Integration of Ecosystem Services in Planning: An Evaluation of the Nutrient Retention Model Using InVEST Software. Land 2017, 6, 48. [Google Scholar] [CrossRef] [Green Version]
- Carson, R.T.; Mitchell, R.C. The Value of Clean Water: The Public’s Willingness to Pay for Boatable, Fishable, and Swimmable Quality Water. Water Resour. Res. 1993, 29, 2445–2454. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, C.; Triplett, R.; Johnson, C.K.; Ahmed, P. Willingness to Pay for Safe Drinking Water: A Contingent Valuation Study in Jacksonville, FL. J. Environ. Manag. 2017, 203, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Levin, L.A.; Mehring, A.S. Optimization of Bioretention Systems through Application of Ecological Theory. Wiley Interdiscip. Rev. Water 2015, 2, 259–270. [Google Scholar] [CrossRef]
- Hobbie, S.E.; Grimm, N.B. Nature-Based Approaches to Managing Climate Change Impacts in Cities. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190124. [Google Scholar] [CrossRef] [Green Version]
- Science for Environment Policy. In Ecosystem Services and Biodiversity; 2015.
- Aavik, T.; Helm, A. Restoration of Plant Species and Genetic Diversity Depends on Landscape-Scale Dispersal. Restor. Ecol. 2018, 26, S92–S102. [Google Scholar] [CrossRef]
- Kiers, A.H.; Krimmel, B.; Larsen-Bircher, C.; Hayes, K.; Zemenick, A.; Michaels, J. Different Jargon, Same Goals: Collaborations between Landscape Architects and Ecologists to Maximize Biodiversity in Urban Lawn Conversions. Land 2022, 11, 1665. [Google Scholar] [CrossRef]
- Dreiseitl, H. Water and Sustainable Design; 2020. [Google Scholar]
- Tan, K.W. A Greenway Network for Singapore. Landsc. Urban Plan. 2006, 76, 45–66. [Google Scholar] [CrossRef]
- Song, Y.; Kirkwood, N.; Maksimović, Č.; Zhen, X.; O’Connor, D.; Jin, Y.; Hou, D. Nature Based Solutions for Contaminated Land Remediation and Brownfield Redevelopment in Cities: A Review. Sci. Total Environ. 2019, 663, 568–579. [Google Scholar] [CrossRef] [PubMed]
- Heimann, M.; Reichstein, M. Terrestrial Ecosystem Carbon Dynamics and Climate Feedbacks. Nature 2008, 451, 289–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krauss, L.; Rippy, M. Adaptive Strategy Biases in Engineered Ecosystems: Implications for Plant Community Dynamics and the Provisioning of Ecosystem Services to People. People Nat. 2022, 4, 1644–1663. [Google Scholar] [CrossRef]
- Kranner, B.; Afrouz, A.; Fitzgerald, N.; Boehm, A. Fecal Indicator Bacteria and Virus Removal in Stormwater Biofilters: Effects of Biochar, Media Saturation, and Field Conditioning. PLoS ONE 2019, 14, e0222719. [Google Scholar] [CrossRef]
- Mehring, A.S.; Hatt, B.E.; Kraikittikun, D.; Orelo, B.D.; Rippy, M.A.; Grant, S.B.; Gonzalez, J.P.; Jiang, S.C.; Ambrose, R.F.; Levin, L.A. Soil Invertebrates in Australian Rain Gardens and Their Potential Roles in Storage and Processing of Nitrogen. Ecol. Eng. 2016, 97, 138–143. [Google Scholar] [CrossRef]
- Capowiez, Y.; Gilbert, F.; Vallat, A.; Poggiale, J.C.; Bonzom, J.M. Depth Distribution of Soil Organic Matter and Burrowing Activity of Earthworms—Mesocosm Study Using X-Ray Tomography and Luminophores. Biol. Fertil. Soils 2021, 57, 337–346. [Google Scholar] [CrossRef]
- Ge, B.; Mehring, A.S.; Levin, L.A. Urbanization Alters Belowground Invertebrate Community Structure in Semi-Arid Regions: A Comparison of Lawns, Biofilters and Sage Scrub. Landsc. Urban Plan. 2019, 192, 103664. [Google Scholar] [CrossRef]
- Evans, B.A.; Gawlik, D.E. Urban Food Subsidies Reduce Natural Food Limitations and Reproductive Costs for a Wetland Bird. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Hanley, N.; Perrings, C. The Economic Value of Biodiversity. Annu. Rev. Resour. Econ. 2019, 11, 355–375. [Google Scholar] [CrossRef]
- Champ, P.; Boyle, K.; Brown, T. (Eds.) A Primer on Nonmarket Valuation, 2nd ed.; Springer International Publishing: Dordrecht, The Netherlands, 2017. [Google Scholar]
- Dupras, J.; Alam, M.; Reveret, J.P. Economic Value of Greater Montreal’s Non-Market Ecosystem Services in a Land Use Management and Planning Perspective. Can. Geogr. 2014, 59, 93–106. [Google Scholar] [CrossRef]
- Gallai, N.; Salles, J.M.; Settele, J.; Vaissière, B.E. Economic Valuation of the Vulnerability of World Agriculture Confronted with Pollinator Decline. Ecol. Econ. 2009, 68, 810–821. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. 2021. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 31 January 2023).
