Investigation on the Hydrogeochemical Characteristics and Controlling Mechanisms of Groundwater in the Coastal Aquifer
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Samples Collection and Analysis
3.2. Saturation Index
3.3. Multivariate Statistical Analyses
4. Results and Discussion
4.1. Groundwater Chemistry Characteristics
4.2. Source Identification of Pollution Components
4.3. Hydrogeochemical Facies
4.4. Mechanisms Controlling Groundwater Chemistry
4.5. The Ratio of Major Ions
4.6. Seawater Fraction in Groundwater
5. Practical Implications and Perspectives
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, J.-H.; Kim, K.-H.; Thao, N.T.; Batsaikhan, B.; Yun, S.-T. Hydrochemical assessment of freshening saline groundwater using multiple end-members mixing modeling: A study of Red River delta aquifer, Vietnam. J. Hydrol. 2017, 549, 703–714. [Google Scholar] [CrossRef]
- Lee, K.-J.; Yun, S.-T.; Yu, S.; Kim, K.-H.; Lee, J.-H.; Lee, S.-H. The combined use of self-organizing map technique and fuzzy c-means clustering to evaluate urban groundwater quality in Seoul metropolitan city, South Korea. J. Hydrol. 2019, 569, 685–697. [Google Scholar] [CrossRef]
- Haselbeck, V.; Kordilla, J.; Krause, F.; Sauter, M. Self-organizing maps for the identification of groundwater salinity sources based on hydrochemical data. J. Hydrol. 2019, 576, 610–619. [Google Scholar] [CrossRef]
- Custodio, E. Coastal aquifers of Europe: An overview. Hydrogeol. J. 2010, 18, 269–280. [Google Scholar] [CrossRef]
- Qiao, W.; Guo, H.; He, C.; Shi, Q.; Xiu, W.; Zhao, B. Molecular Evidence of Arsenic Mobility Linked to Biodegradable Organic Matter. Environ. Sci. Technol. 2020, 54, 7280–7290. [Google Scholar] [CrossRef]
- Guo, H.; Zhou, Y.; Jia, Y.; Tang, X.; Li, X.; Shen, M.; Lu, H.; Han, S.; Wei, C.; Norra, S.; et al. Sulfur Cycling-Related Biogeochemical Processes of Arsenic Mobilization in the Western Hetao Basin, China: Evidence from Multiple Isotope Approaches. Environ. Sci. Technol. 2016, 50, 12650–12659. [Google Scholar] [CrossRef]
- Korrai, S.; Gangu, K.K.; Prasada Rao, P.V.V.; Jonnalagadda, S.B. A study on assessment of vulnerability of seawater intrusion to groundwater in coastal areas of Visakhapatnam, India. Environ. Dev. Sustain. 2021, 23, 5937–5955. [Google Scholar] [CrossRef]
- Chen, R.; Teng, Y.; Chen, H.; Hu, B.; Yue, W. Groundwater pollution and risk assessment based on source apportionment in a typical cold agricultural region in Northeastern China. Sci. Total Environ. 2019, 696, 133972. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Ran, H.; Guo, Z.; Yi, L.; Xiao, X.; Zhang, L.; Hu, Z.; Li, C.; Zhang, Y. Pollution characteristics and source identification of soil metal(loid)s at an abandoned arsenic-containing mine, China. J. Hazard. Mater. 2021, 413, 125382. [Google Scholar] [CrossRef]
- Chen, G.; Xiong, G.; Lin, J.; Xu, X.; Yu, H.; Liu, W.; Fu, T.; Su, Q.; Wang, Y.; Dai, Y.; et al. Elucidating the Pollution Sources and Groundwater Evolution in Typical Seawater Intrusion Areas Using Hydrochemical and Environmental Stable Isotope Technique: A Case Study for Shandong Province, China. Lithosphere 2021, 2021, 4227303. [Google Scholar] [CrossRef]
