Analysis of the Effect of Climate Change on the Characteristics of Rainfall in Igeldo-Gipuzkoa (Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Characteristics of the Weather Station
- The precipitation series with records every 10 min, obtained from the digitization of the syphon (float)-type automatic rainfall recorder, carried out by the Gipuzkoa Provincial Council with a band pluviograph owned by the State Meteorological Agency (AEMET). The series runs from 1927 to 2016 inclusive, which represents a total of 89 years of records [31].
- The daily precipitation series, from 1929 to 2018, obtained directly from the AEMET website. This series is complete.
2.2. Rainfall Characteristics Analysed
2.2.1. Maximum Precipitation Intensities
2.2.2. Climate Change Precipitation Indices (ETCCDI)
2.2.3. Seasonal and Monthly Rainfall
2.2.4. Gini Index
2.2.5. Climatological Standard Normals
2.2.6. Rainfall Anomaly Index (RAI)
2.3. Methodology for the Analysis of Pluviometric Series
- As a preliminary step, it is necessary to examine the series and determine the missing data for each year in order to discard a year, if necessary. This is particularly necessary in the 10 min series, in which data are often missing. Subsequently, the simple observation of the graphical representation of the values of the series already suggests something about the existence of trends and their breakpoints.
- The first thing to do is to check that the data respond to an independent random variable and that they are identically distributed. To this end, the turning-point test was applied to all the series analysed. This test is easy to apply and is an effective test for checking randomness against systematic oscillation [45]. In this test, the null hypothesis, H0, states that the variables are independent random variables and identically distributed.
- An initial problem in checking and interpreting trends is the effect of the autocorrelation of the data in a time series. This is the statistical dependence of a time series on its own past or future values. The presence of positive or negative autocorrelation influences the detection of trends in the series [46,47]. Therefore, it is important to check the autocorrelation of the data for each series and to remove it before testing the trend if it is positive. This analysis was performed for all the series using the autocorrelation test according to the methodologies proposed by Zhang et al. [48] and Basistha et al. [49].
- Once the above was confirmed, the non-parametric Mann–Kendall and Spearman tests were applied to detect possible trends in all the time series considered. The Mann–Kendall test, proposed by Mann [50] and Kendall [51], is based on the range and is one of the widely used non-parametric tests to detect trends in the time series of hydroclimatic data [52,53,54,55,56,57,58,59,60]. It has been used and suggested by the WMO to evaluate trends in the time series of environmental data. The Spearman test [52] is a non-parametric rank-based test that is similar to the Mann–Kendall and can also be used to detect monotonic trends in time series [61,62].
- Having checked the trend of the series, it is interesting to analyse whether there are change points in the series. The Pettitt test [63,64,65] is a non-parametric, range-based, distribution-free test used to detect the occurrence of a significant abrupt change in the mean of a time series. It is particularly useful when the location of the point of change is unknown. It is widely applied to detect changes in time series of climatic and hydrological data.
3. Results
3.1. Maximum Precipitation Intensities
3.2. Climate Change Precipitation Indices (ETCCDI)
3.3. Seasonal and Monthly Precipitation Analysis
3.4. Gini Index
3.5. Climatological Standard Normals
3.6. Analysis of Annual and Seasonal Precipitation Anomalies
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. Working Group I (WGI) Contribution to the Sixth Assessment Report (AR6) of the IPCC. 2021. Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report_smaller.pdf (accessed on 10 March 2022).
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. Working Group II (WGII) Contribution to the Sixth Assessment Report (AR6) of the IPCC. 2022. Available online: https://report.ipcc.ch/ar6wg2/pdf/IPCC_AR6_WGII_FinalDraft_FullReport.pdf (accessed on 10 March 2022).
