Combination of Phytoextraction and Biochar Improves Available Potassium and Alters Microbial Community Structure in Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Determination of Soil Chemical Properties
2.4. Determination of Soil Microbial Community Structure
2.4.1. Soil Total DNA Extraction and PCR Amplification
2.4.2. Database Construction, Sequencing, and Processing
2.5. Statistical Analyses
3. Results
3.1. Soil Chemical Characteristics
3.2. Bacterial and Fungal Community Richness and Diversity
3.3. Soil Bacterial and Fungal Community Composition
4. Discussion
4.1. Combining Phytoextraction and Biochar Significantly Improved Soil Nutrients
4.2. Combining Phytoextraction and Biochar Changed Bacterial Community Composition
4.3. Combining Phytoextraction and Biochar Changed Fungal Community Composition
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pang, K.; Li, M.; Liu, L.; Yang, J.L.; Zhao, H.J. Evaluation and Source Analysis of Heavy Metal Pollution in Sediments of the Yellow River Basin Based on Monte Carlo Simulation and PMF Model. Huan Jing Ke Xue 2022, 43, 4008–4017. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.Y.; Hao, Y.P.; Zhang, F.W.; Zou, S.Z.; Ye, S.Y.; Xie, Z.Q. Spatial distribution of heavy metals and their potential sources in the soil of Yellow River Delta: A traditional oil field in China. Environ. Geochem. Health 2019, 42, 7–26. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.Y.; Ye, S.C.; Hao, Y.P.; Yang, L.J.; Chen, W.H.; Huang, B.J.; Shen, L.N. Assessment of heavy metal contamination in the surface soil of the Yellow River Delta, China. Mar. Sci. 2016, 40, 65–76. [Google Scholar]
- Zhao, Y.H.; Li, T.; Shao, P.S.; Sun, J.K.; Xu, W.J.; Zhang, Z.H. Variation in bacterial community structure in rhizosphere and bulk soils of different halophytes in the Yellow River Delta. Front. Ecol. Evol. 2022, 9, 816918. [Google Scholar] [CrossRef]
- Zarei, M.; Hempel, S.; Wubet, T.; Schäfer, T.; Savaghebi, G.; Jouzani, G.S.; Nekouei, M.K.; Buscot, F. Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environ. Pollut. 2010, 158, 2757–2765. [Google Scholar] [CrossRef]
- Yang, W.H.; Wang, S.S.; Ni, W.Z.; Rensing, C.; Xing, S.H. Enhanced Cd-Zn-Pb-contaminated soil phytoextraction by Sedum alfredii and the rhizosphere bacterial community structure and function by applying organic amendments. Plant Soil 2019, 444, 101–118. [Google Scholar] [CrossRef]
- Cao, D.; Shi, F.; Koike, T.; Lu, Z.; Sun, J. Halophyte plant communities affecting enzyme activity and microbes in saline soils of the Yellow River Delta in China. Clean-Soil Air Water 2014, 42, 1433–1440. [Google Scholar] [CrossRef]
- Chen, H.Y.; Zhao, G.X.; Li, Y.H.; Wang, D.Y.; Ma, Y. Monitoring the seasonal dynamics of soil salinization in the Yellow River Delta of China using Landsat data. Nat. Hazards Earth Syst. Sci. 2019, 19, 1499–1508. [Google Scholar] [CrossRef]
- Yang, L.; Huang, C.; Liu, G.H.; Liu, J.; Zhu, A.X. Mapping soil salinity using a similarity-based prediction approach: A case study in Yellow River Delta, China. Chin. Geogr. Sci. 2015, 25, 283–294. [Google Scholar] [CrossRef]
- Liu, Z.; Dugan, B.; Masiello, C.A.; Gonnermann, H.M. Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS ONE 2017, 12, e0179079. [Google Scholar] [CrossRef]
- Huang, J.; Zhu, C.; Kong, Y.; Cao, X.; Zhu, L.; Zhang, Y.; Ning, Y.; Tian, W.; Zhang, H.; Yu, Y.; et al. Biochar Application Alleviated Rice Salt Stress via Modifying Soil Properties and Regulating Soil Bacterial Abundance and Community Structure. Agronomy 2022, 12, 409. [Google Scholar] [CrossRef]
- Zhao, L.Y.; Guan, H.L.; Wang, R.; Wang, H.J.; Li, Z.C.; Li, W.; Xiang, P.; Xu, W. Effects of tobacco stem-derived biochar on soil properties and bacterial community structure under continuous cropping of bletilla striata. J. Soil Sci. Plant Nutr. 2021, 21, 1318–1328. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Jing, Y.M.; Xiang, Y.Z.; Zhang, R.D.; Lu, H.B. Responses of soil microbial community structure changes and activities to biochar addition: A meta-analysis. Sci. Total Environ. 2018, 643, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.P.; He, B.H.; Song, D.D.; Li, T.Y.; Wu, Y.P.; Yang, L. Response of Bacterial Community Structure to Different Biochar Addition Dosages in Karst Yellow Soil Planted with Ryegrass and Daylily. Sustainability 2020, 12, 2124. [Google Scholar] [CrossRef]
