Post Audit of Groundwater Model Predictions under Changing Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Post Audit—Project Context
2.2. Study Site and Data
2.3. Hydrological Model Configurations
- Baseline model. This was the original hydrological model developed to support the design of the motorway [22].
- Post audit-Geology model. Here, the geological model as a part of the hydrological model was updated based on new geological insights inferred from observing the exposed slopes in the excavations. This model was calibrated using the same data as available for the Baseline model.
- Post audit-Hydrogeology model. This hydrological model used the geology from the Post audit-Geology model. In addition, the groundwater pumping and drawdown data from the construction period were included in the dataset used for model calibration.
2.4. Geology
2.5. Hydrological Models
2.6. Model Calibrations
2.7. Post Audit of the Geological Conceptualisation
3. Results
3.1. Post Audit of the Geological Conceptualisation
3.2. Hydrological Model Calibrations
3.3. Post Audit Tests of Hydrological Models
4. Discussion and Conclusions
4.1. This Study—Post Audit for Differential Split-Sample (DSS) Test
4.2. Comparison with Previous Post Audits
4.3. Good Practice for Post Audits
- Step 1:
- Perform validation tests of predictions with the original model; e.g., in the Silkeborg case, test simulations with newly observed drawdown data. This step results in the original results being post audited.
- Step 2:
- Estimate the predictive uncertainty of the original model, e.g., applying a Monte Carlo methodology.
- Step 3:
- Update and revise the original model, resulting in the production of a post audit model. This step includes a possible revision of the conceptual model (e.g., in this case, a revision of the geology) and a revision of the calibration (e.g., a change of the objective functions based on new knowledge and re-calibration). This step produces a post audit model. In this study, two generations of post audit models were produced, one calibrated with the original objective function but with revised geology, and one calibrated with both a revised objective function and geology.
- Step 4:
- Perform predictions and uncertainty assessments with the post audit model(s). Step 4 is a repeat of step 2, but for the post audit model(s).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | No | Unit | Transformation | Initial | Estimated | 95 % Confidence Limits | |
---|---|---|---|---|---|---|---|
Value | Value | Lower | Upper | ||||
Horizontal hydraulic conductivity of glacial clay (till) | 1 | ms−1 | log | 5.60 × 10−6 | 1.80 × 10−4 | 4.68 × 10−17 | 6.91 × 108 |
Vertical conductivity of glacial clay (till) | 2 | ms−1 | tied #1 | 5.60 × 10−8 | 1.80 × 10−6 | ||
Horizontal hydraulic conductivity of glacial sand | 3 | ms−1 | log | 8.59 × 10−5 | 2.21 × 10−4 | 6.53 × 10−5 | 7.50 × 10−4 |
Vertical conductivity of glacial sand | 4 | ms−1 | tied #3 | 8.59 × 10−6 | 2.21 × 10−5 | ||
Horizontal hydraulic conductivity of Miocene clay | 5 | ms−1 | log | 4.57 × 10−6 | 5.02 × 10−6 | 7.65 × 10−7 | 3.30 × 10−5 |
