Application of Artificial Intelligence in the Assessment and Forecast of Avalanche Danger in the Ile Alatau Ridge
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
- Network type: multilayer perceptron.
- Statistical problem: regression and classification.
- Number of hidden layers: 3.
- Number of learning epochs: 3000.
- Number of hidden neurons: 300.
- Learning algorithm: iterative numerical optimization (BFGS).
- Activation function of hidden neurons: hyperbolic.
- Activation function of output neurons: identical.
- Sampling division: 90% training, 5% validation, 5% test.
4. Results
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Techel, F.; Jarry, F.; Kronthaler, G.; Mitterer, S.; Naim, P.; Pavsek, M.; Valt, M.; Darms, G. Avalanche fatalities in the European alps: Long-term trends and statistics. Geogr. Helv. 2016, 71, 147–159. [Google Scholar] [CrossRef]
- Blagovechshenskiy, V.P.; Zhdanov, V.V. Avalanche accidents in the Ile Alatau range. Geogr. Water Resour. 2021, 3, 12–17. (In Russian) [Google Scholar]
- Obled, C.; Good, W. Recent developments of avalanche forecasting by discriminant analysis techniques: A methodological review and some applications to the Parsenn area. J. Glaciol. 1980, 25, 315–346. [Google Scholar] [CrossRef] [Green Version]
- Meister, R. Country-wide avalanche warning in Switzerland. In Proceedings of the International Snow Science Workshop, Salt Lake City, UT, USA, 30 October–3 November 1994. [Google Scholar]
- Schirmer, M.; Lehning, M.; Schweizer, J. Statistical forecasting of regional avalanche danger using simulated snow-cover data. J. Glaciol. 2009, 55, 761–768. [Google Scholar] [CrossRef] [Green Version]
- Winkler, K.; Techel, F. Users’ rating of the Swiss avalanche forecast. In Proceedings of the International Snow Science Workshop, Banff, AB, Canada, 29 September–3 October 2014. [Google Scholar]
- Durand, Y.; Brun, E.; Mérindol, L.; Martin, E. A computer-based system simulating snowpack structures as a tool for regional avalanche forecasting. J. Glaciol. 1999, 45, 469–484. [Google Scholar] [CrossRef] [Green Version]
- Vionnet, V.; Brun, E.; Boone, A.; Faroux, S.; Le Moigne, P.; Martin, E.; Willemet, J.-M. The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2. Geosci. Model Dev. 2012, 5, 773–791. [Google Scholar] [CrossRef] [Green Version]
- McClung, D.M.; Tweedy, J. Numerical avalanche prediction: Kootenay Pass, British Columbia, Canada. J. Glaciol. 1994, 40, 350–358. [Google Scholar] [CrossRef] [Green Version]
- Schweizer, J.; Jamieson, J.B.; Skjonsberg, D. Avalanche Forecasting for Transportation Corridor and Backcountry in Glacier National Park (BC, Canada). NGI Publ. 1998, 203, 238–244. [Google Scholar]
- McClung, D.M. Predictions in avalanche forecasting. Ann. Glaciol. 2000, 31, 377–381. [Google Scholar] [CrossRef] [Green Version]
- McClung, D.M. The elements of applied avalanche forecasting—Part I: The human issues. Nat. Hazards 2002, 26, 111–129. [Google Scholar] [CrossRef]
- McClung, D.M. The elements of applied avalanche forecasting—Part II: The physical issues and the rules of applied avalanche forecasting. Nat. Hazards 2002, 26, 131–146. [Google Scholar] [CrossRef]
- A Practical Guide to Forecasting Avalanche Danger in Kazakhstan; Kazhydromet: Almaty, Kazakhstan, 2005. (In Russian)
- Zhdanov, V.V. Fundamentals of Avalanche Safety; Institute of Geography and Water Safety: Almaty, Kazakhstan, 2021. (In Russian) [Google Scholar]
- LaChapelle, E. Avalanche forecasting—A modern synthesis. Publ. Assoc. Intern. Hydrol. Sci. 1966, 69, 350–356. [Google Scholar]
- Snow and Snow Avalanches in the Khibiny; Hydrometeoizdat: Moscow, Russia; St. Petersburg, Russia, 1938. (In Russian)
- Buser, O.; Föhn, P.; Gubler, W.; Salm, B. Different methods for the assessment of avalanche danger. Cold Reg. Sci. Technol. 1985, 10, 199–218. [Google Scholar] [CrossRef]
- Pozdnoukhov, A.; Purves, R.S.; Kanevski, M. Applying machine learning methods to avalanche forecasting. Ann. Glaciol. 2008, 49, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Statham, G.; Haegeli, P.; Greene, E.; Birkeland, K.; Israelson, C.; Tremper, B.; Stethem, C.; McMahon, B.; White, B.; Kelly, J. A conceptual model of avalanche hazard. Nat. Hazards 2018, 90, 663–691. [Google Scholar] [CrossRef] [Green Version]
