Selected Worldwide Cases of Land Subsidence Due to Groundwater Withdrawal
Abstract
:1. Introduction
2. Land subsidence in the United States of America (USA)
2.1. Las Vegas, Nevada
2.2. San Joaquin Valley, California
2.3. Long Beach Area, California
2.4. Santa Clara Valley, California
2.5. The City of Houston, Texas
2.6. Arizona
3. Land Subsidence in Mexico
3.1. Mexico City
3.2. The State of Sonora
3.3. Celaya
3.4. Morelia City
3.5. The City of San Luis Potosi
4. Land Subsidence in China
4.1. Shanghai
4.2. The Cities of Suzhou City, Wuxi City and Changzhou City
4.3. Beijing
4.4. Tianjin City
4.5. Hebei Province
4.6. The City of Shian
5. Japan
5.1. Kanto–Tokyo Plain
5.2. Nobi Plain
6. Indonesia
6.1. The City of Jakarta
6.2. Semarang
6.3. Bandung
7. Iran
8. Italy
8.1. Venice
8.2. Ravenna
8.3. Bologna Region
9. Spain
10. Greece
10.1. Kalochori, Thessaloniki
10.2. Anthemounda Valley, Thessaloniki
10.3. East Larisa Plain
10.4. West Larisa Plain
10.5. Thriasio Basin
10.6. Amyntaio Basin
11. Discussion
12. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Loupasakis, C.; Rozos, D. Finite-element simulation of land subsidence induced by water pumping in Kalochori village, Greece. Q. J. Eng. Geol. Hydrogeol. 2009, 42, 369–382. [Google Scholar] [CrossRef]
- Raspini, F.; Loupasakis, C.; Rozos, D.; Adam, N.; Moretti, S. Ground subsidence phenomena in the Delta municipality region (Northern Greece): Geotechnical modeling and validation with Persistent Scatterer Interferometry. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Ilia, I.; Loupasakis, C.; Tsangaratos, P. Assesing ground subsidence phenomena with Persistent Scatterer Interferometry data in Western Thessaly, Greece. In Proceedings of the 14th International Congress of the Geological Society of Greece, Thessaloniki, Greece, 25–27 May 2016. [Google Scholar]
- Raspini, F.; Bianchini, S.; Moretti, S.; Loupasakis, C.; Rozos, D.; Duro, J.; Garcia, M. Advanced interpretation of interferometric SAR data to detect, monitor and model ground subsidence: Outcomes from the ESA-GMES Terrafirma project. Nat. Hazards 2016, 83, 155–181. [Google Scholar] [CrossRef]
- Rothenburg, L.; Obah, A.; El Baruni, S. Horizontal Ground Movements due to Water Abstraction and Formation of Earth Fissures. International Association of Hydrological. In Proceedings of the Fifth International Symposium on Land Subsidence, The Hague, The Netherlands, 16–20 October 1995; pp. 239–249. [Google Scholar]
- Tzampoglou, P.; Loupasakis, C. New data regarding the ground water level changes at the Amyntaio basin-Florina Prefecture, Greece. Bull. Geol. Soc. Greece 2016, 50, 1006–1015. [Google Scholar] [CrossRef] [Green Version]
- Tzampoglou, P.; Loupasakis, C. Evaluating geological and geotechnical data for the study of land subsidence phenomena at the perimeter of the Amyntaio coalmine, Greece. Int. J. Min. Sci. Technol. 2017, 28, 61–612. [Google Scholar] [CrossRef]
- Mayuga, M. Geology and development of California’s giant-Wilmington oil field. AAPG Bull. 1970, 52, 540. [Google Scholar]
- Papadopoulou-Vrynioti, K.; Bathrellos, G.D.; Skilodimou, H.D.; Kaviris, G.; Makropoulos, K. Karst collapse susceptibility mapping considering peak ground acceleration in a rapidly growing urban area. Eng. Geol. 2013, 158, 77–88. [Google Scholar] [CrossRef]
- Margiotta, S.; Negri, S.; Parise, M.; Valloni, R. Mapping the susceptibility to sinkholes in coastal areas, based on stratigraphy, geomorphology and geophysics. Nat. Hazards 2012, 62, 657–676. [Google Scholar] [CrossRef]
- Guerrero, J.; Gutiérrez, F.; Bonachea, J.; Lucha, P. A sinkhole susceptibility zonation based on paleokarst analysis along a stretch of the Madrid–Barcelona high-speed railway built over gypsum-and salt-bearing evaporites (NE Spain). Eng. Geol. 2008, 102, 62–73. [Google Scholar] [CrossRef]
- Nieuwenhuis, H.; Schokking, F. Land subsidence in drained peat areas of the Province of Friesland, The Netherlands. Q. J. Eng. Geol. Hydrogeol. 1997, 30, 37–48. [Google Scholar] [CrossRef]
- Choi, J.-K.; Kim, K.-D.; Lee, S.; Won, J.-S. Application of a fuzzy operator to susceptibility estimations of coal mine subsidence in Taebaek City, Korea. Environ. Earth Sci. 2010, 59, 1009–1022. [Google Scholar] [CrossRef]
- Singh, K.B.; Dhar, B.B. Sinkhole subsidence due to mining. Geotech. Geol. Eng. 1997, 15, 327–341. [Google Scholar] [CrossRef]
- Gongyu, L.; Wanfang, Z. Sinkholes in karst mining areas in China and some methods of prevention. Eng. Geol. 1999, 52, 45–50. [Google Scholar] [CrossRef]
- Al Heib, M.; Duval, C.; Theoleyre, F.; Watelet, J.-M.; Gombert, P. Analysis of the historical collapse of an abandoned underground chalk mine in 1961 in Clamart (Paris, France). Bull. Eng. Geol. Environ. 2015, 74, 1001–1018. [Google Scholar] [CrossRef]
- Terzaghi, K. Settlement and consolidation of clay. In Principles of Soil Mechanics; McGraw-Hill: New York, NY, USA, 1925; Volume IV, pp. 874–878. [Google Scholar]
- Galloway, D.L.; Burbey, T.J. Review: Regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Tsangaratos, P.; Ilia, I.; Loupasakis, C. Land subsidence modelling using data mining techniques. The case study of Western Thessaly, Greece. In Natural Hazards GIS-Based Spatial Modeling Using Data Mining Techniques; Pourghasemi, H.P., Rossi, M., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2019; pp. 79–103. [Google Scholar]
- Hu, R.; Yue, Z.; Wang, L.u.; Wang, S. Review on current status and challenging issues of land subsidence in China. Eng. Geol. 2004, 76, 65–77. [Google Scholar] [CrossRef]
- Hua, Z.; Tiezhu, L.; Xinhong, L. Economic benefit risk assessment of controlling land subsidence in Shanghai. Environ. Geol. 1993, 21, 208–211. [Google Scholar] [CrossRef]
- Pramita, A.; Syafrudin, S.; Sugianto, D. Effect of seawater intrusion on groundwater in the Demak coastal area Indonesia: A review. IOP Conf. Ser. Earth Environ. Sci. 2021, 896, 012070. [Google Scholar] [CrossRef]
- Abidin, H.; Andreas, H.; Gumilar, I.; Sidiq, T.P.; Fukuda, Y. Land subsidence in coastal city of Semarang (Indonesia): Characteristics, impacts and causes. Geomat. Nat. Hazards Risk 2013, 4, 226–240. [Google Scholar] [CrossRef] [Green Version]
- Purwoarminta, A.; Moosdorf, N.; Delinom, R.M. Investigation of groundwater-seawater interactions: A review. IOP Conf. Ser. Earth Environ. Sci. 2018, 118, 012017. [Google Scholar] [CrossRef]
- Ireland, R.; Poland, J.; Riley, F. Land Subsidence in the San Joaquin Valley, California, as of 1980. US Geol. Surv. Prof. Pap. 1984, 437, 93. [Google Scholar]
- Abidin, H.Z.; Djaja, R.; Darmawan, D.; Hadi, S.; Akbar, A.; Rajiyowiryono, H.; Sudibyo, Y.; Meilano, I.; Kasuma, M.; Kahar, J. Land subsidence of Jakarta (Indonesia) and its geodetic monitoring system. Nat. Hazards 2001, 23, 365–387. [Google Scholar] [CrossRef]
- Cenni, N.; Fiaschi, S.; Fabris, M. Monitoring of land subsidence in the po river delta (Northern Italy) using geodetic networks. Remote Sens. 2021, 13, 1488. [Google Scholar] [CrossRef]
- Tiwari, A.; Narayan, A.B.; Dwivedi, R.; Swadeshi, A.; Pasari, S.; Dikshit, O. Geodetic investigation of landslides and land subsidence: Case study of the Bhurkunda coal mines and the Sirobagarh landslide. Surv. Rev. 2020, 52, 134–149. [Google Scholar] [CrossRef]
- Colesanti, C.; Ferretti, A.; Prati, C.; Rocca, F. Monitoring landslides and tectonic motions with the Permanent Scatterers Technique. Eng. Geol. 2003, 68, 3–14. [Google Scholar] [CrossRef]
- Donnelly, L. Fault reactivation induced by mining in the East Midlands. Mercian Geol. 2000, 15, 29–36. [Google Scholar]
- Burbey, T.J. The influence of faults in basin-fill deposits on land subsidence, Las Vegas Valley, Nevada, USA. Hydrogeol. J. 2002, 10, 525–538. [Google Scholar] [CrossRef]
- Xue, Y.-Q.; Zhang, Y.; Ye, S.-J.; Wu, J.-C.; Li, Q.-F. Land subsidence in China. Environ. Geol. 2005, 48, 713–720. [Google Scholar] [CrossRef]