- Caporali, E.; Lompi, M.; Pacetti, T.; Chiarello, V.; Fatichi, S. A review of studies on observed precipitation trends in Italy. Int. J. Climatol. 2021, 41 (Suppl. S1), E1–E25. [Google Scholar] [CrossRef]
- Burlando, P.; Rosso, R. Effects of transient climate change on basin hydrology. 1. Precipitation scenarios for the Arno River, central Italy. Hydrol. Process. 2002, 16, 1151–1175. [Google Scholar] [CrossRef]
- Sulis, M.; Paniconi, C.; Marrocu, M.; Huard, D.; Chaumont, D. Hydrologic response to multimodel climate output using a physically based model of groundwater/surface water interactions. Water Resour. Res. 2012, 48, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Piras, M.; Mascaro, G.; Deidda, R.; Vivoni, E.R. Quantification of hydrologic impacts of climate change in a Mediterranean basin in Sardinia, Italy, through high-resolution simulations. Hydrol. Earth Syst. Sci. 2014, 18, 5201–5217. [Google Scholar] [CrossRef] [Green Version]
- Hegerl, G.C.; Black, E.; Allan, R.P.; Ingram, W.J.; Polson, D.; Trenberth, K.E.; Chadwick, R.S.; Arkin, P.A.; Sarojini, B.B.; Becker, A.; et al. Challenges in Quantifying Changes in the Global Water Cycle. Bull. Am. Meteorol. Soc. 2015, 96, 1097–1115. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Ivanov, V.Y. A holistic, multi-scale dynamic downscaling framework for climate impact assessments and challenges of addressing finer-scale watershed dynamics. J. Hydrol. 2015, 522, 645–660. [Google Scholar] [CrossRef] [Green Version]
- Fatichi, S.; Rimkus, S.; Burlando, P.; Bordoy, R.; Molnar, P. High-resolution distributed analysis of climate and anthropogenic changes on the hydrology of an alpine catchment. J. Hydrol. 2015, 525, 362–382. [Google Scholar] [CrossRef]
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 2016, 6, 166–171. [Google Scholar] [CrossRef]
- Katz, W.R.; Brown, G. Extreme events in changing climate: Variability is more important than averages. Clim. Chang. 1992, 21, 289–302. [Google Scholar] [CrossRef]
- Karl, T.R.; Trenberth, K.E. Modern Global Climate Change. Science 2003, 302, 1719–1723. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.X.; Chen, Y.N.; Li, J.Y. Impact of Climate Change on Water Resources in the Tarim River Basin. Water Resour. Manag. 2004, 18, 439–458. [Google Scholar] [CrossRef]
- Groisman, P.Y.; Knight, R.W.; Easterling, D.R.; Karl, T.R.; Hegerl, G.C.; Razuvaev, V.N. Trends in Intense Precipitation in the Climate Record. J. Clim. 2005, 18, 1326–1350. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Wetherald, R.T.; Dunne, K.A.; Delworth, T.L. Increasing risk of great floods in a changing climate. Nature 2002, 415, 414–517. [Google Scholar] [CrossRef]
- Huntington, K.W.; Blythe, A.E.; Hodges, K.V. Climate change and Late Pliocene acceleration of erosion in the Himalaya. Earth Planet. Sci. Lett. 2006, 252, 107–118. [Google Scholar] [CrossRef]
- WMO. WMO Statement on the Status of the Global Climate in 2003; World Meteorological Organization (WMO): Geneva, Switzerland, 2003. [Google Scholar]
- Zhang, Q.; Gemmer, M.; Chen, J. Climate changes and flood/drought risk in the Yangtze Delta, China, during the past millennium. Quat. Int. 2008, 176–177, 62–69. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Fowler, H.J.; Ekström, M. Multi-model ensemble estimates of climate change impacts on UK seasonal precipitation extremes. Int. J. Climatol. 2009, 29, 385–416. [Google Scholar] [CrossRef]