- Global Platform for Sustainable Cities São Paolo Statement on Urban Sustainability: A Call to Integrate Our Responses to Climate Change, Biodiversity Loss, and Social Inequality. Available online: https://www.thegpsc.org (accessed on 4 October 2019).
- Galbraith, D.; Malhi, Y.; Affum-Baffoe, K.; Castanho, A.; CE, D. Residence Times of Woody Biomass in Tropical Forests. Plant Ecol. Divers. 2013, 6, 139–157. [Google Scholar] [CrossRef]
- Pronk, G.J.; Mellage, A.; Milojevic, T.; Smeaton, C.M.; Engel, K.; Neufeld, J.D.; Rezanezhad, F.; Van Cappellen, P. Carbon Turnover and Microbial Activity in an Artificial Soil under Imposed Cyclic Drainage and Imbibition. Vadose Zone J. 2020, 19, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Fang, F.; Wang, H.; Wang, C.; Chen, Y.; Guo, J.; Wang, X.; Jiang, F. Pathways of N Removal and N2O Emission from a One-Stage Autotrophic N Removal Process under Anaerobic Conditions. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon Storage and Sequestration by Trees in Urban and Community Areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Environmental Protection Agency. Social Cost of Carbon; U.S. Environmental Protection Agency: Washington, DC, USA, 2016.
- Getter, K.; Rowe, D.; Robertson, G.; Cregg, B.; Andresen, J. Carbon Sequestration Potential of Extensive Green Roofs. Environ. Sci. Technol. 2009, 43, 7564–7570. [Google Scholar] [CrossRef]
- Seyedabadi, M.R.; Eicker, U.; Karimi, S. Plant Selection for Green Roofs and Their Impact on Carbon Sequestration and the Building Carbon Footprint. Environ. Chall. 2021, 4, 100119. [Google Scholar] [CrossRef]
- Lyu, R.; Mi, L.; Zhang, J.; Xu, M.; Li, J. Modeling the Effects of Urban Expansion on Regional Carbon Storage by Coupling SLEUTH-3r Model and InVEST Model. Ecol. Res. 2019, 34, 380–393. [Google Scholar] [CrossRef]
- Babbar, D.; Areendran, G.; Sahana, M.; Sarma, K.; Raj, K.; Sivadas, A. Assessment and Prediction of Carbon Sequestration Using Markov Chain and InVEST Model in Sariska Tiger Reserve, India. J. Clean. Prod. 2021, 278, 123333. [Google Scholar] [CrossRef]
- González-García, A.; Arias, M.; García-Tiscar, S.; Alcorlo, P.; Santos-Martín, F. National Blue Carbon Assessment in Spain Using InVEST: Current State and Future Perspectives. Ecosyst. Serv. 2022, 53, 101397. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency Social Cost of Greenhouse Gases. Available online: https://www.epa.gov/environmental-economics/scghg (accessed on 4 March 2023).