- Kim, K.-D.; Lee, S.; Oh, H.-J.; Choi, J.-K.; Won, J.-S. Assessment of ground subsidence hazard near an abandoned underground coal mine using GIS. Environ. Geol. 2006, 50, 1183–1191. [Google Scholar] [CrossRef]
- Motagh, M.; Walter, T.R.; Sharifi, M.A.; Fielding, E.; Schenk, A.; Anderssohn, J.; Zschau, J. Land subsidence in Iran caused by widespread water reservoir overexploitation. Geophys. Res. Lett. 2008, 35, L16403. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Shu, L.; Yang, Y. Groundwater overexploitation causing land subsidence: Hazard risk assessment using field observation and spatial modelling. Water Resour. Manag. 2012, 26, 4225–4239. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Doin, M.-P.; Lopez-Quiroz, P.; Tupin, F.; Fruneau, B.; Pinel, V.; Trouvé, E. Mexico city subsidence measured by InSAR time series: Joint analysis using PS and SBAS approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1312–1326. [Google Scholar] [CrossRef] [Green Version]
- Pacheco-Martínez, J.; Hernandez-Marín, M.; Burbey, T.J.; González-Cervantes, N.; Ortíz-Lozano, J.Á.; Zermeño-De-Leon, M.E.; Solís-Pinto, A. Land subsidence and ground failure associated to groundwater exploitation in the Aguascalientes Valley, Mexico. Eng. Geol. 2013, 164, 172–186. [Google Scholar] [CrossRef]
- Loupasakis, C.; Angelitsa, V.; Rozos, D.; Spanou, N. Mining geohazards—Land subsidence caused by the dewatering of opencast coal mines: The case study of the Amyntaio coal mine, Florina, Greece. Nat. Hazards 2014, 70, 675–691. [Google Scholar] [CrossRef]
- Tzampoglou, P.; Loupasakis, C. Numerical simulation of the factors causing land subsidence due to overexploitation of the aquifer in the Amyntaio open coal mine, Greece. HydroResearch 2019, 1, 8–24. [Google Scholar] [CrossRef]
- Council on Environmental Quality. Contamination of Ground Water by Toxic Organic Chemicals; Council on Environmental Quality: Washington, DC, USA, 1981. [Google Scholar]
- Leeden, F.d.; Troise, F.L.; Todd, D.K. The Water Encyclopedia; Lewin Publishers: Boca Raton, FL, USA, 1990. [Google Scholar]
- Mindling, A. A Summary of Data Relating to Land Subsidence in Las Vegas Valley; Center for Water Resources Research, University of Nevada System: Reno, NV, USA, 1971. [Google Scholar]
- Wood, D.B. Water use and associated effects on ground-water levels, Las Vegas Valley and vicinity, Clark County, Nevada, 1980–1995. Nev. Div. Water Resour. Inf. 1999, 35, 101. [Google Scholar]
- Maxey, G.; Jameson, C. Geology and Water resources of Las Vegas, Pahrump and Indian Springs Valleys, Clark and Nye County, Nevada, State of Nevada: Office of the State Engineer. Water Resour. Bull. 1948, 292. Available online: https://data.nbmg.unr.edu/public/Geothermal/GreyLiterature/Maxey_SouthernNVResources_1948.pdf (accessed on 9 December 2021).
- Amelung, F.; Galloway, D.L.; Bell, J.W.; Zebker, H.A.; Laczniak, R.J. Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 1999, 27, 483–486. [Google Scholar] [CrossRef]
- Bell, J.W.; Amelung, F.; Ramelli, A.R.; Blewitt, G. Land subsidence in Las Vegas, Nevada, 1935–2000: New geodetic data show evolution, revised spatial patterns, and reduced rates. Environ. Eng. Geosci. 2002, 8, 155–174. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, L.; Yang, H.; Zhang, Z.; Tao, J. Subsidence prediction and susceptibility zonation for collapse above goaf with thick alluvial cover: A case study of the Yongcheng coalfield, Henan Province, China. Bull. Eng. Geol. Environ. 2016, 75, 1117–1132. [Google Scholar] [CrossRef]
- Bell, J.W. Las Vegas Valley: Land Subsidence and Fissuring Due to Ground-Water Withdrawal. Available online: https://geochange.er.usgs.gov/sw/impacts/hydrology/vegas_gw/ (accessed on 9 December 2021).
- Thompson, E. Alternatives for Future Urban Growth in California’s Central Valley: The Bottom Line for Agriculture and Taxpayers; AFT’s California Field Office: Davis, CA, USA, 1995; p. 139. [Google Scholar]
- Poland, J.; Davis, G. Subsidence of the land surface in the Tulare-Wasco (Delano) and Los Banos-Kettleman City area, San Joaquin Valley, California. Eos Trans. Am. Geophys. Union 1956, 37, 287–296. [Google Scholar] [CrossRef]
- Ireland, R.; Poland, J.; Riley, F.S. Land Subsidence in the San Joaquin Valley, California, as of 1980; U.S. Geological Survey Professional Paper 437-I; U.S. Department of the Interior: Washington, DC, USA, 1984. [Google Scholar] [CrossRef]
- Poland, J.F. The Occurrence and Control of Land Subsidence due to Ground-Water Withdrawal with Special Reference to the San Joaquin and Santa Clara Valleys, California. Ph.D. Thesis, Department of Geology, Stanford University, Stanford, CA, USA, 1981. [Google Scholar]
- Larson, K.; Başaǧaoǧlu, H.; Marino, M. Prediction of optimal safe ground water yield and land subsidence in the Los Banos-Kettleman City area, California, using a calibrated numerical simulation model. J. Hydrol. 2001, 242, 79–102. [Google Scholar] [CrossRef]
- Jeanne, P.; Farr, T.G.; Rutqvist, J.; Vasco, D.W. Role of agricultural activity on land subsidence in the San Joaquin Valley, California. J. Hydrol. 2019, 569, 462–469. [Google Scholar] [CrossRef] [Green Version]
- Ojha, C.; Werth, S.; Shirzaei, M. Groundwater loss and aquifer system compaction in San Joaquin Valley during 2012–2015 drought. J. Geophys. Res. Solid Earth 2019, 124, 3127–3143. [Google Scholar] [CrossRef] [Green Version]
- Location of Maximum Land Subsidence in, U.S. Levels at 1925 and 1977. Available online: https://www.usgs.gov/media/images/location-maximum-land-subsidence-us-levels-1925-and-1977 (accessed on 9 December 2021).
- Energy Resources. Available online: www.longbeach.gov/lbgo/about-us/oil/subsidence/ (accessed on 9 December 2021).
- Tolman, C.F.; Poland, J.F. Land Subsidence in the San Joaquin Valley, California, as of 1972; U.S. Geological Survey Professional Paper; U.S. Department of the Interior: Washington, DC, USA, 1975; p. 78. [Google Scholar] [CrossRef]
- Galloway, D.L.; Jones, D.R.; Ingebritsen, S.E. Land subsidence in the United States; US Geological Survey: Reston, VA, USA, 1999; Volume 1182. [Google Scholar]
- Holzer, T.L.; Galloway, D.L. Impacts of land subsidence caused by withdrawal of underground fluids in the United States. Rev. Eng. Geol. 2005, 16, 87–99. [Google Scholar]
- Fowler, L.C. Economic consequences of land subsidence. Am. Soc. Civ. Eng. J. Irrig. 1981, 107, 151–159. [Google Scholar]
- McComb, D. Houston, Texas, in The New Handbook of Texas; Tyler, R., Barnett, D.E., Barkley, R.R., Eds.; Texas State Historical Association: Austin, TX, USA, 1996; pp. 1–3. [Google Scholar]
- Buckley, S.M.; Rosen, P.A.; Hensley, S.; Tapley, B.D. Land subsidence in Houston, Texas, measured by radar interferometry and constrained by extensometers. J. Geophys. Res. Solid Earth 2003, 108, 2542. [Google Scholar] [CrossRef]
- Coplin, L.S.; Galloway, D. Houston-Galveston, Texas. Land subsidence in the United States. US Geol. Surv. Circ. 1999, 1182, 35–48. [Google Scholar]
- Galloway, D.L.; Coplin, L.S.; Ingebritsen, S.E. Effects of land subsidence in the Greater Houston area. Manag. Urban Water Supply 2003, 46, 187–203. [Google Scholar]
- Shah, S.D.; Ramage, J.K.; Braun, C.L. Status of Groundwater-Level Altitudes and Long-Term Groundwater-Level Changes in the Chicot, Evangeline, and Jasper Aquifers, Houston-Galveston Region, Texas, 2018; 2328-0328; US Geological Survey: Liston, VA, USA, 2018. [Google Scholar]
- Agudelo, G.; Wang, G.; Liu, Y.; Bao, Y.; Turco, M.J. GPS geodetic infrastructure for subsidence and fault monitoring in Houston, Texas, USA. Proc. Int. Assoc. Hydrol. Sci. 2020, 382, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.M.; Shirzaei, M. Land subsidence in Houston correlated with flooding from Hurricane Harvey. Remote Sens. Environ. 2019, 225, 368–378. [Google Scholar] [CrossRef]
- Radar Interferometry Measurement of Land Subsidence in Houston, Texas (Photographer: S. Duncan Heron). Available online: https://www.csr.utexas.edu/rs/research/insar/houston_desc.html (accessed on 9 December 2021).