- Portmann, R.W.; Solomon, S.; Hegerl, G.C. Spatial and seasonal patterns in climate change, temperatures, and precipitation across the United States. Proc. Natl. Acad. Sci. USA 2009, 106, 7324–7329. [Google Scholar] [CrossRef] [Green Version]
- Perkins, S.E.; Alexander, L.V.; Nairn, J.R. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 2012, 39, L20714. [Google Scholar] [CrossRef]
- Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Dunn, R.J.H.; Willett, K.M.; Aguilar, E.; Brunet, M.; Caesar, J.; et al. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos. 2013, 118, 2098–2118. [Google Scholar] [CrossRef] [Green Version]
- Montanari, A.; Young, G.; Savenije, H.H.G.; Hughes, D.; Wagener, T.; Ren, L.L.; Koutsoyiannis, D.; Cudennec, C.; Toth, E.; Grimaldi, S.; et al. “Panta Rhei—Everything flows”: Change in hydrology and society—The IAHS scientific decade 2013–2022. Hydrol. Sci. J. 2013, 58, 1256–1275. [Google Scholar] [CrossRef]
- Serinaldi, F.; Kilsby, C.G. Stationarity is undead: Uncertainty dominates the distribution of extremes. Adv. Water Resour. 2015, 77, 17–36. [Google Scholar] [CrossRef] [Green Version]
- Fatichi, S.; Ivanov, V.Y.; Paschalis, A.; Peleg, N.; Molnar, P.; Rimkus, S.; Kim, J.; Burlando, P.; Caporali, E. Uncertainty partition challenges the predictability of vital details of climate change Earth future. Earth’s Future 2016, 4, 240–251. [Google Scholar] [CrossRef]
- AEMET. Análisis Estacional. Donostia/San Sebastián, Igueldo. AEMET. 2019. Available online: https://www.aemet.es/es/serviciosclimaticos/vigilancia_clima/analisis_estacional?w=&l=1024E&datos=prec (accessed on 3 June 2021).
- Gómez, J.; Saez, J.A. San Sebastian. Donostia. Geografía e Historia; 2ª Ed. Instituto geográfico vasco (INGEBA). 2017. Available online: http://www.ingeba.org/liburua/2016%20donostia%20definitivo%20baja%20resolucion.pdf (accessed on 21 May 2022).
- Sola, A. Clima. En San Sebastian. Donostia. Geografía e Historia; 2ª Ed. Instituto geográfico vasco (INGEBA). 2017. Available online: http://www.ingeba.org/index.htm (accessed on 21 May 2022).
- Lozano, P. Régimen precipitacional en el norte de Navarra y Guipúzcoa ¿Record peninsular y europeo? Nimbus. Rev. Climatol. Meteorol. Y Paisaje 2016, 17–18, 125–144. [Google Scholar]
- López, J.J.; Delgado, O.; Campo, M.A. Determinación de las curvas IDF en Igueldo-San Sebastián. Comparación de diferentes métodos. Ing. Agua. 2018, 22, 209–223. [Google Scholar] [CrossRef] [Green Version]
- Jawitz, J.W.; Mitchell, J. Temporal inequality in catchment discharge and solute export. Water Resour. Res. 2011, 47, W00J14. [Google Scholar] [CrossRef]
- Masaki, Y.; Hanasaki, N.; Takahashi, K.; Hijioka, Y. Global-scale analysis on future changes in flow regimes using Gini and Lorenz asymmetry coefficients. Water Resour. Res. 2014, 50, 4054–4078. [Google Scholar] [CrossRef]
- Rajah, K.; O’Leary, T.; Turner, A.; Petrakis, G.; Leonard, M.; Westra, S. Changes to the temporal distribution of daily precipitation. Geophys. Res. Lett. 2014, 41, 8887–8894. [Google Scholar] [CrossRef]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 851–870. [Google Scholar] [CrossRef]
- WMO. The Role of Climatological Normals in a Changing Climate; WCDMP-No. 61. WMO/TD-No. 1377; WMO: Geneva, Switzerland, 2007. [Google Scholar]