- de Graaf, I.E.M.; Gleeson, T.; van Beek, L.P.H.; Sutanudjaja, E.H.; Bierkens, M.F.P. Environmental flow limits to global groundwater pumping. Nature 2019, 574, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Currell, M.J. Review of drivers and threats to coastal groundwater quality in China. Sci. Total Environ. 2022, 806, 150913. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.M.; Moore, L.J.; Ells, K.; Murray, A.B.; Adams, P.N.; MacKenzie Iii, R.A.; Jaeger, J.M. Recent shifts in coastline change and shoreline stabilization linked to storm climate change. Earth Surf. Process. Landf. 2015, 40, 569–585. [Google Scholar] [CrossRef]
- Ping, Y.; Xiao-yong, D.; Fei, G.; Mei-na, L.; Sheng-hua, L.; Jian-dong, Q.; Liang-yong, Z. Coastal erosion in Shandong of China: Status and protection challenges. China Geol. 2018, 1, 512–521. [Google Scholar] [CrossRef]
- Balasubramanian, M.; Sridhar, S.G.D.; Ayyamperumal, R.; Karuppannan, S.; Gopalakrishnan, G.; Chakraborty, M.; Huang, X. Isotopic signatures, hydrochemical and multivariate statistical analysis of seawater intrusion in the coastal aquifers of Chennai and Tiruvallur District, Tamil Nadu, India. Mar. Pollut. Bull. 2022, 174, 113232. [Google Scholar] [CrossRef]
- Daniele, L.; Tardani, D.; Schmidlin, D.; Quiroga, I.; Cannatelli, C.; Somma, R. Seawater intrusion and hydrogeochemical processes in the Ischia Island groundwater system. J. Geochem. Explor. 2022, 234, 106935. [Google Scholar] [CrossRef]
- Satheeskumar, V.; Subramani, T.; Lakshumanan, C.; Roy, P.D.; Karunanidhi, D. Groundwater chemistry and demarcation of seawater intrusion zones in the Thamirabarani delta of south India based on geochemical signatures. Environ. Geochem. Health 2021, 43, 757–770. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Y.; Wang, X.; Ren, Z.; Li, L. Salt-Water Intrusion in the Lower Reaches of the Weihe River, Shandong Province, China. Hydrogeol. J. 1997, 5, 82–88. [Google Scholar] [CrossRef]
- Barker, A.P.; Newton, R.J.; Bottrell, S.H.; Tellam, J.H. Processes affecting groundwater chemistry in a zone of saline intrusion into an urban sandstone aquifer. Appl. Geochem. 1998, 13, 735–749. [Google Scholar] [CrossRef]
- Barlow, P.M.; Reichard, E.G. Saltwater intrusion in coastal regions of North America. Hydrogeol. J. 2010, 18, 247–260. [Google Scholar] [CrossRef]
- Salem, Z.E.; ElNahrawy, A.; Attiah, A.M.; Edokpayi, J.N. Vertical and spatial evaluation of the groundwater chemistry in the Central Nile Delta Quaternary aquifer to assess the effects of human activities and seawater intrusion. Front. Environ. Sci. 2022, 10. [Google Scholar] [CrossRef]
- Argamasilla, M.; Barberá, J.A.; Andreo, B. Factors controlling groundwater salinization and hydrogeochemical processes in coastal aquifers from southern Spain. Sci. Total Environ. 2017, 580, 50–68. [Google Scholar] [CrossRef] [PubMed]
- Mollema, P.N.; Antonellini, M.; Dinelli, E.; Gabbianelli, G.; Greggio, N.; Stuyfzand, P.J. Hydrochemical and physical processes influencing salinization and freshening in Mediterranean low-lying coastal environments. Appl. Geochem. 2013, 34, 207–221. [Google Scholar] [CrossRef]