- Carpenter, M.C. South-Central Arizona: Earth fissures and subsidence complicate development of desert water resources. Land Subsid. United States US Geol. Surv. Circ. 1999, 1182, 65–78. [Google Scholar]
- ADWR. Groundwater Sites Inventory (GWSI); Arizona Department of Water Resources: Phoenix, AZ, USA, 2015.
- ADWR. Land Subsidence Maps; Arizona Department of Water Resources: Phoenix, AZ, USA, 2015.
- Schumann, H.H.; O’Day, C.M. Investigation of Hydrogeology, Land Subsidence, and Earth Fissures, Luke Air Force Base, Arizona; Administrative Report; US Geological Survey: Tucson, AZ, USA, 1995. [Google Scholar]
- Schumann, H.H.; Genualdi, R.B. Land Subsidence, Earth Fissures, and Water-Level Change in Southern Arizona; Arizona Bureau of Geology and Mineral Technology: Tucson, AZ, USA, 1986. [Google Scholar]
- Conway, B. Arizona Department of Water Resources Land Subsidence Monitoring Report Number 2; ADWR: Phoenix, AZ, USA, 2014. [Google Scholar]
- Conway, B.D. Arizona Department of Water Resources Land Subsidence Monitoring Program. In Proceedings of the IAEG/AEG Annual Meeting Proceedings, San Francisco, CA, USA, 17–21 September 2018; Springer Nature: Cham, Switzerland, 2019; Volume 5, pp. 61–67. [Google Scholar]
- Conway, B.D. Land subsidence and earth fissures in south-central and southern Arizona, USA. Hydrogeol. J. 2016, 24, 649–655. [Google Scholar] [CrossRef]
- AZGS. Locations of mapped earth fissure traces in Arizona, v. 01.29.2015. In Arizona Geological Survey Digital Information; AZGS: Tucson, AZ, USA, 2015. [Google Scholar]
- Subsidence Cracks & Fissures, Cochise Co., Arizona—October 2011 (Photographer: Jan Rasmussen). Available online: https://arizonageologicalsoc.org/SubsidenceFissures/ (accessed on 9 December 2021).
- Cracks in Arizona. Available online: http://azgeology.azgs.arizona.edu/archived_issues/azgs.az.gov/arizona_geology/april09/article_cracksinaz.html (accessed on 9 December 2021).
- Keller, E.; Blodgett, R. Natural Hazards: Earth’s Processes as Hazards, Disasters, and Catastrophes; Pentice Hall: Hoboken, NJ, USA, 2006. [Google Scholar]
- Instituto Nacional de Estadistica Geografıa e Informatica. Censo Nacional de Poblacion, 2010, Mexico; Instituto Nacional de Estadistica, Geografıa e Informatica: Mexico City, Mexico, 2011.
- Leake, S. Interbed storage changes and compaction in models of regional groundwater flow. Water Resour. Res. 1990, 26, 1939–1950. [Google Scholar] [CrossRef]
- Chaussard, E.; Wdowinski, S.; Cabral-Cano, E.; Amelung, F. Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens. Environ. 2014, 140, 94–106. [Google Scholar] [CrossRef]
- Marsal, R.; Hiriart, F.; Sandoval, L. Hundimiento de la ciudad de México. Observaciones y estudios analíticos. ICA Ser. B Ing. Exp. 1952, 3, 1–26. [Google Scholar]
- Custodio, E. Aquifer overexploitation: What does it mean? Hydrogeol. J. 2002, 10, 254–277. [Google Scholar] [CrossRef]
- Aguilar-Pérez, L.A.; Ortega-Guerrero, M.A.; Lugo-Hubp, J.; Ortiz-Zamora, D.d.C. Análisis numérico acoplado de los desplazamientos verticales y generación de fracturas por extracción de agua subterránea en las proximidades de la Ciudad de México. Rev. Mex. de Cienc. Geológicas 2006, 23, 247–261. [Google Scholar]
- Cabral-Cano, E.; Dixon, T.H.; Miralles-Wilhelm, F.; Díaz-Molina, O.; Sánchez-Zamora, O.; Carande, R.E. Space geodetic imaging of rapid ground subsidence in Mexico City. Geol. Soc. Am. Bull. 2008, 120, 1556–1566. [Google Scholar] [CrossRef] [Green Version]
- Cuevas, J.A. Foundation conditions in Mexico City. In Proceedings of the International Conference on Soil Mechanics; Graduate school of engineering, Harvard University: Cambridge, MA, USA, 1936; pp. 233–237. [Google Scholar]
- Juárez, B. Mecanismo de Las Grietas de Tensión en el Valle de México. Ph.D. Thesis, Universidad Nacional Autónoma de México, Mexico City, Mexico. Available online: https://repositorio.unam.mx/contenidos/888291961 (accessed on 9 December 2021).
- Marsal, R. Development of a lake by pumping-induced consolidation of soft clays. Vol. Nabor Carrillo Com. Impuls. Y Coord. De La Investig. Cient. 1969, 47, 229–266. [Google Scholar]
- Marsal, R.; Mazari, M. The Subsoil of Mexico City: México; Escuela de Ingeniería, Vol. I y II; Universidad Nacional Autónoma de México: Mexico City, Mexico, 1959. [Google Scholar]
- Ortiz-Zamora, D.; Ortega-Guerrero, A. Evolution of long-term land subsidence near Mexico City: Review, field investigations, and predictive simulations. Water Resour. Res. 2010, 46, 1. [Google Scholar] [CrossRef]
- Haner, J. Sinking of Mexico City linked to Metro Accident, with More to Come. Available online: https://www.science.org/content/article/sinking-mexico-city-linked-metro-accident-more-come (accessed on 9 December 2021).
- Land Subsidence in Mexico City Observed by InSAR. Available online: https://topex.ucsd.edu/rs/term_YaoYu.pdf (accessed on 9 December 2021).