- WMO. Guidelines on the Calculation of Climate Normals; WMO-No. 1203; WMO: Geneva, Switzerland, 2017. [Google Scholar]
- WMO. Guide to Climatological Practices; WMO nº 100; World Meteorological Organization (WMO): Geneva. Switzerland, 2018. [Google Scholar]
- van Rooy, M.P. A Rainfall Anomaly Index independent of time and space. Notos 1965, 14, 43–48. [Google Scholar]
- Keyantash, J.; Dracup, J.A. The Quantification of Drought: An Evaluation of Drought Indices. Bull. Amer. Meteorol. Soc. 2002, 83, 1167–1180. [Google Scholar] [CrossRef]
- Hänsel, S.; Schucknecht, A.; Matschullat, J. The Modified Rainfall Anomaly Index (mRAI)—Is this an alternative to the Standardised Precipitation Index (SPI) in evaluating future extreme precipitation characteristics? Theor. Appl. Climatol. 2016, 123, 827–844. [Google Scholar] [CrossRef]
- Raziei, T. Revisiting the Rainfall Anomaly Index to serve as a Simplified Standardized Precipitation Index. J. Hydrol. 2021, 602, 126761. [Google Scholar] [CrossRef]
- Oladipo, E.O. A comparative performance analysis of three meteorological drought indices. J. Climatol. 1985, 5, 655–664. [Google Scholar] [CrossRef]
- Bhalme, H.N.; Mooley, D.A. Large scale droughts/floods and monsoon circulation. Mon. Weath. Rev. 1980, 108, 1197–1211. [Google Scholar] [CrossRef]
- Machiwal, D.; Jha, M.K. Hydrologic Time Series Analysis: Theory and Practice; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.Y. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, C.; Xu, C.; Xu, Y.; Jiang, T. Observed trends of annual maximum water level and streamflow during past 130 years in the Yangtze River basin, China. J. Hydrol. 2006, 324, 255–265. [Google Scholar] [CrossRef]
- Basistha, A.; Arya, D.S.; Goel, N.K. Analysis of historical changes in rainfall in the Indian Himalayas. Int. J. Climatol. 2013, 29, 555–572. [Google Scholar] [CrossRef]
- Mann, H.B. Non-parametric test against trend. Econometrika 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Yue, S.; Pilon, P.; Cavadias, G. Power of Mann-Kendall and Spearman’s rho test for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 299, 254–271. [Google Scholar] [CrossRef]
- Hao, X.; Chen, Y.; Xu, C.; Li, W. Impacts of climate change and human activities on the surface runoff in the Tarim River basin over the last fifty years. Water Resour. Manag. 2008, 22, 1159–1171. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Liu, Z.; Wang, D. Trend Analysis of Precipitation in the Jinsha River Basin in China. J. Hydrometeorol. 2013, 14, 290–303. [Google Scholar] [CrossRef]
- Pingale, S.M.; Khare, D.; Jaty, M.-K.; Adamowski, J. Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centers of the arid and semi-arid state of Rajasthan, India. Atmos. Res. 2014, 138, 73–90. [Google Scholar] [CrossRef]
- Dhorde, A.G.; Korade, M.S.; Dhorde, A.A. Spatial distribution of temperature trends and extremes over Maharashtra and Karnataka States of India. Theor. Appl. Climatol. 2016, 130, 191–204. [Google Scholar] [CrossRef]
- Rahimi, M.; Hejabi, S. Spatial and temporal analysis of trends in extreme temperature indices in Iran over the period 1960–2014. Int. J. Climatol. 2018, 38, 272–282. [Google Scholar] [CrossRef]
- Ullah, S.; You, Q.; Ullah, W.; Ali, A.; Xie, W.; Xie, X. Observed changes in temperature extremes over China–Pakistan Economic Corridor during 1980–2016. Int. J. Climatol. 2019, 39, 1457–1475. [Google Scholar] [CrossRef]
