Sediment Sources, Erosion Processes, and Interactions with Climate Dynamics in the Vakhsh River Basin, Tajikistan
Abstract
:1. Introduction
2. Study Area
3. Methods
4. Results and Discussion
4.1. Lithologic and Pedologic Attributes Affecting Sedimentation
4.2. Contemporary Geomorphic Attributes and Processes Affecting Sedimentation
4.2.1. Surface Erosion
4.2.2. Mass Wasting Processes Affecting Sedimentation
4.2.3. Glacial Sedimentation Processes
4.2.4. Fluvial Erosion Processes
4.3. Vakhsh River Discharge and Suspended Particle Matter Transport
4.4. Effects of Climate Trends across the Vakhsh Basin on Sedimentation
4.5. Land Use–Land Cover in the Vakhsh Basin
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baker, L.A. Introduction to nonpoint source pollution in the United States and prospects for wetland use. Ecol. Eng. 1992, 1, 1–26. [Google Scholar] [CrossRef]
- Sharpley, A.; Jarvie, H.P.; Buda, A.; May, L.; Spears, B.; Kleinman, P. Phosphorus legacy: Overcoming the effects of past management practices to mitigate future water quality impairment. J. Environ. Qual. 2013, 42, 1308–1326. [Google Scholar] [CrossRef] [PubMed]
- Sidle, R.C.; Chambers, J.C.; Amacher, M.C. Fate of heavy metals in an abandoned lead-zinc tailings pond: II. Sediment. J. Environ. Qual. 1991, 20, 752–758. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.; Islam, M.K. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol. Indicat. 2015, 48, 282–291. [Google Scholar] [CrossRef]
- Kašanin-Grubin, M.; Gajić, V.; Veselinović, G.; Stojadinović, S.; Antić, N.; Štrbac, S. Provenance and pollution status of river sediments in the Danube watershed in Serbia. Water 2023, 15, 3406. [Google Scholar] [CrossRef]
- Kile, D.E.; Chiou, C.T.; Zhou, H.; Li, H.; Xu, O. Partition of nonpolar organic pollutants from water to soil and sediment organic matters. Environ. Sci. Technol. 1995, 29, 1401–1406. [Google Scholar] [CrossRef]
- Barber, D.S.; Yuldashev, B.S.; Kadyrzhanov, K.K.; Yeleukenov, D.; Ben Ouagrahm, S.; Solodukhin, V.P.; Salikbaev, U.S.; Kist, A.A.; Vasiliev, I.A.; Dzhuraev, A.A.; et al. Radio-ecological situation in river basins of Central Asia Syrdarya and Amudarya according to the results of the project “Navruz”. In Environmental Protection Against Radioactive Pollution; Springer: Dordrecht, The Netherlands, 2003; pp. 39–51. [Google Scholar]
- Bradshaw, J.K.; Snyder, B.J.; Oladeinde, A.; Spidle, D.; Berrang, M.E.; Meinersmann, R.J.; Oakley, B.; Sidle, R.C.; Sullivan, K.; Molina, M. Characterizing relationships among fecal indicator bacteria, microbial source tracking markers, and associated waterborne pathogen occurrence in stream water and sediments in a mixed land use watershed. Water Res. 2016, 101, 498–509. [Google Scholar] [CrossRef]
- Pizzuto, J.E. Channel adjustments to changing discharges, Powder River, Montana. Geol. Soc. Am. Bull. 1994, 106, 1494–1501. [Google Scholar] [CrossRef]
- Wood, P.J.; Armitage, P.D. Biological effects of fine sediment in the lotic environment. Environ. Manag. 1997, 21, 203–217. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Gao, Y.; Annandale, G.W.; Morris, G.L.; Jiang, E.; Zhang, J.; Cao, Y.; Carling, P.; Fu, K.; Guo, Q.; et al. Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents. Earth’s Future 2014, 2, 256–280. [Google Scholar] [CrossRef]
- Padhy, M.K.; Saini, R.P. A review on silt erosion in hydro turbines. Renew. Sustain. Energy Rev. 2008, 12, 1974–1987. [Google Scholar] [CrossRef]
