Assessment of Present and Future Water Security under Anthropogenic and Climate Changes Using WEAP Model in the Vilcanota-Urubamba Catchment, Cusco, Perú
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Methodology
Model Evaluation Statistics
2.4. Hydrological Model
2.5. The Hydrological Scheme in WEAP
- Vegetation cover remains constant until 2099.
- The agricultural area remains constant until 2099.
- Sibinacocha reservoir operates until 2099 with its current operating rules.
- Run-of-river power plants with their operating flows will meet the energy demands until 2099.
- Snow cover and aquifers were not included because there is insufficient data for modeling.
2.6. Current and Future Water Demands
- Population: This was estimated using the “population water use licenses” in the corresponding sub-basins and the number of inhabitants in the districts within the sub-basins. The population growth rate was projected using Equation (4), linear increase/decrease has been steady over the last 13 years in Cusco according to INEI [24]. The relationship between water demands and the number of inhabitants can be used to reconstruct the past demand and project the demand up to the year 2099:
- Agricultural: Since there is no reliable data on demand for the water use licenses, estimation was performed using Equation (5). CROPWAT software was used to estimate the crop water requirement, and the irrigation efficiency is equal to 0.5, according to [25]. The agricultural area for each sub-basin was obtained from the ecosystem map [19] to maximize the demands; it was considered that all the agricultural area is in use and will remain constant until 2099. Overestimations in water demand were proposed as there are no measurements of actual water use. Cropping census data were obtained from the study conducted by the ANA (2015). Climate variables obtained from the GCMs were used for future demand:
- Industrial: These licenses were found in the RADA—industrial, recreational, mining, aquaculture, and other uses. These types of uses were converted to industrial uses because they are economic activities. As with the previous demands, they were grouped according to their location in each sub-basin.
- Energy: This demand corresponds to the amount of water granted to energy-generating companies for their operations. The primary source of water for generation is the Sibinacocha reservoir. Table 5 shows the operating characteristics of the reservoir.
2.7. Climate Change Projections
2.8. Quantile Mapping Procedure
3. Results
3.1. Model Calibration and Validation
3.2. Initial Demand and Water Security
Water Security in the Period 2010–2016
3.3. Future Water Demand and Security
3.3.1. Population Demand
3.3.2. Agricultural Demand
3.3.3. Industrial Demand
3.4. Future Scenario in the Context of Climate Change (CC)
3.5. Climate Change Scenario with Socio-Economic Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goswami, K.; Bisht, P. The Role of Water Resources in the Arab-Israeli Conflict. Int. J. Res. Appl. Sci. Eng. Technol. 2017, 5, 1669–1674. [Google Scholar]
- Grey, D.; Sadoff, C.W. Sink or Swim? Water Security for Growth and Development. Water Policy 2007, 9, 545–571. [Google Scholar] [CrossRef]
- Amin, A.; Iqbal, J.; Asghar, A.; Ribbe, L. Analysis of Current and Futurewater Demands in the Upper Indus Basin under IPCC Climate and Socio-Economic Scenarios Using a Hydro-Economic WEAP Model. Water 2018, 10, 537. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y.; Mekonnen, M.M.; Chapagain, A.K.; Mathews, R.E.; Richter, B.D. Global Monthly Water Scarcity: Blue Water Footprints versus Blue Water Availability. PLoS ONE 2012, 7, e32688. [Google Scholar] [CrossRef] [PubMed]