Vertical hydraulic conductivity of Miocene clay | 6 | ms−1 | tied #5 | 4.57 × 10−7 | 5.02 × 10−7 | ||
Horizontal hydraulic conductivity of Miocene sand (upper) | 7 | ms−1 | log | 1.51 × 10−3 | 7.02 × 10−4 | 2.43 × 10−4 | 2.03 × 10−3 |
Vertical conductivity of Miocene sand (upper) | 8 | ms−1 | tied #7 | 1.51 × 10−4 | 7.02 × 10−5 | ||
Horizontal hydraulic conductivity of Miocene sand (lower) | 9 | ms−1 | log | 7.48 × 10−5 | 4.75 × 10−5 | 2.85 × 10−5 | 7.91 × 10−5 |
Vertical conductivity of Miocene sand (lower) | 10 | ms−1 | tied #9 | 7.48 × 10−6 | 4.75 × 10−6 | ||
Horizontal hydraulic conductivity of terrace sand | 11 | ms−1 | log | 1.50 × 10−3 | 1.06 × 10−3 | 6.25 × 10−4 | 1.81 × 10−3 |
Vertical hydraulic conductivity of terrace sand | 12 | ms−1 | log | 1.50 × 10−4 | 1.76 × 10−4 | 9.69 × 10−48 | 3.19 × 1039 |
Horizontal conductivity of test p. areas of the terrace sand | 13 | ms−1 | fixed | 1.50 × 10−3 | |||
Vertical conductivity of test p. areas of the terrace sand | 14 | ms−1 | fixed | 1.50 × 10−4 | |||
Horizontal hydraulic conductivity of sand topsoil ^ | 15 | ms−1 | tied #11 | 1.25 × 10−3 | 8.85 × 10−4 | ||
Vertical conductivity of sand topsoil ^ | 16 | ms−1 | tied #11 | 1.25 × 10−4 | 8.85 × 10−5 | ||
Horizontal hydraulic conductivity of peat topsoil ^ | 17 | ms−1 | tied #1 | 7.07 × 10−5 | 2.27 × 10−3 | ||
Vertical conductivity of peat topsoil ^ | 18 | ms−1 | tied #1 | 7.07 × 10−6 | 2.27 × 10−4 | ||
Horizontal hydraulic conductivity of clay topsoil ^ | 19 | ms−1 | tied #1c | 5.60 × 10−6 | 1.80 × 10−4 | ||
Vertical conductivity of clay topsoil ^ | 20 | ms−1 | tied #1 | 5.60 × 10−8 | 1.80 × 10−6 | ||
Specific yield of glacial clay (till) | 21 | * | log | 0.20 | 0.19 | 0.10 | 0.39 |
Specific yield of glacial sand | 22 | * | tied #21 | 0.20 | 0.19 | ||
Specific yield of Miocene clay | 23 | * | tied #21 | 0.20 | 0.19 | ||
Specific yield of Miocene sand (upper) | 24 | * | tied #21 | 0.20 | 0.19 | ||
Specific yield of Miocene sand (lower) | 25 | * | tied #21 | 0.20 | 0.19 | ||
Specific yield of terrace sand | 26 | * | log | 0.50 | 0.50 | 0.29 | 0.85 |
Specific yield of test pumping areas | 27 | * | tied #26 | 0.50 | 0.50 | ||
Specific yield of sand topsoil ^ | 28 | * | tied #26 | 0.50 | 0.50 | ||
Specific yield of clay topsoil ^ | 29 | * | tied #21 | 0.20 | 0.19 | ||
Specific yield of peat topsoil ^ | 30 | * | tied #21 | 0.20 | 0.19 | ||
Specific storage of glacial clay | 31 | m−1 | fixed | 1.23 × 10−5 | |||
Specific storage of glacial sand | 32 | m−1 | fixed | 2.74 × 10−5 | |||
Specific storage of Miocene clay | 33 | m−1 | fixed | 1.23 × 10−5 | |||
Specific storage of Miocene sand (upper) | 34 | m−1 | fixed | 2.74 × 10−5 | |||
Specific storage of Miocene sand (lower) | 35 | m−1 | fixed | 2.74 × 10−5 | |||
Specific storage of terrace sand | 36 | m−1 | fixed | 2.74 × 10−5 | |||
Specific storage of test pumping areas | 37 | m−1 | fixed | 2.74 × 10−5 | |||
Specific storage of sand topsoil ^ | 38 | m−1 | fixed | 2.74 × 10−5 | |||
Specific storage of peat topsoil ^ | 39 | m−1 | fixed | 1.23 × 10−5 | |||
Specific storage of clay topsoil ^ | 40 | m−1 | fixed | 1.23 × 10−5 | |||