- Liébault, F.; Gomez, B.; Page, M.; Marden, M.; Peacock, D.; Richard, D.; Trotter, C.M. Land-use change, sediment production and channel response in upland regions. River Res. Appl. 2005, 21, 739–756. [Google Scholar] [CrossRef]
- Sidle, R.C.; Ziegler, A.D.; Negishi, J.N.; Abdul Rahim, N.; Siew, R.; Turkelboom, F. Erosion processes in steep terrain—Truths, myths, and uncertainties related to forest management in Southeast Asia. For. Ecol. Manag. 2006, 224, 199–225. [Google Scholar] [CrossRef]
- Korup, O.; Densmore, A.L.; Schlunegger, F. The role of landslides in mountain range evolution. Geomorphology 2010, 120, 77–90. [Google Scholar] [CrossRef]
- Ramos-Scharrón, C.E.; MacDonald, L.H. Measurement and prediction of natural and anthropogenic sediment sources, St. John, US Virgin Islands. Catena 2007, 71, 250–266. [Google Scholar] [CrossRef]
- Sidle, R.C.; Gomi, T.; Loaiza Usuga, J.C.; Jarihani, B. Hydrogeomorphic processes and scaling issues in the continuum from soil pedons to catchments. Earth-Sci. Rev. 2017, 175, 75–96. [Google Scholar] [CrossRef]
- Walling, D.E. The sediment delivery problem. J. Hydrol. 1983, 65, 209–237. [Google Scholar] [CrossRef]
- Koiter, A.J.; Owens, P.N.; Petticrew, E.L.; Lobb, D.A. The behavioural characteristics of sediment properties and their implications for sediment fingerprinting as an approach for identifying sediment sources in river basins. Earth-Sci. Rev. 2013, 125, 24–42. [Google Scholar] [CrossRef]
- Jordan, P.; Slaymaker, O. Holocene sediment production in Lillooet River basin, British Colombia: A sediment budget approach. Géogr. Phys. Quat. 1991, 45, 45–57. [Google Scholar] [CrossRef]
- Manh, N.V.; Dung, N.V.; Hung, N.N.; Merz, B.; Apel, H. Large-scale suspended sediment transport and sediment deposition in the Mekong Delta. Hydrol. Earth Syst. Sci. 2014, 18, 3033–3053. [Google Scholar] [CrossRef]
- Wilkinson, S.N.; Dougall, C.; Kinsey-Henderson, A.E.; Searle, R.D.; Ellis, R.J.; Bartley, R. Development of a time-stepping sediment budget model for assessing land use impacts in large river basins. Sci. Total Environ. 2014, 468, 1210–1224. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, B.H.; McElroy, B.J. The impact of humans on continental erosion and sedimentation. Geol. Soc. Am. Bull. 2007, 119, 140–156. [Google Scholar] [CrossRef]
- Walling, D.E. Linking land use, erosion and sediment yields in river basins. In Man and River Systems: The Functioning of River Systems at the Basin Scale; Springer: Berlin/Heidelberg, Germany, 1999; pp. 223–240. [Google Scholar]
- Parsons, A.J.; Wainwright, J.; Powell, D.M.; Kaduk, J.; Brazier, R.E. A conceptual model for determining soil erosion by water. Earth Surf. Process. Landf. 2004, 29, 1293–1302. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Vörösmarty, C.J.; Kettner, A.J.; Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, A.D.; Sidle, R.C.; Phang, V.X.; Wood, S.H.; Tantasirin, C. Bedload transport in SE Asian streams—Uncertainties and implications for reservoir management. Geomorphology 2014, 227, 31–48. [Google Scholar] [CrossRef]
- Sidle, R.C. Bed load transport regime of a small forest stream. Water Resour. Res. 1988, 24, 207–218. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Tajikistan 2022, Energy Sector Review; IEA: Paris, France, 2022; 134p. [Google Scholar]
- Rakhmatullaev, S.; Huneau, F.; Celle-Jeanton, H.; Le Coustumer, P.; Motelica-Heino, M.; Bakiev, M. Water reservoirs, irrigation and sedimentation in Central Asia: A first-cut assessment for Uzbekistan. Environ. Earth Sci. 2013, 68, 985–998. [Google Scholar] [CrossRef]