- Li, P.; Wang, Z.H. Environmental Co-Benefits of Urban Greening for Mitigating Heat and Carbon Emissions. J. Environ. Manag. 2021, 293, 112963. [Google Scholar] [CrossRef]
- Oke, T. The Energetic Basis of the Urban Heat Island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Stache, E.; Schilperoort, B.; Ottelé, M.; Jonkers, H.M. Comparative Analysis in Thermal Behaviour of Common Urban Building Materials and Vegetation and Consequences for Urban Heat Island Effect. Build. Environ. 2022, 213, 108489. [Google Scholar] [CrossRef]
- Meili, N.; Acero, J.A.; Peleg, N.; Manoli, G.; Burlando, P.; Fatichi, S. Vegetation Cover and Plant-Trait Effects on Outdoor Thermal Comfort in a Tropical City. Build. Environ. 2021, 195, 107733. [Google Scholar] [CrossRef]
- Kalkstein, L.S.; Eisenman, D.P.; de Guzman, E.B.; Sailor, D.J. Increasing Trees and High-Albedo Surfaces Decreases Heat Impacts and Mortality in Los Angeles, CA. Int. J. Biometeorol. 2022, 66, 911–925. [Google Scholar] [CrossRef]
- Porto, R.G.; de Almeida, R.F.; Cruz-Neto, O.; Tabarelli, M.; Viana, B.F.; Peres, C.A.; Lopes, A.V. Pollination Ecosystem Services: A Comprehensive Review of Economic Values, Research Funding and Policy Actions. Food Secur. 2020, 12, 1425–1442. [Google Scholar] [CrossRef]
- Dicks, L.V.; Breeze, T.D.; Ngo, H.T.; Senapathi, D.; An, J.; Aizen, M.A.; Basu, P.; Buchori, D.; Galetto, L.; Garibaldi, L.A.; et al. A Global-Scale Expert Assessment of Drivers and Risks Associated with Pollinator Decline. Nat. Ecol. Evol. 2021, 5, 1453–1461. [Google Scholar] [CrossRef]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat Fragmentation and Its Lasting Impact on Earth’s Ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef] [Green Version]
- Kremen, C.; Williams, N.M.; Aizen, M.A.; Gemmill-Herren, B.; LeBuhn, G.; Minckley, R.; Packer, L.; Potts, S.G.; Roulston, T.; Steffan-Dewenter, I.; et al. Pollination and Other Ecosystem Services Produced by Mobile Organisms: A Conceptual Framework for the Effects of Land-Use Change. Ecol. Lett. 2007, 10, 299–314. [Google Scholar] [CrossRef]
- Hung, K.-L.J.; Kingston, J.M.; Albrecht, M.; Holway, D.A.; Kohn, J.R. The Worldwide Importance of Honey Bees as Pollinators in Natural Habitats. Proc. R. Soc. B Biol. Sci. 2018, 285, 20172140. [Google Scholar] [CrossRef] [Green Version]
- IPBES Conceptual Framework for the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Curr. Opin. Environ. Sustain. 2014, IPBES-2/4, 231–269.
- Breeze, T.D.; Bailey, A.P.; Potts, S.G.; Balcombe, K.G. A Stated Preference Valuation of the Non-Market Benefits of Pollination Services in the UK. Ecol. Econ. 2015, 111, 76–85. [Google Scholar] [CrossRef]
- Veitch, J.; Ball, K.; Crawford, D.; Abbott, G.; Salmon, J. Park Improvements and Park Activity: A Natural Experiment. Am. J. Prev. Med. 2012, 42, 616–619. [Google Scholar] [CrossRef] [Green Version]
- Van Den Berg, A.E.; Maas, J.; Verheij, R.A.; Groenewegen, P.P. Social Science & Medicine Green Space as a Buffer between Stressful Life Events and Health Q. Soc. Sci. Med. 2010, 70, 1203–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartig, T.; Mitchell, R.; De Vries, S.; Frumkin, H. Nature and Health. Annu. Rev. Public Health 2014, 35, 207–228. [Google Scholar] [CrossRef] [Green Version]
- Coombes, E.; Jones, A.P.; Hillsdon, M. The Relationship of Physical Activity and Overweight to Objectively Measured Green Space Accessibility and Use. Soc. Sci. Med. 2010, 70, 816–822. [Google Scholar] [CrossRef] [Green Version]
- U.S. Census Bureau Population Density Data. Available online: https://www.census.gov/quickfacts/fact/table/losangelescountycalifornia,CA/PST045222 (accessed on 13 January 2023).