Drain constant for MIKE SHE SZ drains | 41 | s−1 | log | 2.00 × 10−7 | 1.09 × 10−7 | 7.34 × 10 x −20 | 1.61 × 105 |
Detention storage | 42 | mm | log | 4.74 | 4.63 | 1.83 | 11.72 |
Overland flow manning number | 43 | m−1/3s−1 | log | 4.00 | 12.08 | 1.63 | 89.65 |
Conductance for dynamic head boundary condition N | 44 | m−2s−1 | fixed | 1.00 × 10−8 | |||
Conductance for dynamic head boundary condition E | 45 | m−2s−1 | fixed | 5.00 × 10−7 | |||
Conductance for dynamic head boundary condition W | 46 | m−2s−1 | fixed | 1.00 × 10−8 |
Parameter | No | Unit | Transformation | Initial | Estimated | 95 % Confidence Limits | |
---|---|---|---|---|---|---|---|
Value | Value | Lower | Upper | ||||
Horizontal hydraulic conductivity of glacial clay (till) | 1 | ms−1 | log | 5.60 × 10−6 | 9.00 × 10−5 | 4.02 × 10−22 | 2.02 × 1013 |
Vertical conductivity of glacial clay (till) | 2 | ms−1 | tied #1 | 5.60 × 10−8 | 9.00 × 10−7 | ||
Horizontal hydraulic conductivity of glacial sand | 3 | ms−1 | log | 8.59 × 10−5 | 1.77 × 10−4 | 7.19 × 10−5 | 4.33 × 10−4 |
Vertical conductivity of glacial sand | 4 | ms−1 | tied #3 | 8.59 × 10−6 | 1.77 × 10−4 | ||
Horizontal hydraulic conductivity of Miocene clay | 5 | ms−1 | log | 4.57 × 10−6 | 6.10 × 10−7 | 3.78 × 10−7 | 9.84 × 10−7 |
Vertical hydraulic conductivity of Miocene clay | 6 | ms−1 | tied #5 | 4.57 × 10−7 | 6.10 × 10−7 | ||
Horizontal hydraulic conductivity of Miocene sand (upper) | 7 | ms−1 | log | 1.51 × 10−3 | 1.64 × 10−4 | 4.41 × 10−5 | 6.12 × 10−4 |
Vertical conductivity of Miocene sand (upper) | 8 | ms−1 | tied #7 | 1.51 × 10−4 | 1.64 × 10−4 | ||
Horizontal hydraulic conductivity of Miocene sand (lower) | 9 | ms−1 | log | 7.48 × 10−5 | 6.85 × 10−5 | 4.52 × 10−5 | 1.04 × 10−4 |
Vertical conductivity of Miocene sand (lower) | 10 | ms−1 | tied #9 | 7.48 × 10−6 | 6.85 × 10−5 | ||
Horizontal hydraulic conductivity of terrace sand | 11 | ms−1 | log | 1.50 × 10−3 | 9.90 × 10−4 | 6.95 × 10−4 | 1.41 × 10−3 |
Vertical hydraulic conductivity of terrace sand | 12 | ms−1 | log | 1.50 × 10−4 | 2.98 × 10−4 | 2.49 × 10−27 | 3.57 × 1019 |
Horizontal conductivity of test p. areas of the terrace sand | 13 | ms−1 | fixed | 1.50 × 10−3 | |||
Vertical conductivity of test p. areas of the terrace sand | 14 | ms−1 | fixed | 1.50 × 10−4 | |||
Horizontal hydraulic conductivity of sand topsoil ^ | 15 | ms−1 | tied #11 | 1.25 × 10−3 | 8.25 × 10−4 | ||
Vertical conductivity of sand topsoil ^ | 16 | ms−1 | tied #11 | 1.25 × 10−4 | 8.25 × 10−5 | ||
Horizontal hydraulic conductivity of peat topsoil ^ | 17 | ms−1 | tied #1 | 7.07 × 10−5 | 1.14 × 10−3 | ||
Vertical conductivity of peat topsoil ^ | 18 | ms−1 | tied #1 | 7.07 × 10−6 | 1.14 × 10−4 | ||
Horizontal hydraulic conductivity of clay topsoil ^ | 19 | ms−1 | tied #1c | 5.60 × 10−6 | 9.00 × 10−5 | ||
Vertical conductivity of clay topsoil ^ | 20 | ms−1 | tied #1 | 5.60 × 10−8 | 9.00 × 10−7 | ||
Specific yield of glacial clay (till) | 21 | * | log | 0.20 | 0.12 | 0.08 | 0.17 |
Specific yield of glacial sand | 22 | * | tied #21 | 0.20 | 0.12 | ||
Specific yield of Miocene clay | 23 | * | tied #21 | 0.20 | 0.12 | ||
Specific yield of Miocene sand (upper) | 24 | * | tied #21 | 0.20 | 0.12 | ||