- Buser, O. Avalanche forecast with the method of nearest neighbors: An interactive approach. Cold Reg. Sci. Technol. 1983, 8, 155–163. [Google Scholar] [CrossRef]
- Buser, O. Two years’ experience of operational avalanche forecasting using the nearest neighbor’s method. Ann. Glaciol. 1989, 13, 31–34. [Google Scholar] [CrossRef] [Green Version]
- Gassner, M.; Brabec, B. Nearest neighbor models for local and regional avalanche forecasting. Nat. Hazards Earth Syst. Sci. 2002, 2, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Gassner, M.; Birkeland, K.; Etter, H.J.; Leonard, T. NXD2000: An improved avalanche forecasting program based on the nearest neighbor method. In Proceedings of the International Snow Science Workshop, Big Sky, MT, USA, 1 October 2000. [Google Scholar]
- Brabec, B.; Meister, R. A nearest-neighbor model for regional avalanche forecasting. Ann. Glaciol. 2001, 32, 130–134. [Google Scholar] [CrossRef] [Green Version]
- Purves, R.S.; Morrison, K.W.; Moss, G.; Wright, D.S.B. Nearest neighbors for avalanche forecasting in Scotland: Development, verification and optimization of a model. Cold Reg. Sci. Technol. 2003, 37, 343–355. [Google Scholar] [CrossRef]
- Keiler, M.; Sailer, R.; Jorg, P.; Weber, C.; Fuchs, S.; Zischg, A.; Sauermoser, S. Avalanche risk assessment—A multi-temporal approach, results from Galtur, Austria. Nat. Hazards Earth Syst. Sci. 2006, 6, 637–651. [Google Scholar] [CrossRef] [Green Version]
- Stephens, J.; Adams, E.; Huo, X.; Dent, J.; Hicks, J.; McCarty, D. Use of neural networks in avalanche hazard forecasting. In Proceedings of the International Snow Science Workshop, Salt Lake City, UT, USA, 30 October–3 November 1994. [Google Scholar]
- Schweizer, M.; Fohn, P.M.B.; Schweizer, J. Integrating neural networks and rule based systems to build an avalanche forecasting system. In Proceedings of the International Conference on Artificial Intelligence, Expert Systems and Neuronal Networks, Zurich, Switzerland, 4–6 July 1994. [Google Scholar]
- Dekanová, M.; Duchoň, F.; Dekan, M.; Kyzek, F.; Biskupič, M. Avalanche forecasting using neural network. In Proceedings of the IEEE ELEKTRO, Mikulov, Czech Republic, 21–23 May 2018. [Google Scholar] [CrossRef]
- Fromm, F.; Schönberger, C. Estimating the danger of snow avalanches with a machine learning approach using a comprehensive snow cover model. Mach. Learn. Appl. 2022, 10, 100405. [Google Scholar] [CrossRef]
- Pérez-Guillén, C.; Techel1, F.; Hendrick, M.; Volpi, M.; van Herwijnen, A.; Olevski, T.; Obozinski, G.; Pérez-Cruz, F.; Schweizer, J. Data-driven automated predictions of the avalanche danger level for dry-snow conditions in Switzerland. Nat. Hazards Earth Syst. Sci. 2022, 22, 2031–2056. [Google Scholar] [CrossRef]
- Joshi, J.C.; Kaur, P.; Kumar, B.; Singh, A.; Satyawali, P. HIM-STRAT: A neural network-based model for snow cover simulation and avalanche hazard prediction over north-west Himalaya. Nat. Hazards 2020, 103, 1239–1260. [Google Scholar] [CrossRef]
- Guidicelli, M.; Huss, M.; Gabella, M.; Salzmann, N. Spatio-temporal reconstruction of winter glacier mass balance in the Alps, Scandinavia, Central Asia and western Canada (1981–2019) using climate reanalyses and machine learning. Cryosphere 2023, 17, 977–1002. [Google Scholar] [CrossRef]
- Bartelt, P.; Lehning, M. A physical SNOWPACK model for the Swiss avalanche warning part I: Numerical model. Cold Reg. Sci. Technol. 2002, 35, 123–145. [Google Scholar] [CrossRef]
- Giraud, O.; Brun, E.; Durand, Y.; Martin, E. Safran/Crocus/Mepra models as a helping tool for avalanche forecasters. NGI 1998, 203, 108–112. [Google Scholar]
- A Practical Guide to Avalanche Danger Forecasting; Hydrometeoizdat: St. Petersburg, Russia, 1979. (In Russian)
- Kanaev, L.A.; Sezin, V.M.; Tsarev, B.K. Principles of forecasting avalanche danger in the USSR. In Proceedings of the 2nd All-Union Conference on Avalanches, St. Petersburg, Russia, 20–22 September 1987; pp. 37–46. (In Russian). [Google Scholar]
- EAWS: European Avalanche Danger Scale (2018/19). 2021. Available online: https://www.avalanches.org/standards/avalanche-danger-scale/ (accessed on 18 June 2021).