- Yang, X.; Sun, W.; Mu, X.; Gao, P.; Zhao, G. Run-off affected by climate and anthropogenic changes in a large semi-arid river basin. Hydrol. Process. 2020, 34, 1906–1919. [Google Scholar] [CrossRef]
- Latif, Y.; Yaoming, M.; Yaseen, M.; Muhammad, S.; Wazir, M.A. Spatial analysis of temperature time series over the Upper Indus Basin (UIB) Pakistan. Theor. Appl. Climatol. 2020, 139, 741–758. [Google Scholar] [CrossRef] [Green Version]
- Yenigün, K.; Gümü, V.; Bulut, H. Trends in streamflow of the Euphrates basin, Turkey. Proc. Inst. Civil. Eng.-Water Manag. 2008, 161, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Khaliq, M.N.; Ouarda, T.B.M.J.; Gachon, P.; Sushama, L.; St-Hilaire, A. Identification of hydrological trends in the presence of serial and cross correlations: A review of selected methods and their application to annual flow regimes of Canadian rivers. J. Hydrol. 2009, 368, 117–130. [Google Scholar] [CrossRef]
- Pettitt, A.N. A non-parametric approach to the change-point problem. Appl. Stat.-J. R. Stat. Soc. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Wijngaard, J.B.; Klein, A.M.G.; Konnen, G.P. Homogeneity of 20th Century European Daily Temperature and Precipitation Series. Int. J. Climat. 2003, 23, 679–692. [Google Scholar] [CrossRef]
- Li, D.; Xie, H.; Xiong, L. Temporal Change Analysis Based on Data Characteristics and Nonparametric Test. Water Resour. Manag. 2014, 28, 227–240. [Google Scholar] [CrossRef]
- Kruskal, W.; Wallis, V.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Tamm, O.; Saarem, E.; Rahkema, K.; Jaagus, J.; Tamm, T. The intensification of short-duration rainfall extremes due to climate change—Need for a frequent update of intensity–duration–frequency curves. Clim. Serv. 2023, 30, 100349. [Google Scholar] [CrossRef]
- Todaro, V.; D’Oria, M.; Secci, D.; Zanini, A.; Tanda, M.G. Climate Change over the Mediterranean Region: Local Temperature and Precipitation Variations at Five Pilot Sites. Water 2022, 14, 2499. [Google Scholar] [CrossRef]
- Kastridis, A.; Kamperidou, V.; Stathis, D. Dendroclimatological Analysis of Fir (A. borisii-regis) in Greece in the frame of Climate Change Investigation. Forest 2022, 13, 879. [Google Scholar] [CrossRef]
- Mersin, D.; Tayfur, G.; Vaheddoost, B.; Safari, M.J.S. Historical Trends Associated with Annual Temperature and Precipitation in Aegean Turkey, Where Are We Heading? Sustainability 2022, 14, 13380. [Google Scholar] [CrossRef]
- Oruc, S.; Yalcin, E. Extreme precipitation indices trend assessment over Thrace region, Turkey. Acta Geophys. 2021, 69, 307–321. [Google Scholar] [CrossRef]
- Bartels, R.J.; Black, A.W.; Keim, B.D. Trends in precipitation days in the United States. Int. J. Climatol. 2020, 40, 1038–1048. [Google Scholar] [CrossRef]
- Miró, J.J.; Estrela, M.J.; Caselles, V.; Gómez, I. Spatial and Temporal Rainfall Changes in the Júcar and Segura Basins (1955–2016): Fine-Scale Trends. Int. J. Climatol. 2018, 38, 4699–4722. [Google Scholar] [CrossRef]
- Serrano-Notivoli, R.; Beguería, S.; Saz, M.A.; de Luis, M. Recent trends reveal decreasing intensity of daily precipitation in Spain. Int. J. Climatol. 2018, 38, 4211–4224. [Google Scholar] [CrossRef]
- Cooley, A.; Chang, A.H. Precipitation Intensity Trend Detection using Hourly and Daily Observations in Portland, Oregon. Climate 2017, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Gajić-Čapka, M.; Cindrić, K.; Pasarić, Z. Trends in precipitation indices in Croatia, 1961–2010. Theor. Appl. Climatol. 2015, 121, 167–177. [Google Scholar] [CrossRef]