- IPCC Climate Change. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovern—Mental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xi, Y., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Opoku, J.; Kabo-bah, A.T.; Ofosu, E. Hydrologic Response to Climate Change in the Densu River Basin in Ghana. Heliyon 2020, 6, e04722. [Google Scholar] [CrossRef]
- Kaser, G.; Grosshauser, M.; Marzeion, B. Contribution Potential of Glaciers to Water Availability in Different Climate Regimes. Proc. Natl. Acad. Sci. USA 2010, 107, 20223–20227. [Google Scholar] [CrossRef] [Green Version]
- Ochoa-Tocachi, B.F.; Buytaert, W.; De Bièvre, B.; Célleri, R.; Crespo, P.; Villacís, M.; Llerena, C.A.; Acosta, L.; Villazón, M.; Guallpa, M.; et al. Impacts of Land Use on the Hydrological Response of Tropical Andean Catchments. Hydrol. Process. 2016, 30, 4074–4089. [Google Scholar] [CrossRef] [Green Version]
- Buytaert, W.; Bievre, B. De Water for Cities: The Impact of Climate Change and Demographic Growth in the Tropical Andes. Water Resour. Res. 2012, 48, W08503. [Google Scholar] [CrossRef] [Green Version]
- Drenkhan, F.; Carey, M.; Huggel, C.; Seidel, J.; Oré, M.T. The Changing Water Cycle: Climatic and Socioeconomic Drivers of Water-Related Changes in the Andes of Peru. Wiley Interdiscip. Rev. Water 2015, 2, 715–733. [Google Scholar] [CrossRef]
- Andres, N.; Vegas Galdos, F.; Lavado Casimiro, W.S.; Zappa, M. Water Resources and Climate Change Impact Modelling on a Daily Time Scale in the Peruvian Andes. Hydrol. Sci. J. 2014, 59, 2043–2059. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Palomino, C.A.; Hattermann, F.F.; Krysanova, V.; Vega-Jácome, F.; Bronstert, A. Towards a More Consistent Eco-Hydrological Modelling through Multi-Objective Calibration: A Case Study in the Andean Vilcanota River Basin, Peru. Hydrol. Sci. J. 2020, 66, 59–74. [Google Scholar] [CrossRef]
- Muñoz, R.; Huggel, C.; Drenkhan, F.; Vis, M.; Viviroli, D. Comparing Model Complexity for Glacio-Hydrological Simulation in the Data-Scarce Peruvian Andes. J. Hydrol. Reg. Stud. 2021, 37, 100932. [Google Scholar] [CrossRef]
- Motschmann, A.; Teutsch, C.; Huggel, C.; Seidel, J.; León, C.D.; Muñoz, R.; Sienel, J.; Drenkhan, F.; Weimer-Jehle, W. Current and Future Water Balance for Coupled Human-Natural Systems—Insights from a Glacierized Catchment in Peru. J. Hydrol. Reg. Stud. 2022, 41, 101063. [Google Scholar] [CrossRef]
- Vergara, W.; Deeb, A.; Leino, I.; Kitoh, A.; Kitoh, A.; Escobar, M. Assessment of the Impacts of Climate Change on Mountain Hydrology; World Bank: Washington, DC, USA, 2011; ISBN 9780821386620. [Google Scholar]
- Swiech, T.; Ertsen, M.W.; Pererya, C.M. Estimating the Impacts of a Reservoir for Improved Water Use in Irrigation in the Yarabamba Region, Peru. Phys. Chem. Earth 2012, 47–48, 64–75. [Google Scholar] [CrossRef]
- Yates, D.; Sieber, J.; Purkey, D.; Huber-Lee, A. WEAP21—A Demand-, Priority-, and Preference-Driven Water Planning Model. Part 1: Model Characteristics. Water Int. 2005, 30, 487–500. [Google Scholar] [CrossRef]
- Swalih, S.A.; Kahya, E. Hydrological Model Optimization Using Multi-Gauge Calibration (MGC) in a Mountainous Region. J. Hydroinformatics 2021, 23, 340–351. [Google Scholar] [CrossRef]
- MINAM. Mapa Nacional de Ecosistemas Del Perú; MINAM: Magdalena del Mar, Peru, 2019; p. 63.
- ANA. Evaluación de Recursos Hídricos En La Cuenca Urubamba; Evaluación Recursos hídricos en las cuencas del Perú; Autoridad Nacional del Agua: Lima, Peru, 2015; p. 684.
