A Multi-Strategy Improved Sooty Tern Optimization Algorithm for Concrete Dam Parameter Inversion
Abstract
:1. Introduction
2. Basic Principles of Parametric Inversion for Gravity Dams
3. A Multi-Strategy Improved STOA Inversion Framework
3.1. STOA
3.1.1. Migration Behavior (Global Search)
- Conflict avoidance: To avoid collisions between individuals during migration, additional mass SA is introduced in the iterative computation to update individual positions.
- 2.
- Aggregation: After avoiding collisions between neighboring agents, the search agent will move towards the best position among the neighboring agents, that is, towards the position of the optimal solution, as expressed in the following equation:
- 3.
- Position update: The search agent updates its position based on the best position. The equation is as follows:
3.1.2. Migration Behavior (Local Search)
3.2. An Improved STOA with Multiple Strategies
3.2.1. Population Initialization by Circle Mapping
3.2.2. Non-Linear Additional Mass SA
3.2.3. Limit Threshold and Gaussian Variation
3.2.4. Algorithm Parallelism Improvement
3.3. The Process of Inverse Optimization Implementation
4. Algorithm Verification
4.1. The Performance on the Test Functions
4.2. The Performance on the Assumed Example
5. Case Study
6. Conclusions
- (1)
- The proposed improved algorithm shows good global search capability and convergence speed by enhancing the STOA with multiple strategies and setting the jump-out rule. It provides the possibility to eliminate local minima.
- (2)
- Combined with finite element computation, the inversion framework of concrete dam mechanics parameters based on the MSSTOA is constructed. Validated by two examples, the concrete dam material mechanical parameters can be effectively identified, and its inversion results are better than other benchmark algorithms, indicating that the inversion strategy has high search accuracy and fast inversion speed. Meanwhile, based on multi-core CPUs to subdivide populations in a sub-population manner for computation, it dramatically improves the solution rate of complex inversion problem computations.
- (3)
- The identified material parameters are used for finite element prediction of displacements, and the results are in good agreement with the elastic hydrostatic component separated by the statistical model, indicating that the method can identify the mechanical parameters related to the hydrostatic component when the dam is in an elastic state, while the proposed method can be adopted for the inversion of most mechanical responses.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wen, Z.; Zhou, R.; Su, H. MR and stacked GRUs neural network combined model and its application for deformation prediction of concrete dam. Expert. Syst. Appl. 2022, 201, 117272. [Google Scholar] [CrossRef]
- Li, M.; Shen, Y.; Ren, Q.; Li, H. A new distributed time series evolution prediction model for dam deformation based on constituent elements. Adv. Eng. Inform. 2019, 39, 41–52. [Google Scholar] [CrossRef]
- ICOLD. Number of dams by country members. Available online: https://www.icold-cigb.org/article/GB/world_register/general_synthesis/number-of-dams-by-country (accessed on 30 April 2023).