- Sidle, R.C.; Khan, A.A.; Caiserman, A.; Qadamov, A.; Khojazoda, Z. Food security in high mountains of Central Asia: A broader perspective. BioScience 2023, 73, 347–363. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Bierkens, M.F.P. Asia’s water balance. Nat. Geosci. 2012, 5, 841–842. [Google Scholar] [CrossRef]
- Zhao, L.; Wu, Q.; Marchenko, S.S.; Sharkhuu, N. Thermal state of permafrost and active layer in Central Asia during the International Polar Year. Permafr. Periglac. Process. 2010, 21, 198–207. [Google Scholar] [CrossRef]
- Lambrecht, A.; Mayer, C.; Bohleber, P.; Aizen, V. High altitude accumulation and preserved climate information in the western Pamir, observations from the Fedchenko Glacier accumulation basin. J. Glaciol. 2020, 66, 219–230. [Google Scholar] [CrossRef]
- Kronenberg, M.; van Pelt, W.; Machguth, H.; Fiddes, J.; Hoelzle, M.; Pertziger, F. Long-term firn and mass balance modelling for Abramov Glacier in the data-scarce Pamir Alay. Cryosphere 2022, 16, 5001–5022. [Google Scholar] [CrossRef]
- Iwata, S. Mapping features of Fedchenko Glacier, the Pamirs, central Asia from space. Geogr. Stud. 2009, 84, 33–43. [Google Scholar] [CrossRef]
- Grin, E. Investigation of Glacial Retreat, Terrace Abandonment, and Catchment-Wide Denudation Rates in the Vakhsh Catchment Tajikistan. Ph.D. Thesis, Universität Tübingen, Tübingen, Germany, 2019. [Google Scholar]
- Gulakhmadov, A.; Chen, X.; Gulakhmadov, M.; Kobuliev, Z.; Gulahmadov, N.; Peng, J.; Li, Z.; Liu, T. Evaluation of the CRU TS3. 1, APHRODITE_V1101, and CFSR datasets in assessing water balance components in the upper Vakhsh River basin in Central Asia. Atmosphere 2021, 12, 1334. [Google Scholar] [CrossRef]
- Kayumov, A. Glaciers Resources of Tajikistan in Condition of the Climate Change; State Agency for Hydrometeorology of Committee for Environmental Protection under the Government of the Republic of Tajikistan: Dushanbe, Tajikistan, 2010. [Google Scholar]
- Leonov, M.G.; Rybin, A.K.; Batalev, V.Y.; Matyukov, V.E.; Shchelochkov, G.G. Tectonic structure and evolution of the Hissar–Alay mountain domain and the Pamirs. Geotectonics 2017, 51, 566–583. [Google Scholar] [CrossRef]
- Japan International Cooperation Agency (JICA). Data Collection Survey on the Instalment of Small Hydropower Stations for the Communities of Khatlon Oblast in the Republic of Tajikistan; Final Report; Japan International Cooperation Agency (JICA): Tokyo, Japan, 2012; 52p.
- World Bank. Valuing Green Infrastructure: A Case Study of the Vakhsh River Basin, Tajikistan; World Bank: Washington, DC, USA, 2023; 110p. [Google Scholar]
- Obu, J.; Westermann, S.; Bartsch, A.; Berdnikov, N.; Christiansen, H.H.; Dashtseren, A.; Delaloye, R.; Elberling, B.; Etzelmüller, B.; Kholodov, A.; et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Sci. Rev. 2019, 193, 299–316. [Google Scholar] [CrossRef]
- Burtman, V.S. Nappes of the southern Tien Shan. Russ. J. Earth Sci. 2008, 10, ES1006. [Google Scholar] [CrossRef]
- Techno-Economic Assessment Study (TEAS) Consultants. Techno-Economic Assessment Study for Rogun Hydroelectric Construction Project, Phase II Report (Final); Coynre et Bellier: Gennevilliers, France; ELC Electroconsult: Milan, Italy; IPA Energy + Water Economics: Edinburgh, UK, 2014. [Google Scholar]
- Schwab, M.; Ratschbacher, L.; Siebel, W.; McWilliams, M.; Minaev, V.; Lutkov, V.; Chen, F.; Stanek, K.; Nelson, B.; Frisch, W.; et al. Assembly of the Pamirs: Age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet. Tectonics 2004, 23, 1–31. [Google Scholar] [CrossRef]