- Zhao, C.S.; Xu, Q.Q.; Chen, L.; Li, X.Q.; Meng, Y.T.; Ma, X.W.; Zhang, Y.; Liu, X.; Wang, H. The impacts of a biochar application on selected soil properties and bacterial communities in an Albic Clayic Luvisol. Soil Water Res. 2020, 15, 85–92. [Google Scholar] [CrossRef]
- Song, Y.; Li, X.N.; Xu, M.; Jiao, W.; Bian, Y.R.; Yang, X.L.; Gu, C.; Wang, F.; Jiang, X. Does biochar induce similar successions of microbial community structures among different soils? Bull. Environ. Contam. Toxicol. 2019, 103, 642–650. [Google Scholar] [CrossRef]
- Yan, T.T.; Xue, J.H.; Zhou, Z.D.; Wu, Y.B. Biochar and compost amendments alter the structure of the soil fungal network in a karst mountainous area. Land Degrad. Dev. 2022, 33, 685–697. [Google Scholar] [CrossRef]
- Yan, T.T.; Xue, J.H.; Zhou, Z.D.; Wu, Y.B. Impacts of biochar-based fertilization on soil arbuscular mycorrhizal fungal community structure in a karst mountainous area. Environ. Sci. Pollut. Res. 2021, 28, 66420–66434. [Google Scholar] [CrossRef]
- Zhao, Q.Q.; Xie, J.K.; Gao, Y.C.; Zhang, W.; Wang, J.N.; Chen, G.H. The distribution pattern of soil fungal community in coastal wetlands with different hydrologic conditions in the Yellow River Estuary. Acta Sci. Circumstantiae 2022, 42, 95–103. [Google Scholar] [CrossRef]
- Gascó, G.; Álvarez, M.L.; Paz-Ferreiro, J.; Méndez, A. Combining phytoextraction by Brassica napus and biochar amendment for the remediation of a mining soil in Riotinto (Spain). Chemosphere 2019, 231, 562–570. [Google Scholar] [CrossRef]
- Paz-Ferreiro, J.; Lu, H.; Fu, S.; Mendez, A.; Gasco, G. Use of phytoremediation and biochar to remediate heavy metal polluted soils: A review. Solid Earth 2014, 5, 65–75. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, L.; He, L.Y.; Sheng, X.F. Increased biomass and reduced heavy metal accumulation of edible tissues of vegetable crops in the presence of plant growth-promoting Neorhizobium huautlense T1-17 and biochar. Agric. Ecosyst. Environ. 2016, 228, 9–18. [Google Scholar] [CrossRef]
- Macdonald, L.M.; Farrell, M.; Zwieten, L.V.; Krull, E.S. Plant growth responses to biochar addition: An Australian soils perspective. Biol. Fertil. Soils 2014, 50, 1035–1045. [Google Scholar] [CrossRef]
- Dong, P.P.; Zhang, Z.M.; Zhang, M.X. Distribution effect of biochar-phytoremediation on soil heavy metal Pb and Cd. Acta Sci. Circumstantiae 2022, 42, 280–286. [Google Scholar] [CrossRef]
- Lu, H.; Li, Z.; Fu, S.; Méndez, A.; Gascó, G.; Paz-Ferreiro, J. Can Biochar and Phytoextractors Be Jointly Used for Cadmium Remediation? PLoS ONE 2014, 9, e95218. [Google Scholar] [CrossRef] [PubMed]
- Liang, N.; Liu, J.Y.; Feng, Y.; Tian, J.; Li, D.S. Soil Particle Size Distribution and Bacterial Diversity of Suaeda Salsa-Phragmites Australis Community of the Yellow River Delta. Shandong Forstry Sci. Technol. 2021, 51, 27–30. [Google Scholar]
- Zheng, L.D. Effects of Biochar on the Enzyme Activities and Bacterial Community in the Wetland Soil Contaminated by Pb and Cd. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2018. [Google Scholar]
- Wang, L.; Wang, X.; Jiang, L.; Zhang, K.; Tanveer, M.; Tian, C.Y.; Zhao, Z. Reclamation of saline soil by planting annual euhalophyte Suaeda salsa with drip irrigation: A three-year field experiment in arid northwestern China. Ecol. Eng. 2020, 159, 106090. [Google Scholar] [CrossRef]
- Ran, J.W.; Qi, X.; Wu, D.; Huang, M.; Cai, Z.J.; Huang, Y.P.; Zhang, W.J. Impacts of biochar application on soil nutrient availability and exchangeable based cations: A meta-analysis. Chin. J. Eco-Agric. 2023, 31, 1449–1459. [Google Scholar]
- Clough, T.J.; Condron, L.M.; Kammann, C.; Müller, C.A. Review of biochar and soil nitrogen dynamics. Agronomy 2013, 3, 275–293. [Google Scholar] [CrossRef]