- Jia, J. A technical review of hydro-project development in China. Engineering 2016, 2, 302–312. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Z.; Gu, C.; Li, Y.; Zhang, K.; Xie, M.; Cha, Y.-J. A Coupled Model for Dam Foundation Seepage Behavior Monitoring and Forecasting Based on Variational Mode Decomposition and Improved Temporal Convolutional Network. Struct. Control Health Monit. 2023, 2023, 3879096. [Google Scholar] [CrossRef]
- Mata, J.; Tavares de Castro, A.; Sá da Costa, J. Constructing statistical models for arch dam deformation. Struct. Control Health Monit. 2014, 21, 423–437. [Google Scholar] [CrossRef]
- Cao, W.; Wen, Z.; Su, H. Spatiotemporal clustering analysis and zonal prediction model for deformation behavior of super-high arch dams. Expert. Syst. Appl. 2023, 216, 119439. [Google Scholar] [CrossRef]
- Su, H.; Chen, Z.; Wen, Z. Performance improvement method of support vector machine-based model monitoring dam safety. Struct. Control Health Monit. 2016, 23, 252–266. [Google Scholar] [CrossRef]
- Zhu, Y.; Xie, M.; Zhang, K.; Li, Z. A Dam Deformation Residual Correction Method for High Arch Dams Using Phase Space Reconstruction and an Optimized Long Short-Term Memory Network. Mathematics 2023, 11, 2010. [Google Scholar] [CrossRef]
- Zhu, Y.; Tang, H. Automatic Damage Detection and Diagnosis for Hydraulic Structures Using Drones and Artificial Intelligence Techniques. Remote Sens. 2023, 15, 615. [Google Scholar] [CrossRef]
- Yang, L.; Su, H.; Wen, Z. Improved PLS and PSO methods-based back analysis for elastic modulus of dam. Adv. Eng. Softw. 2019, 131, 205–216. [Google Scholar] [CrossRef]
- Kang, F.; Liu, X.; Li, J.; Li, H. Multi-parameter inverse analysis of concrete dams using kernel extreme learning machines-based response surface model. Eng. Struct. 2022, 256, 113999. [Google Scholar] [CrossRef]
- Sevim, B.; Altunişik, A.C.; Bayraktar, A.; Akköse, M.; Adanur, S. Estimation of Elasticity Modulus of a Prototype Arch Dam Using Experimental Methods. J. Mater. Civil. Eng. 2012, 24, 321–329. [Google Scholar] [CrossRef]
- Wu, J.; Yang, X.; Song, Y.; Sun, Q.; Pei, Y. Study on a new inversion method for non-uniform distribution of rock material parameters. Bull. Eng. Geol. Environ. 2022, 81, 280. [Google Scholar] [CrossRef]
- Song, Z.; Yang, Z.; Huo, R.; Zhang, Y. Inversion Analysis Method for Tunnel and Underground Space Engineering: A Short Review. Appl. Sci. 2023, 13, 5454. [Google Scholar] [CrossRef]
- Hadef, M.; Mekideche, M.R.; Djerdir, A.; Miraoui, A. An Inverse Problem Approach for Parameter Estimation of Interior Permanent Magnet Synchronous Motor. Prog. Electromagn. Res. 2011, 31, 15–28. [Google Scholar] [CrossRef]
- Schädler, W.; Borgatti, L.; Corsini, A.; Meier, J.; Ronchetti, F.; Schanz, T. Geomechanical assessment of the Corvara earthflow through numerical modelling and inverse analysis. Landslides 2014, 12, 495–510. [Google Scholar] [CrossRef]
- Fang, Z.; Su, H.; Wen, Z. Joint back-analysis for dynamic material parameters of concrete dam based on time-frequency domain information. Struct. Control Health Monit. 2019, 26, e2385. [Google Scholar] [CrossRef]