- More, T.A.; Stevens, T.; Allen, P.G. Valuation of Urban Parks. Landsc. Urban Plan. 1988, 15, 139–152. [Google Scholar] [CrossRef]
- Łaszkiewicz, E.; Czembrowski, P.; Kronenberg, J. Can Proximity to Urban Green Spaces Be Considered a Luxury? Classifying a Non-Tradable Good with the Use of Hedonic Pricing Method. Ecol. Econ. 2019, 161, 237–247. [Google Scholar] [CrossRef]
- Ward, C.D.; Parker, C.M.; Shackleton, C.M. The Use and Appreciation of Botanical Gardens as Urban Green Spaces in South Africa. Urban For. Urban Green. 2010, 9, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Byrne, J.; Wolch, J.; Zhang, J. Planning for Environmental Justice in an Urban National Park. J. Environ. Plan. Manag. 2009, 52, 365–392. [Google Scholar] [CrossRef]
- Graça, M.; Alves, P.; Gonçalves, J.; Nowak, D.J.; Hoehn, R.; Farinha-marques, P.; Cunha, M. Landscape and Urban Planning Assessing How Green Space Types a Ff Ect Ecosystem Services Delivery in Porto, Portugal. Landsc. Urban Plan. 2018, 170, 195–208. [Google Scholar] [CrossRef]
- Southon, G.E.; Jorgensen, A.; Dunnett, N.; Hoyle, H.; Evans, K.L. Biodiverse Perennial Meadows Have Aesthetic Value and Increase Residents’ Perceptions of Site Quality in Urban Green-Space. Landsc. Urban Plan. 2017, 158, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban Green Space, Public Health, and Environmental Justice: The Challenge of Making Cities “Just Green Enough”. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Luo, H.; Ma, J.; Huang, Z.; Sun, L.X.; Jiang, M.Y.; Zhu, C.Y.; Li, X. Effects of Integration between Visual Stimuli and Auditory Stimuli on Restorative Potential and Aesthetic Preference in Urban Green Spaces. Urban For. Urban Green. 2020, 53, 126702. [Google Scholar] [CrossRef]
- Reyes-Riveros, R.; Altamirano, A.; De La Barrera, F.; Rozas-Vásquez, D.; Vieli, L.; Meli, P. Linking Public Urban Green Spaces and Human Well-Being: A Systematic Review. Urban For. Urban Green. 2021, 61, 127105. [Google Scholar] [CrossRef]
- Van Renterghem, T.; Hornikx, M.; Forssen, J.; Botteldooren, D. The Potential of Building Envelope Greening to Achieve Quietness. Build. Environ. 2013, 61, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Hedblom, M.; Gunnarsson, B.; Iravani, B.; Knez, I.; Schaefer, M.; Thorsson, P.; Lundström, J.N. Reduction of Physiological Stress by Urban Green Space in a Multisensory Virtual Experiment. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Dadvand, P.; Nieuwenhuijsen, M.J.; Esnaola, M.; Forns, J.; Basagaña, X.; Alvarez-Pedrerol, M.; Rivas, I.; López-Vicente, M.; De Castro Pascual, M.; Su, J.; et al. Green Spaces and Cognitive Development in Primary Schoolchildren. Proc. Natl. Acad. Sci. USA 2015, 112, 7937–7942. [Google Scholar] [CrossRef] [Green Version]
- Hermawan, A.A.; Jung, D.Y.; Talei, A. Removal Process of Nutrients and Heavy Metals in Tropical Biofilters. E3S Web Conf. 2018, 65, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Le, J. Characterization of Ecosystem Services Associated with Deep-Sea Habitats and Natural Stormwater Treatment Systems and Their Incorporation into Environmental Management; University of California: San Diego, CA, USA, 2020. [Google Scholar]