- Aybar, C.; Lavado-Casimiro, W.; Huerta, A.; Fernández, C.; Vega, F.; Sabino, E.; Felipe-Obando, O. Uso Del Producto Grillado “PISCO” de Precipitación En Estudios, Investigaciones y Sistemas Operacionales de Monitoreo y Pronóstico Hidrometeorológico. Nota Técnica 001 SENAMHI-DHI-2017; Biblioteca: Lima, Peru, 2017; pp. 1–22. [Google Scholar]
- Huerta, A.; Aybar, C.; Lavado-Casimiro, W. PISCO Temperatura; Version 1.1; Senamhi: Lima, Peru, 2018; Volume 1, pp. 1–15. [Google Scholar]
- Thrasher, B.; Maurer, E.P.; McKellar, C.; Duffy, P.B. Technical Note: Bias Correcting Climate Model Simulated Daily Temperature Extremes with Quantile Mapping. Hydrol. Earth Syst. Sci. 2012, 16, 3309–3314. [Google Scholar] [CrossRef] [Green Version]
- INEI Perú. Crecimiento y Distribuciòn de La Población, 2017; Primeros Resultados, Censos Nac. In 2017 XII Población y VII Vivienda; INEI Perú: Lima, Peru, 2018; p. 48. [Google Scholar]
- GRC. Plan Estrategico Del Sector Agrario 2009–2021; GRC: Lima, Peru, 2020. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Sieber, J.; Purkey, D. Water Evaluation and Planning System User Guide; Stockholm Environment Institute, U.S. Center: Washington, DC, USA, 2015; p. 400. [Google Scholar]
- Asghar, A.; Iqbla, J.; Amin, A.; Ribbe, L. Integrated Hydrological Modeling for Assessment of Water Demand and Supply under Socio-Economic and IPCC Climate Change Scenarios Using WEAP in Central Indus Basin. J. Water Supply Res. Technol. 2019, 68, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Ougougdal, H.A.; Khebiza, M.Y.; Messouli, M.; Lachir, A. Assessment of Futurewater Demand and Supply under IPCC Climate Change and Socio-Economic Scenarios, Using a Combination of Models in Ourika Watershed, High Atlas, Morocco. Water 2020, 12, 1751. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Y.; Shi, C.; Sha, J.; Wang, Z.; Wang, Y. Application of Water Evaluation and Planning ( WEAP ) Model for Water Resources Management Strategy Estimation in Coastal Binhai New Area, China. Ocean Coast. Manag. 2015, 106, 97–109. [Google Scholar] [CrossRef]
- Olsson, T.; Kämäräinen, M.; Santos, D.; Seitola, T.; Tuomenvirta, H.; Haavisto, R.; Lavado-Casimiro, W. Downscaling Climate Projections for the Peruvian Coastal Chancay-Huaral Basin to Support River Discharge Modeling with WEAP. J. Hydrol. Reg. Stud. 2017, 13, 26–42. [Google Scholar] [CrossRef]
- Purkey, D.R.; Joyce, B.; Vicuna, S.; Hanemann, M.W.; Dale, L.L.; Yates, D.; Dracup, J.A. Robust Analysis of Future Climate Change Impacts on Water for Agriculture and Other Sectors: A Case Study in the Sacramento Valley. Clim. Chang. 2007, 87, 109–122. [Google Scholar] [CrossRef]
- Alemayehu, T.; Mccartney, M.; Kebede, S. The Water Resource Implications of Planned Development in the Lake Tana Catchment, Ethiopia. Ecohydrol. Hydrobiol. 2010, 10, 211–221. [Google Scholar] [CrossRef]
- Joyce, B.A.; Mehta, V.K.; Purkey, D.R.; Dale, L.L.; Hanemann, M. Modifying Agricultural Water Management to Adapt to Climate Change in California’s Central Valley. Clim. Chang. 2011, 109, 299–316. [Google Scholar] [CrossRef]