- Liuzzo, L.; Freni, G. Analysis of Extreme Rainfall Trends in Sicily for the Evaluation of Depth-Duration-Frequency Curves in Climate Change Scenarios. J. Hydrol. Eng. 2015, 20, 04015036. [Google Scholar] [CrossRef]
- Bartolini, G.; Messeri, A.; Grifoni, D.; Mannini, D.; Orlandini, S. Recent trends in seasonal and annual precipitation indices in Tuscany (Italy). Theor. Appl. Climatol. 2014, 118, 147–157. [Google Scholar] [CrossRef]
- van den Besselaar, E.J.M.; Klein Tank, A.M.G.; Buishand, T.A. Trends in European precipitation extremes over 1951–2010. Int. J. Climatol. 2013, 33, 2682–2689. [Google Scholar] [CrossRef]
- Arnone, E.; Pumo, D.; Viola, F.; Noto, L.V.; La Loggia, G. Rainfall statistics changes in Sicily. Hydrol. Earth Syst. Sci. 2013, 17, 2449–2458. [Google Scholar] [CrossRef] [Green Version]
- Todeschinia, S. Trends in long daily rainfall series of Lombardia (northern Italy) affecting urban stormwater control. Int. J. Climatol. 2012, 32, 900–919. [Google Scholar] [CrossRef]
- Martinez, C.J.; Maleski, J.J.; Miller, M.F. Trends in precipitation and temperature in Florida, USA. J. Hydrol. 2012, 452–453, 259–281. [Google Scholar] [CrossRef]
- Homar, V.; Ramis, C.; Romero, R.; Alonso, S. Recent trends in temperature and precipitation over the Balearic Islands (Spain). Clim. Chang. 2010, 98, 199–211. [Google Scholar] [CrossRef]
- de Lima, M.I.P.; Carvalho, S.C.P.; de Lima, J.L.M.P. Investigating annual and monthly trends in precipitation structure: An overview across Portugal. NHESS 2010, 10, 2429–2440. [Google Scholar] [CrossRef] [Green Version]
- Ruiz Sinoga, J.D.; Garcia Marin, R.; Martinez Murillo, J.F.; Gabarron Galeotea, M.A. Precipitation dynamics in southern Spain: Trends and cycles. Int. J. Climatol. 2010, 31, 2281–2289. [Google Scholar] [CrossRef]
- Bonaccorso, B.; Cancelliere, A.; Rossi, G. Detecting trends of extreme rainfall series in Sicily. ADGEO 2005, 2, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Klein Tank, A.M.G.; Können, G.P. Trends in Indices of Daily Temperature and Precipitation Extremes in Europe, 1946–1999. J. Clim. 2003, 16, 3665–3680. [Google Scholar] [CrossRef]
- Adamowski, K.; Bougadis, J. Detection of trends in annual extreme rainfall. Hydrol. Process. 2003, 17, 3547–3560. [Google Scholar] [CrossRef]
- Rodrigo, F.S.; Trigo, R.M. Trends in Daily Rainfall in the Iberian Peninsula from 1951 to 2002. Int. J. Climatol. 2002, 27, 513–529. [Google Scholar] [CrossRef]
- Sen, Z. Innovative trend significance test and applications. Theor. Appl Climatol. 2017, 127, 939–947. [Google Scholar] [CrossRef]
- Dabahn, I.; Şen, Z.; Yeleğen, M.Ö.; Şişman, E.; Selek, B.; Güçlü, Y.S. Trend Assessment by the Innovative-Şen Method. Water Resour. Manag. 2016, 30, 5193–5203. [Google Scholar] [CrossRef]
- Öztopal, A.; Sen, Z. Innovative trend methodology applications to precipitation records in Turkey. Water Resour. Manag. 2017, 31, 727–737. [Google Scholar] [CrossRef]
- Alashan, S. Data Analysis in Nonstationary State. Water Resour. Manag. 2018, 32, 2277–2286. [Google Scholar] [CrossRef]
- IPCC. 2018. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change. 2016. Available online: https://www.ipcc.ch/site/assets/uploads/sites/2/2022/06/SR15_Chapter_1_HR.pdf (accessed on 15 March 2022).