Specific yield of Miocene sand (lower) | 25 | * | tied #21 | 0.20 | 0.12 | ||
Specific yield of terrace sand | 26 | * | log | 0.50 | 0.50 | 0.32 | 0.78 |
Specific yield of test pumping areas | 27 | * | tied #26 | 0.50 | 0.50 | ||
Specific yield of sand topsoil ^ | 28 | * | tied #26 | 0.50 | 0.50 | ||
Specific yield of clay topsoil ^ | 29 | * | tied #21 | 0.20 | 0.12 | ||
Specific yield of peat topsoil ^ | 30 | * | tied #21 | 0.20 | 0.12 | ||
Specific storage of glacial clay | 31 | m−1 | fixed | 1.23 × 10−5 | |||
Specific storage of glacial sand | 32 | m−1 | fixed | 2.74 × 10−5 | |||
Specific storage of Miocene clay | 33 | m−1 | fixed | 1.23 × 10−5 | |||
Specific storage of Miocene sand (upper) | 34 | m−1 | fixed | 2.74 × 10−5 | |||
Specific storage of Miocene sand (lower) | 35 | m−1 | fixed | 2.74 × 10−5 | |||
Specific storage of terrace sand | 36 | m−1 | fixed | 2.74 × 10−5 | |||
Specific storage of test pumping areas | 37 | m−1 | fixed | 2.74 × 10−5 | |||
Specific storage of sand topsoil ^ | 38 | m−1 | fixed | 2.74 × 10−5 | |||
Specific storage of peat topsoil ^ | 39 | m−1 | fixed | 1.23 × 10−5 | |||
Specific storage of clay topsoil ^ | 40 | m−1 | fixed | 1.23 × 10−5 | |||
Drain constant for MIKE SHE SZ drains | 41 | s−1 | log | 2.00 × 10−7 | 9.51 × 10−7 | 2.97 × 10−8 | 3.04 × 10−5 |
Detention storage | 42 | mm | log | 4.74 | 4.22 | 1.68 | 10.59 |
Overland flow manning number | 43 | m−1/3s−1 | log | 4.00 | 2.60 | 0.25 | 27.46 |
Conductance for dynamic head boundary condition N | 44 | m−2s−1 | fixed | 1.00 × 10−8 | |||
Conductance for dynamic head boundary condition E | 45 | m−2s−1 | fixed | 5.00 × 10−7 | |||
Conductance for dynamic head boundary condition W | 46 | m−2s−1 | fixed | 1.00 × 10−8 |
Parameter | No | Unit | Transformation | Initial | Estimated | 95 % Confidence Limits | |
---|---|---|---|---|---|---|---|
Value | Value | Lower | Upper | ||||
Horizontal hydraulic conductivity of glacial clay (till) | 1 | ms−1 | log | 5.60 × 10−6 | 3.26 × 10−6 | 3.70 × 10−9 | 2.87 × 10−3 |
Vertical conductivity of glacial clay (till) | 2 | ms−1 | tied #1 | 5.60 × 10−8 | 3.26 × 10−8 | ||
Horizontal hydraulic conductivity of glacial sand | 3 | ms−1 | log | 8.59 × 10−5 | 3.49 × 10−5 | 4.66 × 10−6 | 2.61 × 10−4 |
Vertical conductivity of glacial sand | 4 | ms−1 | tied #3 | 8.59 × 10−6 | 3.49 × 10−6 | ||
Horizontal hydraulic conductivity of Miocene clay | 5 | ms−1 | log | 4.57 × 10−6 | 3.89 × 10−6 | 9.25 × 10−7 | 1.64 × 10−5 |
Vertical hydraulic conductivity of Miocene clay | 6 | ms−1 | tied #5 | 4.57 × 10−7 | 3.89 × 10−7 | ||
Horizontal hydraulic conductivity of Miocene sand (upper) | 7 | ms−1 | log | 1.51 × 10−3 | 1.78 × 10−3 | 7.12 × 10−4 | 4.43 × 10−3 |
Vertical conductivity of Miocene sand (upper) | 8 | ms−1 | tied #7 | 1.51 × 10−4 | 1.78 × 10−4 | ||
Horizontal hydraulic conductivity of Miocene sand (lower) | 9 | ms−1 | log | 7.48 × 10−5 | 9.25 × 10−5 | 5.56 × 10−5 | 1.54 × 10−4 |
Vertical conductivity of Miocene sand (lower) | 10 | ms−1 | tied #9 | 7.48 × 10−6 | 9.25 × 10−6 | ||
Horizontal hydraulic conductivity of terrace sand | 11 | ms−1 | log | 1.50 × 10−3 | 1.64 × 10−3 | 1.12 × 10−3 | 2.39 × 10−3 |