- Statham, G.; Haegeli, P.; Birkeland, K.; Greene, E.; Israelson, C.; Tremper, B.; Stethem, C.; McMahon, B.; White, B.; Kelly, J. The North American public avalanche danger scale. In Proceedings of the 2010 International Snow Science Workshop, Olympic Valley, CA, USA, 17–22 October 2010. [Google Scholar]
- Kondrashov, I. Forecast of Avalanches and Some Characteristics of Snowfall in the Mountains of Kazakhstan; Hydrometeoizdat: St. Petersburg, Russia, 1991. (In Russian) [Google Scholar]
- Kolesnikov, E. Methods for forecasting avalanche danger by the intensity of precipitation and snowfalls in the mountains of the Zailiysky Alatau. Proc. CASRHMI 1972, 63, 104–121. (In Russian) [Google Scholar]
- Abdushelishvili, K.; Kartashova, M.; Salukvadze, M. Methods for forecasting avalanches of different genetic types. In Proceedings of the 2nd All-Union Conference on Avalanches, St. Petersburg, Russia, 20–22 September 1987; pp. 83–87. (In Russian). [Google Scholar]
- Kolesnikov, E. Methods for calculating empirical formulas for forecasting new snow avalanches in poorly explored mountainous areas. In Glaciers, Snow Cover and Avalanches in the Mountainous Regions of Kazakhstan; Nauka: Almaty, Kazakhstan, 1983; pp. 149–162. (In Russian) [Google Scholar]
- Blagovechshenskiy, V.; Kondrashov, I.; Yeserkepova, I.; Gassner, M.; Latenser, M. Experience in using the NXD2000 program for avalanche forecasting in the Zailiysky Alatau. Data Glaciol. Stud. 2003, 94, 115–118. [Google Scholar]
- Seversky, I.V.; Blagovechshenskiy, V.P.; Seversky, S.I.; Pimankina, N.V.; Xie, Z.; Jang, J.; Hu, R. Snow Cover and Avalanches in Tien-Shan Mountains; Nauka: Almaty, Kazakhstan, 2000. [Google Scholar]
- Blagovechshenskiy, V.P. Conditions of avalanche formation and avalanche activity in the Zailiysky Alatau Ridge (Kazakhstan). Avalanche Rev. 2004, 1, 13–15. [Google Scholar]
- Armstrong, R.L.; Armstrong, B.R. Snow and avalanche climates of the western United States: A comparison of maritime, intermountain and continental conditions. Int. Assoc. Hydrol. Sci. 1987, 162, 281–294. [Google Scholar]
- Reference Book on the Climate of Kazakhstan: Multi-Year Data—Section 1—Air Temperature—Issue 14—Almaty Region; Kazhydromet: Almaty, Kazakhstan, 2004. (In Russian)
- Reference Book on the Climate of Kazakhstan: Multi-Year Data—Section 2—Precipitation—Issue 14—Almaty Region; Kazhydromet: Almaty, Kazakhstan, 2004. (In Russian)
- Medeu, A.; Blagovechshenskiy, V.; Gulyayeva, T.; Zhdanov, V.; Ranova, S. Interannual Variability of Snowiness and Avalanche Activity in the Ile Alatau Ridge, Northern Tien Shan. Water 2022, 14, 2936. [Google Scholar] [CrossRef]
- Available online: www.rp5.ru (accessed on 30 May 2022).
- WMO. Guide to Hydrological Practices; World Meteorological Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Instructions for Hydrometeorological Stations and Posts; Kazhydromet: Almaty, Kazakhstan, 2006. (In Russian)
- Guidelines for Snow Avalanche Operations; Kazhydromet: Almaty, Kazakhstan, 2006. (In Russian)
- Observation Guidelines and Recording Standards for Weather, Snowpack, and Avalanches; Canadian Avalanche Association: Revelstoke, BC, Canada, 2016.