Index | Unit | Description |
---|---|---|
Pan10m; Psn10m; Pms10m | mm | annual, seasonal, and monthly maximum precipitation in 10 min |
Pan30m; Psn20m; Pms20m | mm | annual, seasonal, and monthly maximum precipitation in 30 min |
Pan1h; Psn1h; Pms1h | mm | annual, seasonal, and monthly maximum precipitation in 1 h |
Pan2h; Psn2h; Pms2h | mm | annual, seasonal, and monthly maximum precipitation in 2 h |
Pan4h; Psn4h; Pms4h | mm | annual, seasonal, and monthly maximum precipitation in 4 h |
Pan6h; Psn6h; Pms6h | mm | annual, seasonal, and monthly maximum precipitation in 6 h |
Pan12h; Psn12h; Pms12h | mm | annual, seasonal, and monthly maximum precipitation in 12 h |
Pan24h; Psn24h; Pms24h | mm | annual, seasonal, and monthly maximum precipitation in 24 h |
Index | Description | Unit | Definition |
---|---|---|---|
PRECPTOT | Annual precipitation amount | mm | Pan 1 in wet days 2 |
R90p | Wet days precipitation | mm | Pan 1 when Pd 3 > 90th percentile |
R95p | Very wet days precipitation | mm | Pan 1 when Pd 3 > 95th percentile |
R99p | Extremely wet days precipitation | mm | Pan 1 when Pd 3 > 99th percentile |
SDII | Simple daily intensity index | mm/day | mean precipitation on a wet day 2 (Pan/WD) |
Rx1d | Maximum 1-day precipitation | mm | annual maximum 1-day rainfall |
Rx5d | Maximum 5-day precipitation | mm | annual maximum consecutive 5-day rainfall |
WD | Wet days 2 | days | number of days a year with Pd 3 ≥ 1 mm |
CWD | Maximum number of consecutive wet days 2 | days | maximum number of consecutive wet days 2 |
CDD | Maximum number of consecutive dry days 4 | days | maximum number of consecutive dry days 4 |
R10 | Moderate precipitation days | days | number of days per year with Pd 3 ≥ 10 mm |
R20 | Heavy precipitation days | days | number of days per year with Pd 3 ≥ 20 mm |
Autumn | Winter | Spring | Summer | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MK | Sp | MK | Sp | MK | Sp | MK | Sp | |||||
Z 1 | S.s. 2 | ts 3 | Z 1 | S.s. 2 | ts 3 | Z 1 | S.s. 2 | ts 3 | Z 1 | S.s. 2 | ts 3 | |
Pmax 10 min | 0.400 | 0.04 | 0.435 | 2.743 | 0.12 | 2.854 | 1.359 | 0.16 | 1.369 | 1.521 | 0.20 | 1.486 |
Pmax 20 min | 0.757 | −0.11 | −0.763 | 3.472 | 0.22 | 3.607 | 0.981 | 0.15 | 1.078 | 1.135 | 0.21 | 1.078 |
Pmax 30 min | 1.037 | −0.20 | −0.991 | 3.365 | 0.27 | 3.514 | 0.818 | 0.14 | 0.843 | 1.298 | 0.30 | 1.353 |
Pmax 1 h | 1.414 | −0.38 | −1.330 | 3.640 | 0.42 | 3.865 | 0.162 | 0.04 | 0.231 | 0.656 | 0.20 | 0.635 |
Pmax 2 h | 1.141 | −0.37 | −1.119 | 3.591 | 0.53 | 3.662 | 0.339 | 0.11 | 0.362 | 0.800 | 0.31 | 0.838 |
Pmax 4 h | 1.025 | −0.50 | −1.076 | 3.148 | 0.55 | 3.295 | 0.040 | −0.02 | −0.074 | 1.096 | 0.64 | 1.091 |
Pmax 6 h | 0.364 | −0.20 | −0.468 | 2.800 | 0.66 | 2.936 | 0.014 | 0.00 | −0.056 | 0.951 | 0.57 | 0.969 |
Pmax 12 h | 0.108 | 0.12 | 0.023 | 3.601 | 1.37 | 3.664 | 0.123 | −0.04 | −0.142 | 0.519 | 0.44 | 0.568 |