- Galliari, J.; Santucci, L.; Misseri, L.; Carol, E.; Alvarez, M.d.P. Processes controlling groundwater salinity in coastal wetlands of the southern edge of South America. Sci. Total Environ. 2021, 754, 141951. [Google Scholar] [CrossRef] [PubMed]
- Carreira, P.M.; Marques, J.M.; Nunes, D. Source of groundwater salinity in coastline aquifers based on environmental isotopes (Portugal): Natural vs. human interference. A review and reinterpretation. Appl. Geochem. 2014, 41, 163–175. [Google Scholar] [CrossRef]
- Han, D.M.; Song, X.F.; Currell, M.J.; Yang, J.L.; Xiao, G.Q. Chemical and isotopic constraints on evolution of groundwater salinization in the coastal plain aquifer of Laizhou Bay, China. J. Hydrol. 2014, 508, 12–27. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, L.; Chai, N.; Liu, T.; Jin, Z.; Rinklebe, J. Groundwater hydrochemistry, source identification and pollution assessment in intensive industrial areas, eastern Chinese loess plateau. Environ. Pollut. 2021, 278, 116930. [Google Scholar] [CrossRef]
- Quino Lima, I.; Ramos Ramos, O.; Ormachea Muñoz, M.; Quintanilla Aguirre, J.; Duwig, C.; Maity, J.P.; Sracek, O.; Bhattacharya, P. Spatial dependency of arsenic, antimony, boron and other trace elements in the shallow groundwater systems of the Lower Katari Basin, Bolivian Altiplano. Sci. Total Environ. 2020, 719, 137505. [Google Scholar] [CrossRef]
- Dai, L.; Wang, L.; Li, L.; Liang, T.; Zhang, Y.; Ma, C.; Xing, B. Multivariate geostatistical analysis and source identification of heavy metals in the sediment of Poyang Lake in China. Sci. Total Environ. 2018, 621, 1433–1444. [Google Scholar] [CrossRef]
- Alshehri, F.; Almadani, S.; El-Sorogy, A.S.; Alwaqdani, E.; Alfaifi, H.J.; Alharbi, T. Influence of seawater intrusion and heavy metals contamination on groundwater quality, Red Sea coast, Saudi Arabia. Mar. Pollut. Bull. 2021, 165, 112094. [Google Scholar] [CrossRef]
- Unglert, K.; Radić, V.; Jellinek, A.M. Principal component analysis vs. self-organizing maps combined with hierarchical clustering for pattern recognition in volcano seismic spectra. J. Volcanol. Geotherm. Res. 2016, 320, 58–74. [Google Scholar] [CrossRef]
- Underwood, K.L.; Rizzo, D.M.; Schroth, A.W.; Dewoolkar, M.M. Evaluating Spatial Variability in Sediment and Phosphorus Concentration-Discharge Relationships Using Bayesian Inference and Self-Organizing Maps. Water Resour. Res. 2017, 53, 10293–10316. [Google Scholar] [CrossRef]
- Petelet-Giraud, E.; Négrel, P.; Aunay, B.; Ladouche, B.; Bailly-Comte, V.; Guerrot, C.; Flehoc, C.; Pezard, P.; Lofi, J.; Dörfliger, N. Coastal groundwater salinization: Focus on the vertical vriability in a multi-layered aquifer through a multi-isotope fingerprinting (Roussillon Basin, France). Sci. Total Environ. 2016, 566-567, 398–415. [Google Scholar] [CrossRef]
- Hao, C.; Zhang, W.; Gui, H. Hydrogeochemistry characteristic contrasts between low- and high-antimony in shallow drinkable groundwater at the largest antimony mine in hunan province, China. Appl. Geochem. 2020, 117, 104584. [Google Scholar] [CrossRef]