- Mazari, M.; Alberro, J. Hundimiento de la Ciudad de México. In Problemas de la Cuenca de México; El Colegio Nacional: Ciudad de México, Mexico, 1990; pp. 83–114. [Google Scholar]
- Ortega-Guerrero, A.; Rudolph, D.L.; Cherry, J.A. Analysis of long-term land subsidence near Mexico City: Field investigations and predictive modeling. Water Resour. Res. 1999, 35, 3327–3341. [Google Scholar] [CrossRef]
- Vega, F.G.E. Subsidence of the city of Mexico: A historical review. In Proceedings of the Second International Symposium on land Subidence, Anaheim, CA, USA, 13–17 December 1976; International Association of Hydrological Science: Wallingford, UK, 1976; pp. 35–38. [Google Scholar]
- Cabral-Cano, E.; Arciniega-Ceballos, A.; Díaz-Molina, O.; Cigna, F.; Osmanoglu, B.; Dixon, T.; DeMets, C.; Vergara-Huerta, F.; Garduño-Monroy, V.; Ávila-Olivera, J. Is there a tectonic component on the subsidence process in Morelia, Mexico. In Proceedings of the Land Subsidence, Associated Hazards and the Role of Natural Resources Development, Querétaro, Mexico, 17–22 October 2010; IAHS Press: Wallingford, UK, 2010; pp. 164–169. [Google Scholar]
- Cabral-Cano, E.; Osmanoglu, B.; Dixon, T.; Wdowinski, S.; DeMets, C.; Cigna, F.; Díaz-Molina, O. Subsidence and fault hazard maps using PSI and permanent GPS networks in central Mexico. In Proceedings of the Proceedings of the Eighth International Symposium on Land Subsidence, Querétaro, Mexico, 17–22 October 2010; pp. 17–22. [Google Scholar]
- López-Quiroz, P.; Doin, M.-P.; Tupin, F.; Briole, P.; Nicolas, J.-M. Time series analysis of Mexico City subsidence constrained by radar interferometry. J. Appl. Geophys. 2009, 69, 1–15. [Google Scholar] [CrossRef]
- Osmanoğlu, B.; Dixon, T.H.; Wdowinski, S.; Cabral-Cano, E.; Jiang, Y. Mexico City subsidence observed with persistent scatterer InSAR. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 1–12. [Google Scholar] [CrossRef]
- Strozzi, T.; Wegmuller, U.; Werner, C.L.; Wiesmann, A.; Spreckels, V. JERS SAR interferometry for land subsidence monitoring. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1702–1708. [Google Scholar] [CrossRef]
- Strozzi, T.; Werner, C.; Wegmuller, U.; Wiesmann, A. Monitoring land subsidence in Mexico City with Envisat ASAR Interferometry. In Proceedings of the Envisat & ERS Symposium, Salzburg, Austria, 6–10 September 2004; p. 154. [Google Scholar]
- Strozzi, T.; Wegmuller, U. Land subsidence in Mexico City mapped by ERS differential SAR interferometry. In Proceedings of the Geoscience and Remote Sensing Symposium—IGARSS’99 (Cat. No.99CH36293), Hamburg, Germany, 28 June–2 July 1999; pp. 1940–1942. [Google Scholar] [CrossRef]
- Solano-Rojas, D.E.; Wdowinski, S.; Cabral-Cano, E.; Osmanoglu, B.; Havazli, E.; Pacheco-Martínez, J. A multiscale approach for detection and mapping differential subsidence using multi-platform InSAR products. Proc. Int. Assoc. Hydrol. Sci. 2020, 382, 173–177. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Torres, E.; Cabral-Cano, E.; Solano-Rojas, D.; Havazli, E.; Salazar-Tlaczani, L. Land Subsidence risk maps and InSAR based angular distortion structural vulnerability assessment: An example in Mexico City. Proc. Int. Assoc. Hydrol. Sci. 2020, 382, 583–587. [Google Scholar] [CrossRef] [Green Version]
- Poreh, D.; Pirasteh, S.; Cabral-Cano, E. Assessing subsidence of Mexico City from InSAR and LandSat ETM+ with CGPS and SVM. Geoenviron. Disasters 2021, 8, 1–19. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D. Sentinel-1 InSAR Survey to Constrain Subsidence-Induced Surface Faulting and Quantify its Induced Risk in Major Cities of Central Mexico, EGU General Assembly 2021, online, 19–30 April 2021; EGU21-15723. Available online: https://meetingorganizer.copernicus.org/EGU21/EGU21-15723.html?pdf (accessed on 9 December 2021).
- Rodríguez-Castillo, R. Social–environmental impact of the extraction policy of the Guaymas Valley aquifer, Sonora, Mexico. Aquifer Overexploit. Int. Assoc. Hydrogeol Sel. Pap. 1993, 3, 293–302. [Google Scholar]
- Comisión Nacional del Agua. Cuantificación de la extracción del Agua Subterránea en el Valle de Celaya, Gto., Aplicando Técnicas de Percepción Remota. Contrato 2458; Gonwana Exploraciones. S.A., C.V., Comisión Nacional del Agua: Mazatlán, Mexico, 2004; p. 100. [Google Scholar]
- Huizar-Álvarez, R.; Mitre-Salazar, L.M.; Marín-Córdova, S.; Trujillo-Candelaria, J.; Martínez-Reyes, J. Subsidence in Celaya, Guanajuato, Central Mexico: Implications for groundwater extraction and the neotectonic regime. Geofísica Int. 2011, 50, 255–270. [Google Scholar] [CrossRef]
- Avila-Olivera, J.A.; Farina, P.; Garduño-Monroy, V.H. Integration of InSAR and GIS in the Study of Surface Faults Caused by Subsidence-Creep-Fault Processes in Celaya, Guanajuato, Mexico. AIP Conf. Proc. 2008, 1009, 200–211. [Google Scholar] [CrossRef]
- Farina, P.; Avila-Olivera, J.A.; Garduño-Monroy, V.H. Structurally-controlled urban subsidence along the Mexican Volcanic Belt (MVB) monitored by InSAR. In Proceedings of the Envisat Symposium 2007, Montreux, Switzerland, 23–27 April 2007. [Google Scholar]
- Farina, P.; Avila-Olivera, J.A.; Garduño-Monroy, V.H.; Catani, F. DInSAR analysis of differential ground subsidence affecting urban areas along the Mexican Volcanic Belt (MVB). Riv. Ital. Telerilevamento (AIT) Il Telerilevamento Microonde L’attività Ric. Appl. 2008, 40, 103–113. [Google Scholar] [CrossRef]
- Castellazzi, P.; Arroyo-Domínguez, N.; Martel, R.; Calderhead, A.I.; Normand, J.C.; Gárfias, J.; Rivera, A. Land subsidence in major cities of Central Mexico: Interpreting InSAR-derived land subsidence mapping with hydrogeological data. Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 102–111. [Google Scholar] [CrossRef]
- Aguirre, G.; Zúñiga, R.; Pacheco, J.; Guzmán, M.; Nieto, J. El graben de Querétaro México. Obs. Fallamiento Act. GEOS 2000, 20, 2–7. [Google Scholar]
- Garduno, V.H.; Arreygue, R.E.; Israde, I.; Rodrıguez, G.M. Efecto de las fallas asociadas a la sobreexplotacio n de acuıferos y la presencia de fallas potencialmente sısmicas en Morelia, Michoacan, Mexico. Rev. Mex. Cienc. Geol. 2001, 18, 37–54. [Google Scholar]
- Cigna, F.; Cabral-Cano, E.; Osmanoglu, B.; Dixon, T.H.; Wdowinski, S. Detecting subsidence-induced faulting in Mexican urban areas by means of Persistent Scatterer Interferometry and subsidence horizontal gradient mapping. In Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, Canada, 24–29 July 2011; pp. 2125–2128. [Google Scholar]
- Cigna, F.; Osmanoğlu, B.; Cabral-Cano, E.; Dixon, T.H.; Ávila-Olivera, J.A.; Garduño-Monroy, V.H.; DeMets, C.; Wdowinski, S. Monitoring land subsidence and its induced geological hazard with Synthetic Aperture Radar Interferometry: A case study in Morelia, Mexico. Remote Sens. Environ. 2012, 117, 146–161. [Google Scholar] [CrossRef]
- Figueroa-Miranda, S.; Hernández-Madrigal, V.M.; Tuxpan-Vargas, J.; Villaseñor-Reyes, C.I. Evolution assessment of structurally-controlled differential subsidence using SBAS and PS interferometry in an emblematic case in Central Mexico. Eng. Geol. 2020, 279, 105860. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D. Urban growth and land subsidence: Multi-decadal investigation using human settlement data and satellite InSAR in Morelia, Mexico. Sci. Total Environ. 2022, 811, 152211. [Google Scholar] [CrossRef] [PubMed]
- López-Doncel, R.; Mata-Segura, J.; Cruz-Márquez, J.; Arzate-Flores, J.; Pacheco-Martínez, J. Geological risk to the historical heritage. Examples of the historic center of the city of San Luis Potosi (Riesgo geológico para el patrimonio histórico. Ejemplos del centro histórico de la ciudad de San Luis Potosí). Boletín Soc. Geológica Mex. 2006, 58, 259–263. [Google Scholar] [CrossRef]