- Mehta, V.K.; Haden, V.R.; Joyce, B.A.; Purkey, D.R.; Jackson, L.E. Irrigation Demand and Supply, given Projections of Climate and Land-Use Change, in Yolo County, California. Agric. Water Manag. 2013, 117, 70–82. [Google Scholar] [CrossRef]
- Santikayasa, I.P.; Babel, M.S.; Shrestha, S. Assessment of the Impact of Climate Change on Water Availability in the Citarum River Basin, Indonesia: The Use of Statistical Downscaling and Water Planning Tools. In Proceedings of the Managing Water Resources under Climate Uncertainty: Challenges and Opportunities, Bangkok, Thailand, 17–18 October 2013; Springer: Berlin/Heidelberg, Germany, 2015; pp. 45–64. [Google Scholar] [CrossRef]
- Pierce, D.W.; Barnett, T.P.; Santer, B.D.; Gleckler, P.J. Selecting Global Climate Models for Regional Climate Change Studies. Proc. Natl. Acad. Sci. USA 2009, 106, 8441–8446. [Google Scholar] [CrossRef] [Green Version]
- Dhakal, K.; Kakani, V.G.; Linde, E. Climate Change Impact on Wheat Production in the Southern Great Plains of the US Using Downscaled Climate Data. Atmos. Clim. Sci. 2018, 8, 143–162. [Google Scholar] [CrossRef] [Green Version]
- Rauscher, S.A.; Coppola, E.; Piani, C.; Giorgi, F. Resolution Effects on Regional Climate Model Simulations of Seasonal Precipitation over Europe. Clim. Dyn. 2010, 35, 685–711. [Google Scholar] [CrossRef]
- Wood, A.W.; Maurer, E.P.; Kumar, A.; Lettenmaier, D.P. Long-Range Experimental Hydrologic Forecasting for the Eastern United States. J. Geophys. Res. Atmos. 2002, 107, 4429. [Google Scholar] [CrossRef]
- Avilés, A.; Palacios, K.; Pacheco, J.; Jiménez, S.; Zhiña, D.; Delgado, O. Sensitivity Exploration of Water Balance in Scenarios of Future Changes: A Case Study in an Andean Regulated River Basin. Theor. Appl. Climatol. 2020, 141, 921–934. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen-Skaugen, T. Technical Note: Downscaling RCM Precipitation to the Station Scale Using Statistical Transformations—A Comparison of Methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef] [Green Version]
- Angus, J.E. Probability Integral Transform and Related Results. SIAM Rev. 1994, 36, 652–654. [Google Scholar] [CrossRef]
- Sithiengtham, P. Projecting Water Demand and Availability under Climate Change through the Application of WEAP in the Nam Ngum Downstream Area, Laos. Master’s Thesis, Flinders University, Adelaide, Australia, 2019. [Google Scholar]
- Mourad, K.A.; Alshihabi, O. Assessment of Future Syrian Water Resources Supply and Demand by the WEAP Model. Hydrol. Sci. J. 2016, 61, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Goyburo, A. Reconstrucción Histórica y Proyecciones de Cambio Climático de La Seguridad Hídrica En La Cuenca Vilcanota, Urubamba; Biblioteca Agrícola Nacional: Lima, Peru, 2021. [Google Scholar]
- MVCS. Parametros De Diseño De Infraestructura De Agua Y Saneamiento Para Centros Poblados Rurales; Ministry of Housing, Construction and Sanitation: Lima, Peru, 2004; Volume 1, p. 30.
- MINAGRI. Uso y Manejo de Agua; MINAGRI: Kigali, Rwanda, 2021.