- Lone, S.A.; Jeelani, G.; Mukherjee, A.; Coomar, P. Geogenic groundwater arsenic in high altitude bedrock aquifers of upper Indus river basin (UIRB), Ladakh. Appl. Geochem. 2020, 113, 104497. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Y.; Shi, W.; Cui, Y.; Zhang, Q.; Shi, Y.; Liang, Z. Analysis of Hydrogeochemical Characteristics and Origins of Chromium Contamination in Groundwater at a Site in Xinxiang City, Henan Province. Appl. Sci. 2021, 11, 11683. [Google Scholar] [CrossRef]
- Xiao, Y.; Gu, X.; Yin, S.; Pan, X.; Shao, J.; Cui, Y. Investigation of Geochemical Characteristics and Controlling Processes of Groundwater in a Typical Long-Term Reclaimed Water Use Area. Water 2017, 9, 800. [Google Scholar] [CrossRef]
- Tanasković, I.; Golobocanin, D.; Miljević, N. Multivariate statistical analysis of hydrochemical and radiological data of Serbian spa waters. J. Geochem. Explor. 2012, 112, 226–234. [Google Scholar] [CrossRef]
- Kai, Z.; Jing-xian, Q.; Yi, C.; Bai-heng, M.; Li, Y.; Hua-ming, G.; Xin-zhou, W.; Lin-ying, W.; Hai-tao, L. Hydrogeochemical characteristics of groundwater and pore-water and the paleoenvironmental evolution in the past 3.10 Ma in the Xiong’an New Area, North China. China Geol. 2021, 4, 476–486. [Google Scholar] [CrossRef]
- Liu, J.; Tokunaga, T. Future Risks of Tsunami-Induced Seawater Intrusion Into Unconfined Coastal Aquifers: Insights From Numerical Simulations at Niijima Island, Japan. Water Resour. Res. 2019, 55, 10082–10104. [Google Scholar] [CrossRef]
- Xu, Z.; Hu, B.X. Development of a discrete-continuum VDFST-CFP numerical model for simulating seawater intrusion to a coastal karst aquifer with a conduit system. Water Resour. Res. 2017, 53, 688–711. [Google Scholar] [CrossRef]
- Miao, T.; Huang, H.; Guo, J.; Li, G.; Zhang, Y.; Chen, N. Uncertainty Analysis of Numerical Simulation of Seawater Intrusion Using Deep Learning-Based Surrogate Model. Water 2022, 14, 2933. [Google Scholar] [CrossRef]
- Yechieli, Y.; Kafri, U.; Goldman, M.; Voss, C. Factors controlling the configuration of the fresh–saline water interface in the Dead Sea coastal aquifers: Synthesis of TDEM surveys and numerical groundwater modeling. Hydrogeol. J. 2001, 9, 367–377. [Google Scholar] [CrossRef]
- Ibrahim, H.; Yaseen, Z.M.; Scholz, M.; Ali, M.; Gad, M.; Elsayed, S.; Khadr, M.; Hussein, H.; Ibrahim, H.H.; Eid, M.H.; et al. Evaluation and Prediction of Groundwater Quality for Irrigation Using an Integrated Water Quality Indices, Machine Learning Models and GIS Approaches: A Representative Case Study. Water 2023, 15, 694. [Google Scholar] [CrossRef]
- Gad, M.; El Osta, M. Geochemical controlling mechanisms and quality of the groundwater resources in El Fayoum Depression, Egypt. Arab. J. Geosci. 2020, 13, 861. [Google Scholar] [CrossRef]
- El Osta, M.; Masoud, M.; Alqarawy, A.; Elsayed, S.; Gad, M. Groundwater Suitability for Drinking and Irrigation Using Water Quality Indices and Multivariate Modeling in Makkah Al-Mukarramah Province, Saudi Arabia. Water 2022, 14, 483. [Google Scholar] [CrossRef]
- Zhu, G.; Wu, X.; Ge, J.; Liu, F.; Zhao, W.; Wu, C. Influence of mining activities on groundwater hydrochemistry and heavy metal migration using a self-organizing map (SOM). J. Clean. Prod. 2020, 257, 120664. [Google Scholar] [CrossRef]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water-analyses. Eos Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms Controlling World Water Chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef]