Vertical hydraulic conductivity of terrace sand | 12 | ms−1 | log | 1.50 × 10−4 | 5.08 × 10−5 | 1.16 × 10−11 | 2.22 × 102 |
Horizontal conductivity of test p. areas of the terrace sand | 13 | ms−1 | fixed | 1.50 × 10−3 | |||
Vertical conductivity of test p. areas of the terrace sand | 14 | ms−1 | fixed | 1.50 × 10−4 | |||
Horizontal hydraulic conductivity of sand topsoil ^ | 15 | ms−1 | tied #11 | 1.25 × 10−3 | 1.37 × 10−3 | ||
Vertical conductivity of sand topsoil ^ | 16 | ms−1 | tied #11 | 1.25 × 10−4 | 1.37 × 10−4 | ||
Horizontal hydraulic conductivity of peat topsoil ^ | 17 | ms−1 | tied #1 | 7.07 × 10−5 | 4.11 × 10−5 | ||
Vertical conductivity of peat topsoil ^ | 18 | ms−1 | tied #1 | 7.07 × 10−6 | 4.11 × 10−6 | ||
Horizontal hydraulic conductivity of clay topsoil ^ | 19 | ms−1 | tied #1c | 5.60 × 10−6 | 3.26 × 10−6 | ||
Vertical conductivity of clay topsoil ^ | 20 | ms−1 | tied #1 | 5.60 × 10−8 | 3.26 × 10−8 | ||
Specific yield of glacial clay (till) | 21 | * | log | 0.20 | 0.24 | 0.11 | 0.52 |
Specific yield of glacial sand | 22 | * | tied #21 | 0.20 | 0.24 | ||
Specific yield of Miocene clay | 23 | * | tied #21 | 0.20 | 0.24 | ||
Specific yield of Miocene sand (upper) | 24 | * | tied #21 | 0.20 | 0.24 | ||
Specific yield of Miocene sand (lower) | 25 | * | tied #21 | 0.20 | 0.24 | ||
Specific yield of terrace sand | 26 | * | log | 0.50 | 0.50 | 0.39 | 0.64 |
Specific yield of test pumping areas | 27 | * | tied #26 | 0.50 | 0.50 | ||
Specific yield of sand topsoil ^ | 28 | * | tied #26 | 0.50 | 0.50 | ||
Specific yield of clay topsoil ^ | 29 | * | tied #21 | 0.20 | 0.24 | ||
Specific yield of peat topsoil ^ | 30 | * | tied #21 | 0.20 | 0.24 | ||
Specific storage of glacial clay | 31 | m−1 | fixed | 1.23 × 10−5 | |||
Specific storage of glacial sand | 32 | m−1 | fixed | 2.74 × 10−5 | |||
Specific storage of Miocene clay | 33 | m−1 | fixed | 1.23 × 10−5 | |||
Specific storage of Miocene sand (upper) | 34 | m−1 | fixed | 2.74 × 10−5 | |||
Specific storage of Miocene sand (lower) | 35 | m−1 | fixed | 2.74 × 10−5 | |||
Specific storage of terrace sand | 36 | m−1 | fixed | 2.74 × 10−5 | |||
Specific storage of test pumping areas | 37 | m−1 | fixed | 2.74 × 10−5 | |||
Specific storage of sand topsoil ^ | 38 | m−1 | fixed | 2.74 × 10−5 | |||
Specific storage of peat topsoil ^ | 39 | m−1 | fixed | 1.23 × 10−5 | |||
Specific storage of clay topsoil ^ | 40 | m−1 | fixed | 1.23 × 10−5 | |||
Drain constant for MIKE SHE SZ drains | 41 | s−1 | log | 2.00 × 10−7 | 1.18 × 10−7 | 2.84 × 10−9 | 4.89 × 10−6 |
Detention storage | 42 | mm | log | 4.74 | 7.62 | 2.80 | 20.71 |
Overland flow manning number | 43 | m−1/3s−1 | log | 4.00 | 2.10 | 0.04 | 122.07 |
Conductance for dynamic head boundary condition N | 44 | m−2s−1 | fixed | 1.00 × 10−8 | |||
Conductance for dynamic head boundary condition E | 45 | m−2s−1 | fixed | 5.00 × 10−7 | |||
Conductance for dynamic head boundary condition W | 46 | m−2s−1 | fixed | 1.00 × 10−8 |
References
- Refsgaard, J.C.; Henriksen, H.J.; Harrar, W.G.; Scholten, H.; Kassahun, A. Quality assurance in model based water management—Review of existing practice and outline of new approaches. Environ. Model. Softw. 2005, 20, 1201–1215. [Google Scholar] [CrossRef]