- Xiong, F.; Wei, B.; Xu, F. Identification of arch dam mechanical parameters based on sensitivity analysis and Hooke–Jeeves algorithm optimization. Structures 2022, 46, 88–98. [Google Scholar] [CrossRef]
- Kang, F.; Wu, Y.; Ma, J.; Li, J. Structural identification of super high arch dams using Gaussian process regression with improved salp swarm algorithm. Eng. Struct. 2023, 286, 116150. [Google Scholar] [CrossRef]
- Gu, H.; Wu, Z.; Huang, X.; Song, J. Zoning Modulus Inversion Method for Concrete Dams Based on Chaos Genetic Optimization Algorithm. Math. Probl. Eng. 2015, 2015, 817241. [Google Scholar] [CrossRef]
- Zhu, Y.; Niu, X.; Wang, J.; Gu, C.; Zhao, E.; Huang, L.; Mazzotti, C. Inverse Analysis of the Partitioning Deformation Modulus of High-Arch Dams Based on Quantum Genetic Algorithm. Adv. Civ. Eng. 2020, 2020, 9842140. [Google Scholar] [CrossRef]
- Dou, S.; Li, J.; Kang, F. Parameter identification of concrete dams using swarm intelligence algorithm. Eng. Comput. 2017, 34, 2358–2378. [Google Scholar] [CrossRef]
- Chen, Y.; Gu, C.; Wu, B.; Shao, C.; Wu, Z.; Dai, B. Inversion Modeling of Dam-Zoning Elasticity Modulus for Heightened Concrete Dam Using ICS-IPSO Algorithm. Math. Probl. Eng. 2019, 2019, 9328326. [Google Scholar] [CrossRef]
- Han, F.; Xu, L.; Zhang, T. Combined inversion of mechanical parameters of rock mass of dam foundation using particle swarm optimization method and ABAQUS. J. Hohai Univ. (Nat. Sci.) 2013, 41, 321–325. [Google Scholar] [CrossRef]
- Lin, C.; Li, T.; Chen, S.; Lin, C.; Liu, X.; Gao, L.; Sheng, T. Structural identification in long-term deformation characteristic of dam foundation using meta-heuristic optimization techniques. Adv. Eng. Inform. 2020, 148, 102870. [Google Scholar] [CrossRef]
- Chen, B.; Fu, X.; Guo, X.; Gu, C.; Shao, C.; Qin, X. Zoning Elastic Modulus Inversion for High Arch Dams Based on the PSOGSA-SVM Method. Adv. Civ. Eng. 2019, 2019, 7936513. [Google Scholar] [CrossRef]
- Liu, X.; Lou, Y.; Zheng, D. Inversion Analysis of High Arch Dam Mechanical Parameters based on Multi-objective Optimization Strategy and WOA-BPNN. Water Resour. Power 2023, 41, 96–99. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, A.; Rajput, S.; Mondal, A.K.; Bose, A.; Ram, M. Parameter Extraction of Solar Module Using the Sooty Tern Optimization Algorithm. Electronics 2022, 11, 564. [Google Scholar] [CrossRef]
- Sharifi, M.R.; Akbarifard, S.; Qaderi, K.; Madadi, M.R. Comparative analysis of some evolutionary-based models in optimization of dam reservoirs operation. Sci. Rep. 2021, 11, 15611. [Google Scholar] [CrossRef]
- Willm, G.; Beaujoint, N. Les méthodes de surveillance des barrages au service de la production hydraulique d’Electricité de France, problèmes anciens et solutions nouvelles. In Proceedings of the IXth International Congress on Large Dams, Istanbul, Turkey, 4–8 September 1967; pp. 529–550. [Google Scholar]
- Sevieri, G.; Andreini, M.; De Falco, A.; Matthies, H.G. Concrete gravity dams model parameters updating using static measurements. Eng. Struct. 2019, 196, 109231. [Google Scholar] [CrossRef]