- Laboratory Workshop on AI ю. Available online: http://www.LbAI.ru (accessed on 10 April 2022). (In Russian).
- StatSoft Russia. Available online: http://www.statsoft.ru (accessed on 10 April 2022). (In Russian).
- Windy: Wind Map and Weather Foracast. Available online: https://www.windy.com (accessed on 10 May 2022).
- Kondratyeva, N.V.; Adzhiev, A.K.; Fedchenko, L.M.; Uzdenova, A.B. Avalanche background forecast technique for mountain areas of the Republic of Ingushetia and Chechen Republic. GeoRisk World 2021, 15, 50–63. [Google Scholar] [CrossRef]
- Singh, D.; Ganju, A. Expert system for prediction of avalanches. Res. Commun. Curr. Sci. 2008, 94, 1076–1081. [Google Scholar]
Parameter | Units | Obtaining Way |
---|---|---|
Snow depth at mountain slopes | cm | Measured remotely |
Snow depth at meteorological stations | cm | Measured at the site of a snow-avalanche station |
New snow depth | cm | Measured at the site of a snow-avalanche station |
Snowfall intensity | cm/hour | Calculated |
Water equivalent of the snow cover | mm | Measured at the site of a snow-avalanche station |
Presence of a weak layer in the snow cover | 2 categories: yes, no | Determined at the site of a snow-avalanche station |
Snow shear strength in the weakest layer | kg/m2 | Measured at the site of a snow-avalanche station |
Snow water equivalent above a weak layer | mm | Measured at the site of a snow-avalanche station СЛС |
Snow cover stability coefficient | No | Calculated |
Snow cover stability index by the block test | 3 categories: stable, unstable, very unstable | Measured at the site of a snow-avalanche station |
Daily amount of precipitation | mm | Measured at the meteorological site |
Amount of precipitation per snowfall | mm | Calculated |
Precipitation intensity | mm/hour | Calculated |
Sum of precipitation for the previous 3 days | mm | Calculated |
Average daily air temperature | °C | Calculated |
Maximum air temperature | °C | Measured at the meteorological site |
Minimum air temperature | °C | Measured at the meteorological site |
Sum of hourly air temperatures since the beginning of the thaw | °C | Calculated |
Sum of the maximum air temperatures for the previous 3 days | °C | Calculated |
Maximum wind speed | m/s | Measured at the meteorological site |
Number of avalanches | No | Visually calculated for the studied area |
Avalanche size | 5 categories: small, medium, large, very large, extremely large | Visually determined |
Presence of avalanche danger | 2 categories: yes, no | Assessed by a snow-avalanche station forecaster |
Avalanche danger level | 5 categories: low, moderate, considerable, high, extreme | Assessed by avalanche experts |
Avalanche Danger Level | Size of Avalanches | Number of Avalanches | Probability of Human Triggering | Recommendations for Tourists | Protective Measures |
---|---|---|---|---|---|
5 Extreme | Very large and extremely large | Numerous | Very high | Do not go to the mountains | Closure of roads and territories. Evacuation of people from the avalanche zone |
4 High | Very large | Numerous | Very high | Do not enter avalanche affected areas | Closure of roads and territories. Preventive avalanching |
3 Considerable | Large | Many | High | Choose the route carefully. Check snow stability | Warning of the population. Preventive avalanching in especially dangerous areas |
2 Moderate | Medium | Several | Low | Be careful on the slopes with specific snow conditions | Warning of the population |
1 Low | Small | Single | Very low | Do not go on snowy slopes steeper than 40 degrees | Informing the population |
Variables | Avalanche Danger Level | Avalanche Event |
---|---|---|
Snow depth | 0.62 | 0.20 |
New snow depth | 0.50 | 0.55 |
Snow water equivalent | 0.63 | 0.21 |
Coefficient of snowpack stability | −0.24 | −0.11 |