- Lin, Z.D. Analysis of development of groundwater in China. Hydrology 2004, 24, 18–21. [Google Scholar]
- Huang, F.; Wang, G.; Yang, Y.; Wang, C. Overexploitation status of groundwater and induced geological hazards in China. Nat. Hazards 2014, 73, 727–741. [Google Scholar] [CrossRef]
- He, Q.; Ye, X.; Liu, W.; Li, Z.; Li, C. Land subsidence in the northern china plain (NCP). In Proceedings of the 7th Int Symp Land Subsidence (SISLOS 2005), Shanghai, China, 23–28 October 2005; pp. 18–29. [Google Scholar]
- Ye, S.; Xue, Y.; Wu, J.; Yan, X.; Yu, J. Progression and mitigation of land subsidence in China. Hydrogeol. J. 2016, 24, 685–693. [Google Scholar] [CrossRef]
- Chai, J.; Shen, S.; Zhu, H.; Zhang, X. Land subsidence due to groundwater drawdown in Shanghai. Geotechnique 2004, 54, 143–147. [Google Scholar] [CrossRef]
- Han, J.M. Land subsidence and its counter measures of control in Shandong Province. Chin J. Geol. Hazard Control 1998, 9, 33–35. (In Chinese) [Google Scholar]
- Shen, S.; Tohno, I.; Nishgaki, M.; Miura, N. Land subsidence due to withdrawal of deep-groundwater. Lowl. Technol. Int. 2004, 6, 1–8. [Google Scholar]
- Wu, T.J.; Cui, X.D.; Niu, X.J.; Chen, W.J. A study and prevention about land subsidence in Tianjin City. Hydrogeol Eng Geol 1998, 5, 17–20. [Google Scholar]
- Zhang, A.G.; Wei, Z.X. Prevention and cure with Shanghai land subsidence and city sustaining development. In Proceedings of the 7th Int Symp Land Subsidence (SISLOS 2005), Shanghai, China, 23–28 October 2005; pp. 10–17. [Google Scholar]
- Gong, S. Change of groundwater seepage field and its influence on development of land subsidence in Shanghai. J. Water Resour. Water Eng. 2009, 20, 1–6. [Google Scholar]
- Li, Q.; Wang, H. A study on land subsidence in Shanghai. Geol. J. China Univ. 2006, 12, 169–178. [Google Scholar]
- Niu, X.; Ying, Y.; Bai, J.; Ma, F. Secondary-consolidation deformation of soil and its effects on subsidence in Tianjin. In Proceedings of the 7th Int Symp Land Subsidence (SISLOS 2005), Shanghai, China, 23–28 October 2005; pp. 88–96. [Google Scholar]
- Wang, H.G. Current Situation and Tendency of Land Subsidence in Tianjin. Master’s Thesis, China University of Geosciences, Wuhan, China, 2006; pp. 26–32. [Google Scholar]
- Wei, J.S.; Xu, J.; Lu, Y.; Yi, C.R. Analysis on land subsidence funnel in Wangqingtuo area of Tianjin. Ground Water 2012, 34, 49–51. [Google Scholar]
- Ma, T.; Wang, Y.; Yan, S.; Ma, R.; Yan, C.; Zhou, X. Causes of land subsidence in Taiyuan city, Shanxi, China. In Proceedings of the 7th Int Symp Land Subsidence (SISLOS 2005), Shanghai, China, 23–28 October 2005; pp. 102–110. [Google Scholar]
- Yu-hai, L.; Zhi-xin, C.; Wan-kui, N. A study on hazard-Forming mechanisms of geofracture and land subsidence and control countermeasure in Xi’an. Chin. J. Geol. Hazard Control 1994, 5, 67–74. [Google Scholar]
- Zhang, X. On establishment of Suzhou earth subsidence gray forecast model. J. Suzhou Inst. Urban Constr. Environ. Prot. 2000, 13, 53–57. [Google Scholar]
- Zhang, Z.Y. Analysis on present situation and development trend of groundwater descent funnel in Cangzhou City. Ground Water 2007, 29, 50–53. [Google Scholar]
- Yiping, W. Study on land subsidence caused by overexploiting groundwater in Beijing. Site Investig. Sci. Technol. 2004, 5, 46–49. [Google Scholar]
- Miao, X.; Zhu, X.; Lu, M.; Chen, F.; Huangpu, A. Study of water exploitation and land subsidence control in Su–Xi–Chang area. Chin. J. Geol. Hazard Control 2007, 18, 132–139. [Google Scholar]
- He, X.-C.; Yang, T.-L.; Shen, S.-L.; Xu, Y.-S.; Arulrajah, A. Land subsidence control zone and policy for the environmental protection of Shanghai. Int. J. Environ. Res. Public Health 2019, 16, 2729. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhou, L.; Ren, C.; Liu, L.; Zhang, D.; Ma, J.; Shi, Y. Spatiotemporal Inversion and Mechanism Analysis of Surface Subsidence in Shanghai Area Based on Time-Series InSAR. Appl. Sci. 2021, 11, 7460. [Google Scholar] [CrossRef]
- Li, C.; Tang, X.; Ma, T. Land subsidence caused by groundwater exploitation in the Hangzhou-Jiaxing-Huzhou Plain, China. Hydrogeol. J. 2006, 14, 1652–1665. [Google Scholar] [CrossRef]
- Jiang, Y.; Tian, F.; Luo, Y.; Wang, F.; Yang, Y. Research on the relationship between groundwater level and layered subsidence in typical regions of Beijing. South N Water Transf. Water Sci. Technol. 2015, 13, 95–99. [Google Scholar]
- Yang, Y.; Jia, S.; Wang, H. The status and development of land subsidence in Beijing Plain. Shanghai Geol. 2010, 31, 23–28. [Google Scholar]
- Dong, J.; Guo, S.; Wang, N.; Zhang, L.; Ge, D.; Liao, M.; Gong, J. Tri-decadal evolution of land subsidence in the Beijing Plain revealed by multi-epoch satellite InSAR observations. Remote Sens. Environ. 2023, 286, 113446. [Google Scholar] [CrossRef]
- Li, S.F.; Ye, X.B.; He, Q.C.; Fang, H.; She, W.F. A discussion on evaluation method of economical losing due to land subsidence hazard in North China Plain. Hydrogeol Eng. Geol. 2006, 4, 114–116. [Google Scholar]
- Hu, L.; Dai, K.; Xing, C.; Li, Z.; Tomás, R.; Clark, B.; Shi, X.; Chen, M.; Zhang, R.; Qiu, Q. Land subsidence in Beijing and its relationship with geological faults revealed by Sentinel-1 InSAR observations. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101886. [Google Scholar] [CrossRef]
- Chen, B.; Gong, H.; Chen, Y.; Li, X.; Zhou, C.; Lei, K.; Zhu, L.; Duan, L.; Zhao, X. Land subsidence and its relation with groundwater aquifers in Beijing Plain of China. Sci. Total Environ. 2020, 735, 139111. [Google Scholar] [CrossRef] [PubMed]
- Li, M.L. Mechanism and solutions of land subsidence on the plain areas of the southern part of Beijing-Tianjin on North China Plain. J. Water Sci. Technol. Water Transf. Proj. South-North Wate 2006, 4, 52–53. [Google Scholar]
- Li, D.; Hou, X.; Song, Y.; Zhang, Y.; Wang, C. Ground subsidence analysis in Tianjin (China) based on Sentinel-1A data using MT-InSAR methods. Appl. Sci. 2020, 10, 5514. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, G.; Yu, X.; Sun, X.; Bao, Y.; Xiao, G.; Gan, W.; Shen, S. Rapid land subsidence in Tianjin, China derived from continuous GPS observations (2010–2019). Proc. Int. Assoc. Hydrol. Sci. 2020, 382, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Lixin, Y.; Jie, W.; Chuanqing, S.; Guo, J.-W.; Yanxiang, J.; Liu, B. Land subsidence disaster survey and its economic loss assessment in Tianjin, China. Nat. Hazards Rev. 2010, 11, 35–41. [Google Scholar] [CrossRef]
- Zhang, Y.X. Primary research on forecasting problem of time sequence in geotechnical engineering. Chin. J. Rock Mech. Eng. 1998, 17, 552–558. [Google Scholar]
- Lv, F.; Ma, X.; Zhao, C.; Song, W. The distribution and causes of ground fissures on the Hebei Plain. Shanghai Land Resour. 2014, 35, 49–53. [Google Scholar]
- Suo, C.; Wang, D.; Liu, Z. Land fissures and subsidence prevention in Xi’an. Quat. Sci. 2005, 25, 23–28. [Google Scholar]
- Lee, C.F.; Zhang, J.M.; Zhang, Y.X. Evolution and origin of the ground fissures in Xian, China. Eng. Geol. 1996, 43, 45–55. [Google Scholar] [CrossRef]
- Ohgaki, S.; Takizawa, S.; Kataoka, Y.; Kuyama, T.; Herath, G.; Hara, K.; Kathiwada, N.R.; Moon, H.J. Sustainable Groundwater Management in Asian Cities: A final report of Research on Sustainable Water Management Policy; Institute for Global Environmental Strategies: Hayama, Japan, 2007; p. 157. [Google Scholar]
- UNEP; BGS; DGDC; DFID. Groundwater and its Susceptibility to Degradation: A Global Assessment of the Problem and Options for Management, UNEP/DEWA/RS.03-3; United Nation Enviroment Program: Nairobi, Kenya, 2003; p. 126.