- Ragettli, S.; Cortés, G.; Mcphee, J.; Pellicciotti, F. An Evaluation of Approaches for Modelling Hydrological Processes in High-Elevation, Glacierized Andean Watersheds. Hydrol. Process. 2014, 28, 5674–5695. [Google Scholar] [CrossRef]
- Moncada, A.M.; Escobar, M.; Betancourth, A.; Vélez Upegui, J.J.; Zambrano, J.; Alzate, L.M. Modelling Water Stress Vulnerability in Small Andean Basins: Case Study of Campoalegre River Basin, Colombia. Int. J. Water Resour. Dev. 2021, 37, 640–657. [Google Scholar] [CrossRef]
- Mark, B.G.; French, A.; Baraer, M.; Carey, M.; Bury, J.; Young, K.R.; Polk, M.H.; Wigmore, O.; Lagos, P.; Crumley, R.; et al. Glacier Loss and Hydro-Social Risks in the Peruvian Andes. Glob. Planet. Chang. 2017, 159, 61–76. [Google Scholar] [CrossRef]
- Marengo, J.A.; Ambrizzi, T.; da Rocha, R.P.; Alves, L.M.; Cuadra, S.V.; Valverde, M.C.; Torres, R.R.; Santos, D.C.; Ferraz, S.E.T. Future Change of Climate in South America in the Late Twenty-First Century: Intercomparison of Scenarios from Three Regional Climate Models. Clim. Dyn. 2010, 35, 1089–1113. [Google Scholar] [CrossRef]
- Franchito, S.H.; Fernandez, J.P.R.; Pareja, D. Surrogate Climate Change Scenario and Projections with a Regional Climate Model: Impact on the Aridity in South America. Am. J. Clim. Chang. 2014, 3, 474–489. [Google Scholar] [CrossRef] [Green Version]
- Tellman, B.; McDonald, R.I.; Goldstein, J.H.; Vogl, A.L.; Flörke, M.; Shemie, D.; Dudley, R.; Dryden, R.; Petry, P.; Karres, N.; et al. Opportunities for Natural Infrastructure to Improve Urban Water Security in Latin America. PLoS ONE 2018, 13, e0209470. [Google Scholar] [CrossRef] [Green Version]
- Ochoa-Tocachi, B.F.; Bardales, J.D.; Antiporta, J.; Pérez, K.; Acosta, L.; Mao, F.; Zulkafli, Z.; Gil-Ríos, J.; Angulo, O.; Grainger, S.; et al. Potential Contributions of Pre-Inca Infiltration Infrastructure to Andean Water Security. Nat. Sustain. 2019, 2, 584–593. [Google Scholar] [CrossRef]
Sub-Basin No | Area (km2) | Minimum Elevation (m.a.s.l) | Mean Elevation (m.a.s.l) | Maximum Elevation (m.a.s.l) | Average Slope in Degrees (°) | Main Channel Length (km) |
---|---|---|---|---|---|---|
1 | 2099 | 2998 | 3867 | 4736 | 17 | 60 |
2 | 684 | 3567 | 4632 | 5697 | 19 | 16 |
3 | 2333 | 3461 | 4610 | 5759 | 15 | 64 |
4 | 1742 | 3481 | 4166 | 4851 | 12 | 39 |
5 | 42 | 3430 | 3950 | 4470 | 16 | 9 |
Data | Description | Source |
---|---|---|
Climate | Precipitation, temperature, humidity, wind speed | PISCO [21] SENAMHI (PERU) |
Climate change | NEX-GDDP: Downscaled Climate Projections (2017–2099) 21 GCMs: RCP scenarios 4.5 and 8.5 | NEX-GDDP ee.ImageCollection(“NASA/NEX-GDDP”) * |
Remote sensing | Digital Elevation Model 30 m: SRTM Land cover 1.5 m “National Ecosystem Map” | ee.Image(“USGS/SRTMGL1_003”) * MINAM (Perú) [19] |
Hydrometric | Hydrometric station Pisac (1987–2016) | SENAMHI PERU |
Water demand | Population “Population water use licenses” | INEI (Perú) AAA-UV (Perú) |
Name | GCM Scenario | Socio-Economic Factors | |
---|---|---|---|
Population Growth (%) | Irrigation Efficiency (%) | ||