- Dhiman, G.; Kaur, A. STOA: A bio-inspired based optimization algorithm for industrial engineering problems. Eng. Appl. Artif. Intel. 2019, 82, 148–174. [Google Scholar] [CrossRef]
- Dokeroglu, T.; Sevinc, E.; Kucukyilmaz, T.; Cosar, A. A survey on new generation metaheuristic algorithms. Comput. Ind. Eng. 2019, 137, 106040. [Google Scholar] [CrossRef]
- Liang, J.J.; Qu, B.; Suganthan, P.N.; Hernández-Díaz, A.G. Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-Parameter Optimization; Technical Report; Computational Intelligence Laboratory, Zhengzhou University: Zhengzhou, China; Nanyang Technological University: Singapore, 2013; Volume 201212, pp. 281–295. [Google Scholar]
- Kang, F.; Li, J.; Xu, Q. Structural inverse analysis by hybrid simplex artificial bee colony algorithms. Comput. Struct. 2009, 87, 861–870. [Google Scholar] [CrossRef]
- Cai, B.; Zhou, H.; Tian, Y. Test study on rock mechanics for Danjiangkou Project. J. Chang. River Sci. Res. Inst. 2002, S1, 117–122. [Google Scholar]
Test Function | Search Range | Formula | fmin |
---|---|---|---|
Sphere | (−100, 100) | 0 | |
Rosenbrock | (−30, 30) | 0 | |
Rastrigin | (−5.12, 5.12) | 0 | |
Ackley | (−32, 32) | 0 | |
Griewank | (−600, 600) | 0 | |
Schwefel 1.2 | (−100, 100) | 0 |
Test Function | MSSTOA | STOA | GWO | GSA | PSO | WOA | |
---|---|---|---|---|---|---|---|
Sphere | M | 2.89 × 10−249 | 6.42 × 10−90 | 1.67 × 10−27 | 1.16 × 102 | 9.17 | 1.5 × 10−72 |
SD | 3.77 × 10−250 | 2.80 × 10−89 | 1.59 × 10−27 | 1.77 × 102 | 3.78 | 6.49 × 10−72 | |
TC | 0.09 | 0.11 | 0.18 | 0.36 | 0.14 | 0.12 | |
Rosenbrock | M | 9.32 × 10−3 | 1.59 × 10−2 | 27.20 | 3.46 × 102 | 1.46 × 103 | 27.9 |
SD | 1.31 × 10−2 | 1.05 × 10−2 | 6.52 × 10−1 | 2.48 × 102 | 9.12 × 102 | 4.84 × 10−1 | |
TC | 0.10 | 0.16 | 0.18 | 0.36 | 0.19 | 0.12 | |
Rastrigin | M | 0.00 | 0.00 | 3.72 | 38.10 | 99.20 | 2.84 × 10−15 |
SD | 0.00 | 0.00 | 4.45 | 10.90 | 18.30 | 4.45 | |
TC | 0.09 | 0.13 | 0.19 | 0.34 | 0.17 | 0.11 | |
Ackley | M | 8.88 × 10−16 | 1.07 × 10−15 | 1.02 × 10−13 | 4.43 × 10−1 | 6.16 | 4.80 × 10−15 |
SD | 3.92 × 10−20 | 7.74 × 10−15 | 1.98 × 10−14 | 6.47 × 10−1 | 1.11 | 1.91 × 10−15 | |
TC | 0.09 | 0.14 | 0.18 | 0.35 | 0.16 | 0.12 | |
Griewank | M | 0.00 | 1.33 × 10−2 | 2.76 × 10−3 | 1.05 × 102 | 4.35 × 10−1 | 5.55 × 10−18 |
SD | 0.00 | 3.47 × 10−18 | 5.76 × 10−3 | 14.6 | 1.54 × 10−1 | 2.42 × 10−17 | |
TC | 0.10 | 0.17 | 0.17 | 0.38 | 0.19 | 0.13 | |
Schwefel 1.2 | M | 3.76 × 10−261 | 1.43 × 10−80 | 2.39 × 10−5 | 1.49 × 103 | 7.87 × 102 | 4.48 × 104 |
SD | 5.87 × 10−280 | 2.90 × 10−80 | 4.15 × 10−5 | 5.65 × 102 | 3.33 × 102 | 1.02 × 104 | |
TC | 0.15 | 0.39 | 0.28 | 0.45 | 0.23 | 0.19 |
Sets | Materials | Density (kg·m−3) | Assumed E (GPa) | Search Range of E (GPa) | Poisson’s Ratio |
---|---|---|---|---|---|
1 | concrete | 2400 | 30.0 | 15~40 | 0.167 |
rock | 2790 | 15.0 | 10~30 | 0.2 | |
2 | concrete | 2400 | 24.0 | 15~40 | 0.167 |
rock | 2790 | 12.0 | 10~30 | 0.2 |
Sets | Water Level (m) | X-Direction Displacement (mm) | ΔX (mm) | Y-Direction Displacement (mm) | ΔY (mm) |
---|---|---|---|---|---|
1 | 93 | 0.97 | / | 0.73 | / |
103 | 1.67 | 0.70 | 1.25 | 0.52 | |
2 | 93 | 1.21 | / | 0.91 | / |
103 | 2.08 | 0.87 | 1.56 | 0.65 |