- Ameloot, N.; Graber, E.R.; Verheijen, F.G.A.; De Neve, S. Interactions between biochar stability and soil organisms: Review and research needs. Eur. J. Soil Sci. 2013, 64, 379–390. [Google Scholar] [CrossRef]
- Cao, H.; Ning, L.F.; Xun, M.; Feng, F.; Li, P.; Yue, S.Q.; Song, J.; Zhang, W.; Yang, H. Biochar can increase nitrogen use efficiency of Malus hupehensis by modulating nitrate reduction of soil and root. Appl. Soil Ecol. 2018, 135, 25–32. [Google Scholar] [CrossRef]
- Abu Zied Amin, A.E.E. Impact of corn cob biochar on potassium status and wheat growth in a calcareous sandy soil. Commun. Soil Sci. Plant Anal. 2016, 47, 2026–2033. [Google Scholar] [CrossRef]
- Peng, Q.C.; Liu, X.H.; Luo, P.Y.; Liang, W.J.; Liu, N.; Yang, J.F.; Han, X.R. Adsorption and desorption characteristics of nitrogen, phosphorus and potassium by biochars from different raw materials. J. Plant Nutr. Fertil. 2019, 25, 1763–1772. [Google Scholar]
- Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A.S. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci. 2019, 174, 105–112. [Google Scholar] [CrossRef]
- Deng, J.Q.; Tan, J.; Shi, H.L.; Fan, J.; Xiang, B.K.; Wang, R. Control effect of biochar on soil mi-croorganism in land consolidation region. Acta Taba-Caria Sin. 2018, 24, 46–52. [Google Scholar]
- Wong, J.T.F.; Chen, X.W.; Deng, W.J.; Chai, Y.M.; Ng, C.W.W.; Wong, M.H. Effects of biochar on bacterial communities in a newly established landfill cover topsoi. J. Environ. Manag. 2019, 23, 667–673. [Google Scholar] [CrossRef]
- Azarbad, H.; Niklińska, M.; Laskowski, R.; van Straalen, N.M.; van Gestel, C.A.M.; Zhou, J.Z.; He, Z.; Wen, C.; Röling, W.F. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients. FEMS Microbiol. Ecol. 2015, 91, 1–11. [Google Scholar] [CrossRef]
- Wang, X.G.; Sun, R.B.; Tian, Y.P.; Guo, K.; Sun, H.Y.; Liu, X.J.; Chu, H.; Liu, B. Long-term phytoremediation of coastal saline soil reveals plant species-specific patterns of microbial community recruitment. mSystems 2020, 5, 10–1128. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Paungfoo-Lonhienne, C.; Yeoh, Y.K.; Kasinadhuni, N.R.P.; Lonhienne, T.G.; Robinson, N.; Hugenholtz, P.; Ragan, M.A.; Schmidt, S. Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizospher. Sci. Rep. 2015, 5, 8678. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, G.F.; Chenia, H.Y.; Govinden, R.; Luo, J.; Ren, G.D. Biochar-mediated control of phytophthora blight of pepper is closely related to the improvement of the rhizosphere fungal community. Front. Microbiol. 2020, 11, 1427. [Google Scholar] [CrossRef]
- Li, R.X.; Li, H.J.; Huo, Y.L.; Gao, Y.; Yang, Z.L.; Zhang, A.P. Effect of biochar on root morphology and endophytic fungal diversity of winter wheat in North China. Trans. Chin. Soc. Agric. Mach. 2018, 49, 235–242. [Google Scholar]
Parameters | Unit | Soil | Biochar |
---|---|---|---|
pH | - | 8.65 | 9.15 |
EC | μS/cm | 1725.00 | 2380.00 |
NH4+-N | mg/kg | 10.89 | 15.78 |
NO3−-N | mg/kg | 6.13 | 6.62 |
TOC | % | 0.52 | 33.56 |
Available P | mg/kg | 1.98 | 288.79 |
Available K | mg/kg | 132.64 | 4335.98 |
Ca | g/kg | 46.60 | 11.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, P.; Zhang, Z.; Zhang, M. Combination of Phytoextraction and Biochar Improves Available Potassium and Alters Microbial Community Structure in Soils. Water 2024, 16, 118. https://doi.org/10.3390/w16010118
Dong P, Zhang Z, Zhang M. Combination of Phytoextraction and Biochar Improves Available Potassium and Alters Microbial Community Structure in Soils. Water. 2024; 16(1):118. https://doi.org/10.3390/w16010118
Chicago/Turabian StyleDong, Panpan, Zhenming Zhang, and Mingxiang Zhang. 2024. "Combination of Phytoextraction and Biochar Improves Available Potassium and Alters Microbial Community Structure in Soils" Water 16, no. 1: 118. https://doi.org/10.3390/w16010118
APA StyleDong, P., Zhang, Z., & Zhang, M. (2024). Combination of Phytoextraction and Biochar Improves Available Potassium and Alters Microbial Community Structure in Soils. Water, 16(1), 118. https://doi.org/10.3390/w16010118