Scenario 1 | RCP 4.5 | 1.8 | 50 |
Scenario 2 | RCP 8.5 | 1.8 | 50 |
Scenario 3 | RCP 4.5 | 0.3 | 80 |
Scenario 4 | RCP 8.5 | 0.3 | 80 |
Performance Rating | PBIAS (%) | NSE |
---|---|---|
Very good | PBIAS < ±10 | 0.75 < NSE ≤ 1.00 |
Good | ±10 ≤ PBIAS < ±15 | 0.65 < NSE ≤ 0.75 |
Satisfactory | ±15 ≤ PBIAS < ±25 | 0.50 < NSE ≤ 0.65 |
Unsatisfactory | PBIAS ≥ ±25 | NSE ≤ 0.50 |
Description | Volume (hm3) |
---|---|
Storage capacity | 120 |
Useful volume | 110 |
Bottle dead | 10 |
Simulation | NSE | PBIAS (%) | Qo (m3/s) | Qs (m3/s) |
---|---|---|---|---|
Calibration | ||||
(1987–2006) | 0.60 | 12.8 | 52.3 | 59 |
Validation (2007–2016) | 0.84 | 8.5 | 64.2 | 69.7 |
Demand | Volume (hm3) | Percentage (%) |
---|---|---|
Population | 30.3 | 12 |
Agricultural | 220 | 86.6 |
Industrial | 3.6 | 1.4 |
Year | Sub-Basin 1 | Sub-Basin 4 | ||
---|---|---|---|---|
Population | Demand (hm3) | Population | Demand (hm3) | |
2030 | 661,032 | 44.5 | 110,589 | 24.2 |
2040 | 789,051 | 69.9 | 113,878 | 45.1 |
2050 | 941,863 | 113.1 | 117,265 | 75.5 |
2060 | 1,124,270 | 182.9 | 120,753 | 116.4 |
2070 | 1,342,002 | 292.5 | 124,345 | 168.6 |
2080 | 1,601,901 | 460.5 | 128,043 | 233.1 |
2090 | 1,912,134 | 714.1 | 131,851 | 310.9 |
2099 | 2,242,398 | 1047.4 | 135,375 | 393.1 |
Year | Sub-Basin 1 (hm3) | Sub-Basin 4 (hm3) | ||
---|---|---|---|---|
Scenario 1 (RCP 4.5) | Scenario 2 (RCP 8.5) | Scenario 1 (RCP 4.5) | Scenario 2 RCP (8.5) | |
2030 | 156.2 | 173.5 | 67.7 | 67.3 |
2040 | 154.9 | 133.7 | 64.9 | 66.1 |
2050 | 154.5 | 130.3 | 63.1 | 61.0 |
2060 | 144.8 | 130.6 | 65.4 | 55.2 |
2070 | 100.1 | 99.6 | 53.3 | 52.7 |
2080 | 134.5 | 103.3 | 56.9 | 45.5 |
2090 | 891.9 | 104.7 | 44.1 | 36.3 |
2099 | 103.7 | 100.8 | 39.5 | 37.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goyburo, A.; Rau, P.; Lavado-Casimiro, W.; Buytaert, W.; Cuadros-Adriazola, J.; Horna, D. Assessment of Present and Future Water Security under Anthropogenic and Climate Changes Using WEAP Model in the Vilcanota-Urubamba Catchment, Cusco, Perú. Water 2023, 15, 1439. https://doi.org/10.3390/w15071439
Goyburo A, Rau P, Lavado-Casimiro W, Buytaert W, Cuadros-Adriazola J, Horna D. Assessment of Present and Future Water Security under Anthropogenic and Climate Changes Using WEAP Model in the Vilcanota-Urubamba Catchment, Cusco, Perú. Water. 2023; 15(7):1439. https://doi.org/10.3390/w15071439
Chicago/Turabian StyleGoyburo, Andrés, Pedro Rau, Waldo Lavado-Casimiro, Wouter Buytaert, José Cuadros-Adriazola, and Daniel Horna. 2023. "Assessment of Present and Future Water Security under Anthropogenic and Climate Changes Using WEAP Model in the Vilcanota-Urubamba Catchment, Cusco, Perú" Water 15, no. 7: 1439. https://doi.org/10.3390/w15071439
APA StyleGoyburo, A., Rau, P., Lavado-Casimiro, W., Buytaert, W., Cuadros-Adriazola, J., & Horna, D. (2023). Assessment of Present and Future Water Security under Anthropogenic and Climate Changes Using WEAP Model in the Vilcanota-Urubamba Catchment, Cusco, Perú. Water, 15(7), 1439. https://doi.org/10.3390/w15071439