- Ishii, M.; Kuramochi, F.; Endo, T. Recent tendencies of the land subsidence in Tokyo. In Proceedings of the Anaheim Symposium, Anaheim, CA, USA, 12–13 February 1976; Association for Computing Machinery: New York, NY, USA, 1976; pp. 25–34. [Google Scholar]
- Onodera, S.; Saito, M. Approaches to estimation of contaminant load variation at Mega-cities. In Proceedings of the RIHN International Symposium on Human Impacts on Urban Subsurface Environments, Kyoto, Japan, 18–20 October 2005; p. 325. [Google Scholar]
- Shindo, S. Urban groundwater. Hydrol. In Hydrological Environment in Urban Area; Kyoritsu Shuppan: Tokyo, Japan, 1987; pp. 109–154. [Google Scholar]
- Yamamoto, S. Recent trend of land subsidence in Japan. In Proceedings of the second International Symposium on Land subsidence, Anaheim, CA, USA, 13–17 December 1976; pp. 9–15. [Google Scholar]
- Sato, C.; Haga, M.; Nishino, J. Land subsidence and groundwater management in Tokyo. Int. Rev. Environ. Strateg. 2006, 6, 403–424. [Google Scholar]
- Hayashi, T.; Tokunaga, T.; Taichi, M.; Shimada, J.; Taniguchi, M. Effects of human activities and urbanization on groundwater environments: An example from the aquifer system of Tokyo and the surrounding area. Sci. Total Environ. 2009, 407, 3165–3172. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, A.H.; Marui, A.; Takeda, S.; Okuda, F. Groundwater supply under land subsidence constrains in the Nobi Plain. Geosci. J. 2009, 13, 151–159. [Google Scholar] [CrossRef]
- Iida, K.; Sazanami, T.; Kuwahara, T.; Ueshita, K. Subsidence of the Nobi Plain; International Association Hydrogeological Sciences: Wallingford, UK, 1977; pp. 47–54. [Google Scholar]
- Yamamoto, S. Case History No. 9.6. Nobi Plain, Japan. In Guidebook to Studies of Land Subsidence due to Ground-Water Withdrawal; Poland, J.F., Ed.; United Nations Educational, Scientific and Cultural Organization: Ann Arbor, MI, USA, 1984; pp. 194–204. [Google Scholar]
- Ministry of Economy; Trade and Industry of Japan. Survey on the rational use of groundwater in the city of Kaizu, Gifu prefecture. In Report to the Bureau of the Ministry of Economy in Central Japan; Bureau of the Ministry of Economy in Central Japan: Tokyo, Japan, 2006; p. 117. [Google Scholar]
- Abidin, H.Z.; Andreas, H.; Djaja, R.; Darmawan, D.; Gamal, M. Land subsidence characteristics of Jakarta between 1997 and 2005, as estimated using GPS surveys. Gps Solut. 2008, 12, 23–32. [Google Scholar] [CrossRef]
- Abidin, H.Z.; Andreas, H.; Gamal, M.; Gumilar, I.; Napitupulu, M.; Fukuda, Y.; Deguchi, T.; Maruyama, Y.; Riawan, E. Land subsidence characteristics of the Jakarta Basin (Indonesia) and its relation with groundwater extraction and sea level rise. In Groundwater Response to Changing Climate; CRC Press: Boca Raton, FL, USA, 2010; pp. 113–130. [Google Scholar]
- Abidin, H.Z.; Andreas, H.; Gumilar, I.; Yuwono, B.D.; Murdohardono, D.; Supriyadi, S. On integration of geodetic observation results for assessment of land subsidence hazard risk in urban areas of Indonesia. IAG 150 Years 2015, 143, 435–442. [Google Scholar]
- Hakim, W.L.; Achmad, A.R.; Eom, J.; Lee, C.-W. Land subsidence measurement of Jakarta coastal area using time series interferometry with Sentinel-1 SAR data. J. Coast. Res. 2020, 102, 75–81. [Google Scholar] [CrossRef]
- Deltares, T. Sinking Cities: An Integrated Approach towards Solutions. Deltares–Taskforce Subsidence. 2011; p. 12. Available online: https://publications.deltares.nl/Deltares142.pdf (accessed on 20 December 2022).
- Marfai, M.A.; King, L. Monitoring land subsidence in Semarang, Indonesia. Environ. Geol. 2007, 53, 651–659. [Google Scholar] [CrossRef]
- Lubis, A.M.; Sato, T.; Tomiyama, N.; Isezaki, N.; Yamanokuchi, T. Ground subsidence in Semarang-Indonesia investigated by ALOS–PALSAR satellite SAR interferometry. J. Asian Earth Sci. 2011, 40, 1079–1088. [Google Scholar] [CrossRef]
- Abidin, H.Z.; Andreas, H.; Gumilar, I.; Sidiq, T.P.; Gamal, M.; Murdohardono, D.; Supriyadi, Y.F. Studying land subsidence in Semarang (Indonesia) using geodetic methods. In Proceedings of the FIG Congress 2010, Sydney, Australia, 11–16 April 2010. [Google Scholar]
- Hamdani, R.S.; Hadi, S.P.; Rudiarto, I. Progress or Regress? A Systematic Review on Two Decades of Monitoring and Addressing Land Subsidence Hazards in Semarang City. Sustainability 2021, 13, 13755. [Google Scholar] [CrossRef]
- Yastika, P.; Shimizu, N.; Abidin, H. Monitoring of long-term land subsidence from 2003 to 2017 in coastal area of Semarang, Indonesia by SBAS DInSAR analyses using Envisat-ASAR, ALOS-PALSAR, and Sentinel-1A SAR data. Adv. Space Res. 2019, 63, 1719–1736. [Google Scholar] [CrossRef]
- Jakarta is Shinknig at a Fast Rate. Available online: http://print.kompas.com/baca/english/2016/03/18/Jakarta-Is-Sinking-at-a-Fast-Rate (accessed on 22 March 2017).
- Abidin, H.; Andreas, H.; Gamal, M.; Wirakusumah, A.; Darmawan, D.; Deguchi, T.; Maruyama, Y. Land subsidence characteristics of the Bandung Basin, Indonesia, as estimated from GPS and InSAR. J. Appl. Geod. 2008, 2, 167–177. [Google Scholar] [CrossRef]
- Abidin, H.Z.; Andreas, H.; Gumilar, I.; Wangsaatmaja, S.; Fukuda, Y.; Deguchi, T. Land subsidence and groundwater extraction in Bandung Basin, Indonesia. IAHS Publ. 2009, 20, 145. [Google Scholar]
- Abidin, H.Z.; Gumilar, I.; Andreas, H.; Murdohardono, D.; Fukuda, Y. On causes and impacts of land subsidence in Bandung Basin, Indonesia. Environ. Earth Sci. 2013, 68, 1545–1553. [Google Scholar] [CrossRef]
- Du, Z.; Ge, L.; Ng, A.H.-M.; Zhu, Q.; Yang, X.; Li, L. Correlating the subsidence pattern and land use in Bandung, Indonesia with both Sentinel-1/2 and ALOS-2 satellite images. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 54–68. [Google Scholar] [CrossRef]
- Sharifikia, M. Evaluation of land subsidence related disasters in plains and residential areas of Iran. Iran. Assoc. Eng. Geol. 2010, 3, 43–58. [Google Scholar]
- Mahmoudpour, M.; Khamehchiyan, M.; Nikudel, M.R.; Ghassemi, M.R. Numerical simulation and prediction of regional land subsidence caused by groundwater exploitation in the southwest plain of Tehran, Iran. Eng. Geol. 2016, 201, 6–28. [Google Scholar] [CrossRef]
- Amighpey, M.; Arabi, S.; Talebi, A.; Djamour, Y. Elevation Changes of the PRECISE LEVELING tracks in the Iran Leveling Network; Scientific Report; National Cartographic Center (NCC): Tehran, Iran, 2006. [Google Scholar]
- Dehghani, M.; Zoej, M.J.V.; Hooper, A.; Hanssen, R.F.; Entezam, I.; Saatchi, S. Hybrid conventional and Persistent Scatterer SAR interferometry for land subsidence monitoring in the Tehran Basin, Iran. ISPRS J. Photogramm. Remote Sens. 2013, 79, 157–170. [Google Scholar] [CrossRef]
- Foroughnia, F.; Nemati, S.; Maghsoudi, Y.; Perissin, D. An iterative PS-InSAR method for the analysis of large spatio-temporal baseline data stacks for land subsidence estimation. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 248–258. [Google Scholar] [CrossRef]
- Mahmoudpour, M.; Khamehchiyan, M.; Nikudel, M.; Gassemi, M. Characterization of regional land subsidence induced by groundwater withdrawals in Tehran, Iran. Geopersia 2013, 3, 49–62. [Google Scholar]
- Gatto, P.; Carbognin, L. The Lagoon of Venice: Natural environmental trend and man-induced modification/La Lagune de Venise: L’évolution naturelle et les modifications humaines. Hydrol. Sci. J. 1981, 26, 379–391. [Google Scholar] [CrossRef] [Green Version]
- Carbognin, L.; Teatini, P.; Tosi, L. Eustacy and land subsidence in the Venice Lagoon at the beginning of the new millennium. J. Mar. Syst. 2004, 51, 345–353. [Google Scholar] [CrossRef]
- Carbognin, L.; Gatto, P.; Mozzi, G.; Gambolati, G.; Ricceri, G. New Trend in the Subsidence of Venice. In Land Subsidence Proceedings of II International Symposium on Land Subsidence, Anaheim, USA, 13–17 Demcember 1976; IAHS: Wallingford, UK, 1976; Volume 121, pp. 65–81. [Google Scholar]
- Carbognin, L.; Tosi, L.; Teatini, P. Analysis of actual land subsidence in Venice and its hinterland (Italy). In Land Subsidence, Proceedings of the 5th International Symposium on Land Subsidence, Hague, The Netherlands, 16–20 October 1995; International Association Hydrogeological Sciences: Wallingford, UK, 1995; pp. 129–137. [Google Scholar]
- Carbognin, L.; Marabini, F.; Tosi, L. Land subsidence and degradation of the Venice littoral zone (Italy). In Land Subsidence, Proceedings of the 5th International Symposium on Land Subsidence, Hague, The Netherlands, 16–20 October 1995; International Association Hydrogeological Sciences: Wallingford, UK, 1995; pp. 391–402. [Google Scholar]