Component | Dry Season | Wet Season | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Max | Min | Mean | SD | CV | Max | Min | Mean | SD | CV | |
Na+ (mg/L) | 2962.00 | 12.00 | 96.58 | 346.41 | 358.69 | 936.00 | 6.73 | 59.77 | 112.09 | 187.53 |
K+ (mg/L) | 69.50 | 0.29 | 7.13 | 12.29 | 172.39 | 65.00 | 0.54 | 5.82 | 9.88 | 169.71 |
Ca2+ (mg/L) | 240.00 | 27.20 | 94.06 | 41.73 | 44.36 | 223.00 | 31.70 | 88.47 | 39.34 | 44.46 |
Mg2+ (mg/L) | 266.00 | 6.72 | 30.56 | 31.65 | 103.57 | 80.60 | 3.53 | 22.93 | 13.60 | 59.32 |
NH4+ (mg/L) | 5.00 | 0.00 | 0.12 | 0.60 | 490.19 | 1.50 | 0.00 | 0.03 | 0.18 | 524.34 |
Cl− (mg/L) | 4565.69 | 1.97 | 132.99 | 539.24 | 405.46 | 2316.95 | 5.08 | 104.85 | 277.82 | 264.97 |
SO42− (mg/L) | 761.98 | 15.11 | 108.56 | 94.43 | 86.98 | 445.29 | 14.09 | 93.23 | 63.45 | 68.06 |
HCO3− (mg/L) | 878.00 | 26.91 | 207.84 | 131.38 | 63.21 | 528.14 | 20.18 | 198.14 | 99.35 | 50.14 |
NO3− (mg/L) | 648.90 | 1.27 | 97.53 | 110.81 | 113.62 | 652.17 | 1.50 | 88.12 | 109.19 | 123.91 |
NO2− (mg/L) | 22.27 | 0.00 | 0.64 | 2.69 | 423.75 | 13.91 | 0.00 | 0.80 | 2.37 | 297.38 |
Pb (ug/L) | 57.32 | 0.36 | 1.78 | 6.91 | 387.06 | 20.66 | 0.36 | 1.49 | 2.93 | 196.34 |
Ni (ug/L) | 11.62 | 0.67 | 3.17 | 2.29 | 72.11 | 39.50 | 1.84 | 6.27 | 4.66 | 74.39 |
As (ug/L) | 27.92 | 0.48 | 2.57 | 3.96 | 153.98 | 16.65 | 0.48 | 2.40 | 2.76 | 115.14 |
Se (ug/L) | 15.02 | 1.64 | 1.93 | 1.63 | 84.54 | 16.87 | 1.64 | 2.53 | 2.21 | 87.23 |
Br (mg/L) | 13.01 | 0.02 | 1.02 | 1.61 | 158.24 | 6.85 | 0.02 | 0.71 | 1.18 | 165.34 |
TDS (mg/L) | 8880.98 | 209.22 | 675.87 | 1015.47 | 150.25 | 4064.75 | 161.32 | 571.49 | 489.41 | 85.64 |
TH (mg/L) | 1388.03 | 141.71 | 361.17 | 192.22 | 53.22 | 853.52 | 107.46 | 331.93 | 142.85 | 43.04 |
F− (mg/L) | 2.28 | 0.01 | 0.66 | 0.32 | 47.83 | 1.19 | 0.01 | 0.70 | 0.19 | 27.59 |
Fe (mg/L) | 0.11 | 0.02 | 0.02 | 0.01 | 55.74 | 0.02 | 0.02 | 0.02 | 0.00 | 0.00 |
Mn (mg/L) | 2.97 | 0.00 | 0.28 | 0.58 | 207.78 | 2.10 | 0.00 | 0.10 | 0.34 | 319.66 |
pH | 8.52 | 7.24 | 7.94 | 0.30 | 358.69 | 8.89 | 7.69 | 8.25 | 0.19 | 2.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, G.; Kang, H.; Fu, R.; Xu, D.; Li, J. Investigation on the Hydrogeochemical Characteristics and Controlling Mechanisms of Groundwater in the Coastal Aquifer. Water 2023, 15, 1710. https://doi.org/10.3390/w15091710
An G, Kang H, Fu R, Xu D, Li J. Investigation on the Hydrogeochemical Characteristics and Controlling Mechanisms of Groundwater in the Coastal Aquifer. Water. 2023; 15(9):1710. https://doi.org/10.3390/w15091710
Chicago/Turabian StyleAn, Guangnan, Hao Kang, Rongbing Fu, Damao Xu, and Jia Li. 2023. "Investigation on the Hydrogeochemical Characteristics and Controlling Mechanisms of Groundwater in the Coastal Aquifer" Water 15, no. 9: 1710. https://doi.org/10.3390/w15091710
APA StyleAn, G., Kang, H., Fu, R., Xu, D., & Li, J. (2023). Investigation on the Hydrogeochemical Characteristics and Controlling Mechanisms of Groundwater in the Coastal Aquifer. Water, 15(9), 1710. https://doi.org/10.3390/w15091710