Points | R | a0 | a1 | a2 | a3 | b1 | b2 | b3 | b4 | c1 | c2 |
---|---|---|---|---|---|---|---|---|---|---|---|
P1 | 0.9360 | −0.5126 | 9.8443 | −0.1452 | 7.16 × 10−4 | −2.6507 | −0.8143 | 0 | 0 | 0 | −0.4797 |
P2 | 0.9553 | −0.3813 | 11.6993 | −0.1756 | 8.75 × 10−4 | −2.5646 | −1.3217 | 0 | 0.3649 | 0 | −0.5857 |
P3 | 0.9578 | 0.076 | 6.9122 | −0.1014 | 4.95 × 10−4 | −2.486 | −1.4652 | 0 | 0.2188 | 0 | −0.4452 |
Points | Typical Day | Upstream Water Level (m) | Measured Value (mm) | Fitted Value (mm) | Water Load Component (mm) | Component Difference (mm) |
---|---|---|---|---|---|---|
P1 | 1 June 2013 | 138.43 | 0 | 0 | 0 | / |
26 November 2017 | 166.03 | 2.58 | 2.52 | 5.07 | 5.07 | |
27 December 2017 | 165.52 | 3.04 | 3.14 | 4.45 | 4.45 | |
P2 | 1 June 2013 | 138.43 | 0 | 0 | 0 | / |
26 November 2017 | 166.03 | 1.69 | 1.81 | 4.00 | 4.00 | |
27 December 2017 | 165.52 | 2.34 | 2.44 | 3.64 | 3.64 | |
P3 | 1 June 2013 | 138.43 | 0 | 0 | 0 | / |
26 November 2017 | 166.03 | 1.40 | 1.41 | 1.77 | 1.77 | |
27 December 2017 | 165.52 | 2.02 | 1.98 | 1.62 | 1.62 |
MSSTOA | STOA | GWO | GSA | PSO | ||
---|---|---|---|---|---|---|
EA (GPa) | 36.16 | 36.17 | 33.77 | 35.04 | 37.71 | |
EB (GPa) | 30.18 | 30.49 | 29.26 | 29.32 | 30.30 | |
EC (GPa) | 24.45 | 24.12 | 26.29 | 25.86 | 24.00 | |
Optimal fitness | 5.37 × 10−31 | 9.99 × 10−7 | 1.23 × 10−6 | 7.99 × 10−6 | 7.91 × 10−6 | |
Cost time (s) | parallel | 34,014 | / | / | / | / |
serial | 61,225 | 65,758 | 91,359 | 94,093 | 70,047 |
Points | Date | Upstream Water Level (m) | δHmeasured (mm) | δHFEM (mm) | Relative Error (%) |
---|---|---|---|---|---|
P1 | 1 January 2017 | 154.54 | 1.56 | 1.568 | 0.51 |
26 September 2017 | 162.47 | 3.28 | 3.296 | 0.49 | |
26 November 2017 | 166.03 | 5.07 | 5.098 | 0.55 | |
27 December 2017 | 165.52 | 4.45 | 4.437 | 0.29 | |
P2 | 1 January 2017 | 154.54 | 1.30 | 1.305 | 0.39 |
26 September 2017 | 162.47 | 1.95 | 1.956 | 0.31 | |
26 November 2017 | 166.03 | 4.00 | 3.989 | 0.28 | |
27 December 2017 | 165.52 | 3.64 | 3.633 | 0.19 | |
P3 | 1 January 2017 | 154.54 | 0.62 | 0.622 | 0.33 |
26 September 2017 | 162.47 | 1.39 | 1.395 | 0.36 | |
26 November 2017 | 166.03 | 1.77 | 1.776 | 0.34 | |
27 December 2017 | 165.52 | 1.62 | 1.627 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Ma, F.; Cao, W.; Lou, B.; Luo, X.; Li, Q.; Hao, X. A Multi-Strategy Improved Sooty Tern Optimization Algorithm for Concrete Dam Parameter Inversion. Water 2024, 16, 119. https://doi.org/10.3390/w16010119
Ma L, Ma F, Cao W, Lou B, Luo X, Li Q, Hao X. A Multi-Strategy Improved Sooty Tern Optimization Algorithm for Concrete Dam Parameter Inversion. Water. 2024; 16(1):119. https://doi.org/10.3390/w16010119
Chicago/Turabian StyleMa, Lin, Fuheng Ma, Wenhan Cao, Benxing Lou, Xiang Luo, Qiang Li, and Xiaoniao Hao. 2024. "A Multi-Strategy Improved Sooty Tern Optimization Algorithm for Concrete Dam Parameter Inversion" Water 16, no. 1: 119. https://doi.org/10.3390/w16010119
APA StyleMa, L., Ma, F., Cao, W., Lou, B., Luo, X., Li, Q., & Hao, X. (2024). A Multi-Strategy Improved Sooty Tern Optimization Algorithm for Concrete Dam Parameter Inversion. Water, 16(1), 119. https://doi.org/10.3390/w16010119