- Jakeman, A.; Letcher, R.; Norton, J. Ten iterative steps in development and evaluation of environmental models. Environ. Model. Softw. 2006, 21, 602–614. [Google Scholar] [CrossRef] [Green Version]
- Refsgaard, J.C.; Henriksen, H.J. Modelling guidelines—Terminology and guiding principles. Adv. Water Resour. 2004, 27, 71–82. [Google Scholar] [CrossRef]
- Anderson, M.P.; Woessner, W.W. The role of the post audit in model validation. Adv. Water Resour. 1992, 15, 167–173. [Google Scholar] [CrossRef]
- Beven, K. Towards an alternative blueprint for a physically based digitally simulated hydrologic response modelling system. Hydrol. Process 2002, 16, 189–206. [Google Scholar] [CrossRef] [Green Version]
- Konikow, L.F.; Bredehoeft, J.D. Ground-water models cannot be validated. Adv. Water Resour. 1992, 15, 75–83. [Google Scholar] [CrossRef]
- Refsgaard, J.C.; Madsen, H.; Andréassian, V.; Arnbjerg-Nielsen, K.; Davidson, T.A.; Drews, M.; Hamilton, D.P.; Jeppesen, E.; Kjellström, E.; Olesen, J.E.; et al. A framework for testing the ability of models to project climate change and its impacts. Clim. Chang. 2014, 122, 271–282. [Google Scholar] [CrossRef] [Green Version]
- Andersen, P.F.; Ross, J.L.; Fenske, J.P. Continuous Improvement of a Groundwater Model Over a 20 Year Period: Lessons Learned. Groundwater 2018, 56, 580–586. [Google Scholar] [CrossRef]
- Konikow, L.F. Predictive accuracy of a groundwater model—lesson from a post audit. Groundwater 1986, 24, 173–184. [Google Scholar] [CrossRef]
- Alley, W.M.; Emery, P.A. Groundwater model of the Blue River basin, Nebraska—Twenty years later. J. Hydrol. 1986, 85, 225–250. [Google Scholar] [CrossRef]
- Stewart, M.; Langevin, C. Post audit of a numerical prediction of wellfield drawdown in a semiconfined aquifer system. Groundwater 1999, 37, 245–252. [Google Scholar] [CrossRef]
- Andersen, P.F.; Lu, S. A Post Audit of a Model-Designed Ground Water Extraction System. Groundwater 2003, 41, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Brkic, Z.; Uromovic, K.; Briski, M. Post Audit Analysis of a Groundwater Level Prediction Model in Developed Semi-confined Aquifer System. Water Resour. Manag. 2013, 27, 3349–3363. [Google Scholar] [CrossRef]
- Konikow, L.F.; Bredehoeft, J.D. Modeling flow and chemical quality changes in an irrigated stream-aquifer system. Water Resour. Res. 1974, 10, 546–562. [Google Scholar] [CrossRef]
- Konikow, L.F.; Person, M. Assessment of Long-Term Salinity Changes in an Irrigated Stream-Aquifer System. Water Resour. Res. 1985, 21, 1611–1624. [Google Scholar] [CrossRef]
- Lemke, L.D.; Cypher, J. Post audit evaluation of conceptual model uncertainty for a glacial aquifer flow and con-taminant transport model. Hydrogeol. J. 2010, 18, 945–958. [Google Scholar] [CrossRef]
- Karlsen, R.; Smits, F.; Stuyfzand, P.; Olsthoorn, T.; van Breukelen, B. A post audit and inverse modeling in reactive transport: 50 years of artificial recharge in the Amsterdam Water Supply Dunes. J. Hydrol. 2012, 454–455, 7–25. [Google Scholar] [CrossRef]