- Teatini, P.; Gambolati, G.; Tosi, L. A new 3-D non-linear model of the subsidence of Venice. In Land Subsidence, Proceedings of the 5th International Symposium on Land Subsidence, Hague, The Netherlands, 16–20 October 1995; International Association Hydrogeological Sciences: Wallingford, UK, 1995; pp. 353–361. [Google Scholar]
- Tosi, L. L’evoluzione paleoambientale tardo-quaternaria del litorale veneziano nelle attuali conoscenze. Il Quat. 1994, 7, 589–596. [Google Scholar]
- Zanchettin, D.; Bruni, S.; Raicich, F.; Lionello, P.; Adloff, F.; Androsov, A.; Antonioli, F.; Artale, V.; Carminati, E.; Ferrarin, C. Sea-level rise in Venice: Historic and future trends. Nat. Hazards Earth Syst. Sci. 2021, 21, 2643–2678. [Google Scholar] [CrossRef]
- Carbognin, L.; Gatto, P.; Mozzi, G.; Gambolati, G. Land subsidence of Ravenna and its similarities with the Venice case. In Proceedings of the Evaluation and Prediction of Subsidence, Pensacola Beach, FL, USA, 3–6 December 1978; pp. 254–266. [Google Scholar]
- Carbognin, L.; Gatto, P.; Mozzi, G. Case history no.9.15: Ravenna, Italy. In Guidebook to Studies of Land Subsidence due to Ground-Water Withdrawal; Poland, J.F., Ed.; UNESCO: Paris, France, 1984; pp. 291–305. [Google Scholar]
- Teatini, P.; Ferronato, M.; Gambolati, G.; Bertoni, W.; Gonella, M. A century of land subsidence in Ravenna, Italy. Environ. Geol. 2005, 47, 831–846. [Google Scholar] [CrossRef]
- Bonsignore, F.; Bitelli, G.; Chahoud, A.; Macini, P.; Mesini, E.; Severi, P.; Villani, B.; Vittuari, L. Recent extensometric data for the monitoring of subsidence in Bologna (Italy). In Proceedings of the International symposium on land subsidence No8, Santiago de Querétaro, Mexico, 17–22 October 2010; pp. 333–338. [Google Scholar]
- Molina, J.L.; García Aróstegui, J.L.; Benavente, J.; Varela, C.; de la Hera, A.; López Geta, J.A. Aquifers overexploitation in SE Spain: A proposal for the integrated analysis of water management. Water Resour. Manag. 2009, 23, 2737–2760. [Google Scholar] [CrossRef]
- Herrera, G.; Tomás, R.; Monells, D.; Centolanza, G.; Mallorquí, J.; Vicente, F.; Navarro, V.; Sanchez, J.; Sanabria, M.; Cano, M.; et al. Analysis of subsidence using TerraSAR-X data: Murcia case study. Eng. Geol. 2010, 116, 284–295. [Google Scholar] [CrossRef]
- Psimoulis, P.; Ghilardi, M.; Fouache, E.; Stiros, S. Subsidence and evolution of the Thessaloniki plain, Greece, based on historical leveling and GPS data. Eng. Geol. 2007, 90, 55–70. [Google Scholar] [CrossRef]
- Svigkas, N.; Papoutsis, I.; Loupasakis, C.; Tsangaratos, P.; Kiratzi, A.; Kontoes, C. Land subsidence rebound detected via multi-temporal InSAR and ground truth data in Kalochori and Sindos regions, Northern Greece. Eng. Geol. 2016, 209, 175–186. [Google Scholar]
- Loupasakis, C.; Sotiriadis, M.; Soulios, G. Hydrochemical characteristics of the underground water of the plain area located between Thessaloniki and N. Halkidona. In Proceedings of the 4th Hydrogeological Congress of the Hellenic Hydrogeological Committee and the Association of Geologists and Mineralogists of Cyprus; Hellenic Committee of Hydrogeology: Thessaloniki, Greece, 1997; pp. 194–212. [Google Scholar]
- Rozos, D.; Apostolidis, E.; Xatzinakos, I. Engineering-geological map of the wider Thessaloniki area, Greece. Bull. Eng. Geol. Environ. 2004, 63, 103–108. [Google Scholar] [CrossRef]
- Andronopoulos, V.; Rozos, D.; Hadzinakos, I. Subsidence phenomena in the industrial area of Thessaloniki, Greece. Land Subsid. 1991, 200, 59–69. [Google Scholar]
- Koumantakis, I.; Rozos, D.; Markantonis, K. Ground subsidence in Thermaikos municipality of Thessaloniki County, Greece. In Proceedings of the International Conference Gro-Pro–Ground water protection–Plans and Implementation in a North European Perspective, Korsør, Denmark, 15–17 September 2008; pp. 177–184. [Google Scholar]
- Svigkas, N.; Loupasakis, C.; Papoutsis, I.; Kontoes, C.; Alatza, S.; Tzampoglou, P.; Tolomei, C.; Spachos, T. InSAR Campaign Reveals Ongoing Displacement Trends at High Impact Sites of Thessaloniki and Chalkidiki, Greece. Remote Sens. 2020, 12, 2396. [Google Scholar] [CrossRef]
- Ganas, A.; Salvi, S.; Atzori, S.; Tolomei, C. Ground deformation in Thessaly, Central Greece, retrieved from Differential Interferometric analysis of ERS-SAR data. In Proceedings of the Abstract Volume of the 11th International Symposium on Natural and Human Induced Hazards & 2nd Workshop on Earthquake Prediction, Patras, Greece, 22–25 June 2006. [Google Scholar]
- Salvi, S.; Ganas, A.; Stramondo, S.; Atzori, S.; Tolomei, C.; Pepe, A.; Manzo, M.; Casu, F.; Berardino, P.; Lanari, R. Monitoring long-term ground deformation by SAR Interferometry: Examples from the Abruzzi, Central Italy, and Thessaly, Greece. In Proceedings of the 5th International Symposium on Eastern Mediterranean Geology, Thessaloniki, Greece, 14–20 April 2004; pp. 1–4. [Google Scholar]
- Kontogianni, V.; Pytharouli, S.; Stiros, S. Ground subsidence, Quaternary faults and vulnerability of utilities and transportation networks in Thessaly, Greece. Environ. Geol. 2007, 52, 1085–1095. [Google Scholar] [CrossRef]
- Fakhri, F.; Kalliola, R. Monitoring ground deformation in the settlement of Larissa in Central Greece by implementing SAR interferometry. Nat. Hazards 2015, 78, 1429–1445. [Google Scholar] [CrossRef]
- Vassilopoulou, S.; Sakkas, V.; Wegmuller, U.; Capes, R. Long term and seasonal ground deformation monitoring of Larissa Plain (Central Greece) by persistent scattering interferometry. Cent. Eur. J. Geosci. 2013, 5, 61–76. [Google Scholar] [CrossRef]
- Kaplanidis, A.; Fountoulis, D. Subsidence phenomena and ground fissures in Larissa, Karla basin, Greece: Their results in urban and rural environment. In Proceedings of the Proceedings of International Symposium on Engineering Geology and the Environment, Athens, Greece, 23–27 June 1997; pp. 23–27. [Google Scholar]
- Rozos, D.; Sideri, D.; Loupasakis, C.; Apostolidhs, E. Land subsidence due to excessive ground water withdrawal. A case study from Stavros-Farsala site, west Thessaly Greece. In Proceedings of the 12th International Congress of the Geological Society of Greece, Patras, Greece, 19–22 May 2010; Volume 43, pp. 1850–1857. [Google Scholar]
- Kaitantzian, A.; Loupasakis, C.; Rozos, D. Assessment of geo-hazards triggered by both natural events and human activities in rapidly urbanized areas. In Engineering Geology for Society and Territory; Springer: Berlin/Heidelberg, Germany, 2015; Volume 5, pp. 675–679. [Google Scholar]
- Kaitantzian, A.; Loupasakis, C.; Tzampoglou, P.; Parcharidis, I. Ground Subsidence Triggered by the Overexploitation of Aquifers Affecting Urban Sites: The Case of Athens Coastal Zone along Faliro Bay (Greece). Geofluids 2020, 2020, 8896907. [Google Scholar] [CrossRef]
- Tzampoglou, P.; Loupasakis, C. Land subsidence due to the overexploitation of the aquifer at the Valtonera village. Bull. Geol. Soc. Greece 2017, 50, 1006. [Google Scholar] [CrossRef] [Green Version]
- Tzampoglou, P.; Loupasakis, C. Land subsidence susceptibility and hazard mapping: The case of Amyntaio Basin, Greece. In Proceedings of the Fifth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2017), Paphos, Cyprus, 20–23 March 2017; p. 104441L. [Google Scholar]
- Tzampoglou, P.; Loupasakis, C. Mining geohazards susceptibility and risk mapping: The case of the Amyntaio open-pit coal mine, West Macedonia, Greece. Environ. Earth Sci. 2017, 76, 542. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, T.; Du, Y. Compaction of muddy sediment and its significance to groundwater chemistry. Procedia Earth Planet. Sci. 2017, 17, 392–395. [Google Scholar] [CrossRef]
- Li, Y.; Gong, H.; Zhu, L.; Li, X. Measuring spatiotemporal features of land subsidence, groundwater drawdown, and compressible layer thickness in Beijing Plain, China. Water 2017, 9, 64. [Google Scholar] [CrossRef] [Green Version]
- Guzy, A.; Malinowska, A.A. State of the art and recent advancements in the modelling of land subsidence induced by groundwater withdrawal. Water 2020, 12, 2051. [Google Scholar] [CrossRef]
- Huang, Z.; Yu, F. InSAR-derived surface deformation of Chaoshan Plain, China: Exploring the role of human activities in the evolution of coastal landscapes. Geomorphology 2023, 426, 108606. [Google Scholar] [CrossRef]
- Herrera-García, G.; Ezquerro, P.; Tomás, R.; Béjar-Pizarro, M.; López-Vinielles, J.; Rossi, M.; Mateos, R.M.; Carreón-Freyre, D.; Lambert, J.; Teatini, P. Mapping the global threat of land subsidence. Science 2021, 371, 34–36. [Google Scholar] [CrossRef] [PubMed]
- FAO. AQUASTAT—Global Map of Irrigation Areas. Food and Agriculture Organization of the United Nations (FAO). Available online: https://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas/index.html (accessed on 1 February 2023).