Presence of a weak snow layer | −0.25 | −0.15 |
Daily precipitation | 0.30 | 0.28 |
Sum of precipitation for the previous 3 days | 0.41 | 0.32 |
Precipitation rate | 0.43 | 0.48 |
Snowfall rate | 0.37 | 0.41 |
Minimum air temperature | 0.16 | 0.11 |
Maximum air temperature | 0.18 | 0.13 |
Average air temperature | 0.18 | 0.13 |
Sum of the maximum temperatures for the previous 3 days | 0.24 | 0.19 |
Meteorological Parameter | Avalanche Danger Level | ||||
---|---|---|---|---|---|
Low | Moderate | Significant | High | Extreme | |
Daily precipitation, mm | 1.0 | 12.6 | 20.0 | 35.0 | 40.0 |
Precipitation rate, mm/h | 0.0 | 0.5 | 1.2 | 1.5 | 2.0 |
Maximum air temperature, °C | −6.4 | −1.5 | 3.1 | 7.3 | 12.7 |
Sum of the maximum temperatures for the previous 3 days, °C | −16.5 | −1.2 | 10.9 | 23.2 | 36.9 |
Snow depth, cm | 25 | 45 | 62 | 72 | 84 |
Snow cover water equivalent, mm | 48 | 97 | 142 | 189 | 248 |
Coefficient of snowpack stability | 1.55 | 1.15 | 0.99 | 0.84 | 0.82 |
Snow Cover Characteristics and Meteorological Parameters | Avalanche Danger Level | ||
---|---|---|---|
Low | Moderate and Significant | High and Extreme | |
Daily precipitation, mm | 10 | 15 | 25 |
Precipitation rate, mm/hour | 0.5 | 1.0 | 1.2 |
Maximum air temperature, °C | 10 | 15 | 20 |
Sum of the maximum temperatures for the previous 3 days, °C | −1 | 5 | 20 |
Snow depth, cm | 30 | 50 | 75 |
Snow water equivalent, mm | 100 | 150 | 200 |
Coefficient of snowpack stability | 1.5 | 1.0 | 0.7 |
Depth of the snow cover on avalanche prone slopes, cm | 50 | 75 | 100 |
New snow depth, cm | 15 | 20 | 30 |
Snowfall rate, cm/hour | 1.0 | 1.5 | 2.0 |
Water equivalent of a new snow, mm | 10 | 15 | 20 |
Presence of a weak snow layer in the snowpack | No | Yes | Yes |
Assessment of the stability of the snow cover by block tests’ method | Stable | Unstable | Very unstable |
Sum of hourly air temperatures since the beginning of the thaw, °C | 200 | 300 | 400 |
Wind speed (gusts), m/s | 10 | 15 | 20 |
Observation Station | Network Architecture | Network Quality (% of Recognition) | ||
---|---|---|---|---|
Learning Performance | Test Sample | Validation Sample | ||
Network operation in the regression mode | ||||
Shymbulak | MLP 5-240-1 | 86.3 | 87.2 | 86.3 |
Big Almaty Lake | MLP 5-320-1 | 88.3 | 89.1 | 89.6 |
Mynzhylki | MLP 3-240-1 | 85.5 | 89.6 | 84.1 |
Network operation in the classification mode | ||||
Shymbulak | MLP 6-240-5 | 90.5 | 83.5 | 81.6 |
Big Almaty Lake | MLP 6-260-5 | 88.7 | 84.8 | 85.4 |
Mynzhylki | MLP 3-240-5 | 80.6 | 83.0 | 76.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blagovechshenskiy, V.; Medeu, A.; Gulyayeva, T.; Zhdanov, V.; Ranova, S.; Kamalbekova, A.; Aldabergen, U. Application of Artificial Intelligence in the Assessment and Forecast of Avalanche Danger in the Ile Alatau Ridge. Water 2023, 15, 1438. https://doi.org/10.3390/w15071438
Blagovechshenskiy V, Medeu A, Gulyayeva T, Zhdanov V, Ranova S, Kamalbekova A, Aldabergen U. Application of Artificial Intelligence in the Assessment and Forecast of Avalanche Danger in the Ile Alatau Ridge. Water. 2023; 15(7):1438. https://doi.org/10.3390/w15071438
Chicago/Turabian StyleBlagovechshenskiy, Viktor, Akhmetkal Medeu, Tamara Gulyayeva, Vitaliy Zhdanov, Sandugash Ranova, Aidana Kamalbekova, and Ulzhan Aldabergen. 2023. "Application of Artificial Intelligence in the Assessment and Forecast of Avalanche Danger in the Ile Alatau Ridge" Water 15, no. 7: 1438. https://doi.org/10.3390/w15071438
APA StyleBlagovechshenskiy, V., Medeu, A., Gulyayeva, T., Zhdanov, V., Ranova, S., Kamalbekova, A., & Aldabergen, U. (2023). Application of Artificial Intelligence in the Assessment and Forecast of Avalanche Danger in the Ile Alatau Ridge. Water, 15(7), 1438. https://doi.org/10.3390/w15071438