- Klemeš, V. Operational testing of hydrological simulation models. Hydrol. Sci. J. 1986, 31, 13–24. [Google Scholar] [CrossRef]
- Refsgaard, J.C.; van der Sluijs, J.P.; Højberg, A.L.; Vanrolleghem, P.A. Uncertainty in the environmental modelling process—A framework and guidance. Environ. Model. Softw. 2007, 22, 1543–1556. [Google Scholar] [CrossRef] [Green Version]
- Refsgaard, J.C.; Christensen, S.; Sonnenborg, T.; Seifert, D.; Højberg, A.; Troldborg, L. Review of strategies for han-dling geological uncertainty in groundwater flow and transport modelling. Adv. Water Resour. 2012, 36, 36–50. [Google Scholar] [CrossRef]
- Van Rosmalen, L.; Christensen, B.; Sonnenborg, T. Regional differences in climate change impacts on ground-water and stream discharge in Denmark. Vadose Zone J. 2007, 6, 554–571. [Google Scholar] [CrossRef]
- Kidmose, J.; Refsgaard, J.C.; Troldborg, L.; Seaby, L.P.; Escrivà, M.M. Climate change impact on groundwater levels: Ensemble modelling of extreme values. Hydrol. Earth Syst. Sci. 2013, 17, 1619–1634. [Google Scholar] [CrossRef] [Green Version]
- Kidmose, J.; Troldborg, L.; Refsgaard, J.C.; Bischoff, N. Coupling of a distributed hydrological model with an urban storm water model for impact analysis of forced infiltration. J. Hydrol. 2015, 525, 506–520. [Google Scholar] [CrossRef]
- He, X.; Lucatero, D.; Ridler, M.-E.; Madsen, H.; Kidmose, J.; Hole, Ø.; Petersen, C.; Zheng, C.; Refsgaard, J.C. Real-time simulation of surface water and groundwater with data assimilation. Adv. Water Resour. 2019, 127, 13–25. [Google Scholar] [CrossRef]
- Scharling, M. Technical Report 00–11; Climate Grid—Denmark, Norms 1961–90, Month and Annual Values; Danish Meteorological Institute, Ministry of Transport: Copenhagen, Denmark, 2000. [Google Scholar]
- Abbott, M.B.; Bathurst, J.; Cunge, J.; Oconnell, P.; Rasmussen, J. An introduction to the European hydrological system—Systeme hydrologique Europeen, SHE.1. History and philosophy of a physically-based, distributed modeling system. J. Hydrol. 1986, 87, 45–59. [Google Scholar] [CrossRef]
- Abbott, M.B.; Bathurst, J.; Cunge, J.; Oconnell, P.; Rasmussen, J. An introduction to the european hydrological system—Systeme hydrologique europeen, SHE.2. Structure of a physically-based, distributed modeling system. J. Hydrol. 1986, 87, 61–77. [Google Scholar] [CrossRef]
- Henriksen, H.J.; Troldborg, L.; Nyegaard, P.; Sonnenborg, T.O.; Refsgaard, J.C.; Madsen, B. Methodology for construction, calibration and validation of a national hydrological model for Denmark. J. Hydrol. 2003, 280, 52–71. [Google Scholar] [CrossRef]
- Højberg, A.L.; Troldborg, L.; Stisen, S.; Christensen, B.B.S.; Henriksen, H.J. Stakeholder driven update and improvement of a national water resources model. Environ. Model. Softw. 2013, 40, 202–213. [Google Scholar] [CrossRef]
- Jakobsen, P.R.; Rasmussen, E.; Dybkjær, K.; Kidmose, J. Miocene deposits at Silkeborg, Jylland, and their influence on hydrology. Geol. Surv. Den. Greenl. Bull. 2016, 35, 9–12. [Google Scholar] [CrossRef]
- Doherty, J. PEST. Model-Independent Parameter Estimation, User Manual, 5th ed.; Watermark Numerical Computing: Brisbane, Australia, 2010. [Google Scholar]