- Peng, M.; Lu, Z.; Zhao, C.; Motagh, M.; Bai, L.; Conway, B.D.; Chen, H. Mapping land subsidence and aquifer system properties of the Willcox Basin, Arizona, from InSAR observations and independent component analysis. Remote Sens. Environ. 2022, 271, 112894. [Google Scholar] [CrossRef]
- Tang, W.; Zhao, X.; Motagh, M.; Bi, G.; Li, J.; Chen, M.; Chen, H.; Liao, M. Land subsidence and rebound in the Taiyuan basin, northern China, in the context of inter-basin water transfer and groundwater management. Remote Sens. Environ. 2022, 269, 112792. [Google Scholar] [CrossRef]
- Ghorbani, Z.; Khosravi, A.; Maghsoudi, Y.; Mojtahedi, F.F.; Javadnia, E.; Nazari, A. Use of InSAR data for measuring land subsidence induced by groundwater withdrawal and climate change in Ardabil Plain, Iran. Sci. Rep. 2022, 12, 13998. [Google Scholar] [CrossRef] [PubMed]
- Ciampalini, A.; Bardi, F.; Bianchini, S.; Frodella, W.; Del Ventisette, C.; Moretti, S.; Casagli, N. Analysis of building deformation in landslide area using multisensor PSInSAR™ technique. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 166–180. [Google Scholar] [CrossRef] [PubMed]
Area | Cause of Overexploitation | Max Vertical Displacements (m) | Vertical Displacements Using Earth Observation Techniques (mm/Year) | Period of Monitoring | Data and Methods |
---|---|---|---|---|---|
Las Vegas, Nevada, USA | urbanization | >2 [44] | 1935–1924 | ||
190 [45] | 1992–1997 | InSAR | |||
San Joaquin Valley, California, USA | agricultural needs | 9 [52] | 1925–1977 | ||
Long beach area, California, USA | oil extraction | 8.8 [8] | |||
Santa Clara Valley, California, USA | agricultural and industrial needs | 4 [60] | 1910–1995 | ||
The city of Houston, Texas, USA | agricultural and domestic needs | 0.3 [63] | until 1979 | ||
49 [68] | 2007–2011 | ALOS | |||
34 [68] | 2015–2017 | Sentinel-1A/B satellite | |||
Arizona, USA | agricultural needs | 5.7 [73,74] | 1957–1991 | ||
Mexico City, Mexico | urbanization | 7.5 [86] | 1900–2002 | ||
500 [96] | 1940–1960 | Geodetic surveys | |||
300–350 [100,101,102,103,104,105] | 2002–2007 | InSAR | |||
390 [109] | 2014–2020 | Earth Observations techniques and GPS leveling | |||
Celaya, Mexico | agricultural and industrial needs | 70–100 [115] | 2003–2006 | Envisat and InSAR techniques | |
90 [84] | 2007–2011 | ALOS InSAR timeseries | |||
40–60 [116] | 2012–2014 | Envisat and InSAR techniques | |||
Morelia city, Mexico | urbanization | 70–80 [114,115] | 2003–2010 | InSAR | |
70 [84] | 2007–2011 | ALOS InSAR timeseries | |||
90 [122] | 2014–2021 | Earth observation techniques | |||
Shanghai, China | urban and industrial needs | 2.9 [134] | 1962–2005 | ||
26 [145] | 2018–2020 | InSAR timeseries | |||
Jiaxin City, China | agricultural needs | 0.84 [146] | by 2002 | ||
Beijing, China | urban and industrial needs | 1.16 [148] | 1935–2009 | ||
1.98 [149] | 1992–2022 | InSAR | |||
16–28 [147] | 1955–1983 | ||||
15–25 (max:137) [147] | 1999–2009 | ||||
Tianjin City, China | industrial needs | 3.1 [20,126] | |||
26 [127] | 2011–2012 | InSAR and GPS leveling | |||
24 [154,155] | 2010–2014 | InSAR and GPS leveling | |||
50 [154,155] | 2015–2019 | InSAR and GPS leveling | |||
Hebei province, China | urban and industrial needs | 2.68 [153] | 1970–2013 | ||
Kanto- Tokyo plain, Japan | urban and industrial needs | 239 [167] | 1968 | ||
Nobi, Plain, Japan | Industrial and agricultural needs | 0.2 [171] | by 1973 | ||
Jakarta, Indonesia | urban and industrial needs | 10–150 (max: 200–280) [175] | 1982–2011 | InSAR and GPS leveling | |
30–40 [176] | 2017–2020 | INSAR (Sentinel-1 SAR data) | |||
Semarang, Indonesia | urbanization | 80 [179] | 2007–2009 | ALOS–PALSAR satellite SAR interferometry | |
150 [182] | 2015–2017 | SBAS DInSAR analyses using Envisat-ASAR, ALOS-PALSAR, and Sentinel-1A SAR | |||
Bandung, Indonesia | urbanization | 80 [175] | 2000–2011 | InSAR and GPS leveling | |
100–120 [187] | 2015–2017 | Sentinel-1/2 and ALOS-2 satellite images | |||
Tehran, Iran | urban, agricultural, and industrial needs | 0.88 [192] | 2014–2017 | PS-InSAR | |
200 [191] | 2004–2008 | PS | |||
Venice, Italy | industrial needs | 5 [194] | 1952–1968 | Geodetic and InSAR | |
14 [195] | 1968–1969 | Geodetic and InSAR | |||
1–2 [198,199,200] | 1973–1993 | ||||
Ravenna, Italy | natural and man-made factors | 1.6 [204] | 1897–2002 | GPS leveling | |
110 [202,203] | 1972–1973 | ||||
Murcia, Spain | tourism and agricultural needs | 5 (max: 35) [207] | 2008–2009 | satellite systems (TerraSAR-X) | |
Kalochori, Greece | industrial needs | 4 [1] | |||
Anthemounda valley, Greece | industrial needs | 10–15 [2,4] | 1995–2001 | InSAR | |
East Larisa Plain, Greece | agricultural needs | 2.9 [218] | 1995–2008 | InSAR/field observations | |
Thriasio basin, Greece | agricultural needs | 3.5–5 [223] | 2002–2010 | GPS leveling/field observation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzampoglou, P.; Ilia, I.; Karalis, K.; Tsangaratos, P.; Zhao, X.; Chen, W. Selected Worldwide Cases of Land Subsidence Due to Groundwater Withdrawal. Water 2023, 15, 1094. https://doi.org/10.3390/w15061094
Tzampoglou P, Ilia I, Karalis K, Tsangaratos P, Zhao X, Chen W. Selected Worldwide Cases of Land Subsidence Due to Groundwater Withdrawal. Water. 2023; 15(6):1094. https://doi.org/10.3390/w15061094
Chicago/Turabian StyleTzampoglou, Ploutarchos, Ioanna Ilia, Konstantinos Karalis, Paraskevas Tsangaratos, Xia Zhao, and Wei Chen. 2023. "Selected Worldwide Cases of Land Subsidence Due to Groundwater Withdrawal" Water 15, no. 6: 1094. https://doi.org/10.3390/w15061094
APA StyleTzampoglou, P., Ilia, I., Karalis, K., Tsangaratos, P., Zhao, X., & Chen, W. (2023). Selected Worldwide Cases of Land Subsidence Due to Groundwater Withdrawal. Water, 15(6), 1094. https://doi.org/10.3390/w15061094