- Hansford, K.M.; Fonville, M.; Gillingham, E.L.; Coipan, E.C.; Pietzsch, M.E.; Krawczyk, A.I.; Vaux, A.G.C.; Cull, B.; Sprong, H.; Medlock, J.M. Ticks and Borrelia in Urban and Peri-Urban Green Space Habitats in a City in Southern England. Ticks Tick-Borne Dis. 2017, 8, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Bogar, S.; Beyer, K.M. Green Space, Violence, and Crime: A Systematic Review. Trauma Violence Abus. 2016, 17, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Prudencio, L.; Null, S.E. Stormwater Management and Ecosystem Services: A Review. Environ. Res. Lett. 2018, 13, 033002. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.; Rhodes, E. Measuring the Efficiency of Decision Making Units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Aigner, D.; Lovell, C.A.K.; Schmidt, P. Formulation and Estimation of Stochastic Frontier Production Function Models. J. Econ. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Hossain, M.K.; Kamil, A.A.; Baten, M.A.; Mustafa, A. Stochastic Frontier Approach and Data Envelopment Analysis to To-Tal Factor Productivity and Efficiency Measurement of Bangladeshi Rice. PLoS ONE 2012, 7, e46081. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Delmas, M.; Lieberman, M. Production Frontier Methodologies and Efficiency as a Performance Measure in Strategic Management Research. Strateg. Manag. J. 2015, 36, 19–36. [Google Scholar] [CrossRef] [Green Version]
- Brauman, K.A.; Bremer, L.L.; Hamel, P.; Ochoa-Tocachi, B.F.; Roman-Dañobeytia, F.; Bonnesoeur, V.; Arapa, E.; Gammie, G. Producing Valuable Information from Hydrologic Models of Nature-Based Solutions for Water. Integr. Environ. Assess. Manag. 2022, 18, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Loc, H.H.; Diep, N.T.H.; Tuan, V.T.; Shimizu, Y. An Analytical Approach in Accounting for Social Values of Ecosystem Services in a Ramsar Site: A Case Study in the Mekong Delta, Vietnam. Ecol. Indic. 2018, 89, 118–129. [Google Scholar] [CrossRef]
- Hirons, M.; Comberti, C.; Dunford, R. Valuing Cultural Ecosystem Services. Annu. Rev. Environ. Resour. 2016, 41, 545–574. [Google Scholar] [CrossRef]
- Olander, L.P.; Johnston, R.J.; Tallis, H.; Kagan, J.; Maguire, L.A.; Polasky, S.; Urban, D.; Boyd, J.; Wainger, L.; Palmer, M. Benefit Relevant Indicators: Ecosystem Services Measures That Link Ecological and Social Outcomes. Ecol. Indic. 2018, 85, 1262–1272. [Google Scholar] [CrossRef]
Benefit Transfer Approaches | Stochastic Frontier Analysis | Data Envelopment Analysis | |
---|---|---|---|
Assumptions | Policy site is equitable to study site | A priori production function | Deterministic approach |
Error | due to differences in site characteristics | Incorporated as stochastic variable | cannot be separated from inefficiency |
Multiple outputs | Single ecosystem service | Weighted basket of ecosystem services | Allows for multiple ecosystem services |
Relationship to independent variables | Relationship built into regression model | Relationship built into regression model | Need additional regression model |
Interpretation of results | Associated value and drivers | Benchmark for efficiency | Benchmark for efficiency |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, J.T.; Gonzalez, J.P.; Carson, R.T.; Ambrose, R.F.; Levin, L.A. Integrating Non-Targeted Ecosystem Services into Assessment of Natural Stormwater Treatment Systems. Water 2023, 15, 1460. https://doi.org/10.3390/w15081460
Le JT, Gonzalez JP, Carson RT, Ambrose RF, Levin LA. Integrating Non-Targeted Ecosystem Services into Assessment of Natural Stormwater Treatment Systems. Water. 2023; 15(8):1460. https://doi.org/10.3390/w15081460
Chicago/Turabian StyleLe, Jennifer T., Jennifer P. Gonzalez, Richard T. Carson, Richard F. Ambrose, and Lisa A. Levin. 2023. "Integrating Non-Targeted Ecosystem Services into Assessment of Natural Stormwater Treatment Systems" Water 15, no. 8: 1460. https://doi.org/10.3390/w15081460
APA StyleLe, J. T., Gonzalez, J. P., Carson, R. T., Ambrose, R. F., & Levin, L. A. (2023). Integrating Non-Targeted Ecosystem Services into Assessment of Natural Stormwater Treatment Systems. Water, 15(8), 1460. https://doi.org/10.3390/w15081460