Pmax 24 h | 1.317 | 1.23 | 1.331 | 3.278 | 1.84 | 3.477 | 0.656 | 0.56 | 0.613 | 0.184 | 0.15 | 0.247 |
References | Number of Years | Record. Int. (*) | Study Region | |
---|---|---|---|---|
[67] Tamm et al. (2023) | 70 but fractioned | 20 min. | Estonia | |
[68] Todaro et al. (2022) | 1976–2005 | 30 | daily | Mediterranean |
[69] Kastridis et al. (2022) | 1961–2020 | 60 | daily | Central Greece |
[70] Mersin et al. (2022) | 1973–2020 | 48 | annual | Turkey |
[71] Oruc and Yalcin (2021) | 1950–2008 | 59 | hourly | Turkey |
[72] Bartels et al.2020 | 1951–2015 | 65 | daily | United States |
[73] Miró et al. (2018) | 1955–2016 | 62 | daily | Spain (east) |
[74] Serrano-Notivoli et al. (2018) | 1950–2012 | 63 | daily | Spain |
[75] Cooley and Chang (2017) | From 10 to 16 | hourly | U.S. (Oregon) | |
[76] Gajić-Čapka et al. (2015) | 1961–2010 | 50 | daily | Croatia |
[77] Liuzzo and Freni (2015) | 1950–2008 | 59 | hourly | Italy (Sicily) |
[78] Bartolini et al. (2014) | 1955–2007 | 53 | daily | Italy (Tuscany) |
[79] van den Besselaar et al. (2013) | 1951–2010 | 60 | daily | Europe |
[80] Arnone et al. (2013) | From 9 to 63 | hourly | Italy (Sicily) | |
[81] Todeschinia (2012) | From 93 to 166 | daily | Italy (Lombardia) | |
[82] Martinez et al. (2012) | 1895–2009 | 115 | monthly | U.S. (Florida) |
[83] Homar et al. (2010) | 1951–2006 | 56 | daily | Spain (Balearic Is.) |
[84] de Lima et al. 2010 | From 88 to 145 | monthly | Portugal | |
[85] Ruiz et al. (2010) | 1960–2006 | 46 | daily | Spain (Andalusia) |
[86] Bonaccorso et al. (2005) | at least 50 years | hourly | Italy (Sicily) | |
[87] Klein Tank et al. (2003) | 1946–1999 | 54 | daily | Europe |
[88] Adamowski and Bougadis (2003) | at least 20 years | 5 min. | Canada (Ontario) | |
[89] Rodrigo and Trigo (2002) | 1951–2002 | 52 | daily | Iberian Peninsula |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López, J.J.; Ayuso-Muñoz, J.L.; Goñi, M.; Gimena, F.N. Analysis of the Effect of Climate Change on the Characteristics of Rainfall in Igeldo-Gipuzkoa (Spain). Water 2023, 15, 1529. https://doi.org/10.3390/w15081529
López JJ, Ayuso-Muñoz JL, Goñi M, Gimena FN. Analysis of the Effect of Climate Change on the Characteristics of Rainfall in Igeldo-Gipuzkoa (Spain). Water. 2023; 15(8):1529. https://doi.org/10.3390/w15081529
Chicago/Turabian StyleLópez, José Javier, José Luis Ayuso-Muñoz, Mikel Goñi, and Faustino N. Gimena. 2023. "Analysis of the Effect of Climate Change on the Characteristics of Rainfall in Igeldo-Gipuzkoa (Spain)" Water 15, no. 8: 1529. https://doi.org/10.3390/w15081529
APA StyleLópez, J. J., Ayuso-Muñoz, J. L., Goñi, M., & Gimena, F. N. (2023). Analysis of the Effect of Climate Change on the Characteristics of Rainfall in Igeldo-Gipuzkoa (Spain). Water, 15(8), 1529. https://doi.org/10.3390/w15081529