- Madsen, H. Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives. Adv. Water Resour. 2003, 26, 205–216. [Google Scholar] [CrossRef]
- Seifert, D.; Sonnenborg, T.O.; Refsgaard, J.C.; Højberg, A.L.; Troldborg, L. Assessment of hydrological model predictive ability given multiple conceptual geological models. Water Resour. Res. 2012, 48, WR011149. [Google Scholar] [CrossRef]
- Flinders, A.F.; Kauahikaua, J.P.; Hsieh, P.A.; Ingebritsen, S.E. Post Audit of Simulated Groundwater Flow to a Short-Lived (2019 to 2020) Crater Lake at Kilauea Volcano. Groundwater 2022, 60, 65–70. [Google Scholar] [CrossRef] [PubMed]
Group | Definition | Initial Group Weight | No. Obs. | ||
---|---|---|---|---|---|
Baseline Model | Post Audit-Geology Model | Post Audit-Hydrogeology Model | |||
HTS_ME | Mean error of time series of hydraulic head (daily) | 1534 | 984 | 984 | 35 |
Hobs_mean | Error of average h for the period 1990–2010 * | 525 | 498 | 498 | 97 |
HTS_ErrAmpl | Error of maximum annual amplitude of h (daily) | 50 | 50 | 50 | 30 |
Qbal_Winter | Mean seasonal error of discharge (Dec. Jan. Feb.) | 20 | 20 | 20 | 4 |
Qbal_Spring | Mean seasonal error of discharge (Mar. Apr. May) | 5 | 5 | 5 | 4 |
Qbal_Summer | Mean seasonal error of discharge (Jun. Jul. Aug.) | 20 | 20 | 20 | 4 |
Qbal_Autumn | Mean seasonal error of discharge (Sep. Oct. Nov.) | 154 | 101 | 101 | 4 |
PumpMax | Error of abstracted water amounts | 0 | 0 | 751 | 1 |
PumpGrad | Error in gradient on drawdown curves | 0 | 0 | 751 | 6 |
Metric | Baseline | Post Audit-Geology | Post Audit-Hydrogeology |
---|---|---|---|
ME of time series of hydraulic head | 1.03 m | 0.57 m | 1.07 m |
RMSE of time series of hydraulic head | 2.38 m | 1.79 m | 2.26 m |
ME of average h for the period 1990–2010 | 1.13 m | 1.29 m | 0.67 m |
Error of maximum annual amplitude of h | 0.159 m | 0.150 m | 0.145 m |
Mean seasonal error of discharge (December January February) | 12.2 L/s | 13.4 L/s | 12.3 L/s |
Mean seasonal error of discharge (March April May) | −23.5 L/s | −19.3 L/s | −46.7 L/s |
Mean seasonal error of discharge (June July August) | 42.1 L/s | 48.7 L/s | 26.5 L/s |
Mean seasonal error of discharge (September October November) | 28.5 L/s | 29.5 L/s | 22.6 L/s |
Error of abstracted water amounts | - | - | 0.640 mm |
Mean error of drawdown curves | - | - | 0.055 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kidmose, J.; Troldborg, L.; Refsgaard, J.C. Post Audit of Groundwater Model Predictions under Changing Conditions. Water 2023, 15, 1144. https://doi.org/10.3390/w15061144
Kidmose J, Troldborg L, Refsgaard JC. Post Audit of Groundwater Model Predictions under Changing Conditions. Water. 2023; 15(6):1144. https://doi.org/10.3390/w15061144
Chicago/Turabian StyleKidmose, Jacob, Lars Troldborg, and Jens Christian Refsgaard. 2023. "Post Audit of Groundwater Model Predictions under Changing Conditions" Water 15, no. 6: 1144. https://doi.org/10.3390/w15061144
APA StyleKidmose, J., Troldborg, L., & Refsgaard, J. C. (2023). Post Audit of Groundwater Model Predictions under Changing Conditions. Water, 15(6), 1144. https://doi.org/10.3390/w15061144