- Forster, T.; Heller, F. Loess deposits from the Tajik depression (Central Asia): Magnetic properties and paleoclimate. Earth Planet. Sci. Lett. 1994, 128, 501–512. [Google Scholar] [CrossRef]
- Sidle, R.C.; Jarihani, B.; Kaka, S.I.; Koci, J.; Al-Shaibani, A. Hydrogeomorphic processes affecting dryland gully erosion: Implications for modelling. Prog. Phys. Geogr. Earth Environ. 2019, 43, 46–64. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, L.; Li, M.; Men, Z. The study of watershed topography characteristics in Vakhsh River based on ZY3-DSM. Int. Arch. Photogram. Remote Sens. Spat. Inform. Sci. 2018, 42, 245–251. [Google Scholar] [CrossRef]
- Gulakhmadov, A.; Chen, X.; Gulahmadov, N.; Liu, T.; Anjum, M.N.; Rizwan, M. Simulation of the potential impacts of projected climate change on streamflow in the Vakhsh river basin in central Asia under CMIP5 RCP scenarios. Water 2020, 12, 1426. [Google Scholar] [CrossRef]
- Demidov, V.; Akhmadov, H. Rehabilitation of Saline Soils in Tajikistan: The Example of Saline Soils in Vakhsh Valley; Eurasian Center for Food Security: Moscow, Russia, 2016; Volume 8–9, 14p. [Google Scholar]
- Sidle, R.C.; Onda, Y. Hydrogeomorphology: Overview of an emerging science. Hydrol. Process. 2004, 18, 597–602. [Google Scholar] [CrossRef]
- Borselli, L.; Cassi, P.; Torri, D. Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena 2008, 75, 268–277. [Google Scholar] [CrossRef]
- Bautista, S.; Mayor, Á.G.; Bourakhouadar, J.; Bellot, J. Plant spatial pattern predicts hillslope runoff and erosion in a semiarid Mediterranean landscape. Ecosystems 2007, 10, 987–998. [Google Scholar] [CrossRef]
- Rijsdijk, A.; Bruijnzeel, L.A.; Prins, T.M. Sediment yield from gullies, riparian mass wasting and bank erosion in the Upper Konto catchment, East Java, Indonesia. Geomorphol. Hum. Impact Geomorphol. Trop. Mt. Areas 2007, 87, 38–52. [Google Scholar] [CrossRef]
- Jones, N.; Manconi, A.; Strom, A. Active landslides in the Rogun Catchment, Tajikistan, and their river damming hazard potential. Landslides 2021, 18, 3599–3613. [Google Scholar] [CrossRef]
- Sidle, R.C.; Bogaard, T.A. Dynamic earth system and ecological controls of rainfall-initiated landslides. Earth-Sci. Rev. 2016, 159, 275–291. [Google Scholar] [CrossRef]
- Metzger, S.; Ischuk, A.; Deng, Z.; Ratschbacher, L.; Perry, M.; Kufner, S.K.; Bendick, R.; Moreno, M. Dense GNSS profiles across the northwestern tip of the India-Asia collision zone: Triggered slip and westward flow of the Peter the First Range, Pamir, into the Tajik Depression. Tectonics 2020, 39, e2019TC005797. [Google Scholar] [CrossRef]
- Qiao, X.; Wang, Q.; Yang, S.; Li, J.; Zou, R.; Ding, K. The 2008 Nura Mw6. 7 earthquake: A shallow rupture on the Main Pamir Thrust revealed by GPS and InSAR. Geodesy Geodyn. 2015, 6, 91–100. [Google Scholar] [CrossRef]
- Imaizumi, F.; Sidle, R.C.; Tsuchiya, S.; Ohsaka, O. Hydrogeomorphic processes in a steep debris flow initiation zone. Geophy. Res. Lett. 2006, 33, L10404. [Google Scholar] [CrossRef]
- Imaizumi, F.; Sidle, R.C.; Togari-Ohta, A.; Shimamura, M. Temporal and spatial variation of infilling processes in a landslide scar in a steep mountainous region, Japan. Earth Surf. Process. Landf. 2015, 40, 642–653. [Google Scholar] [CrossRef]
- Sidle, R.C.; Ochiai, H. Landslides: Processes, Prediction, and Land Use; Water Resources Monograph; American Geophysical Union: Washington, DC, USA, 2006; Volume 18, 312p. [Google Scholar]
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; et al. Permafrost is warming at a global scale. Nat. Commun. 2019, 10, 264. [Google Scholar] [CrossRef] [PubMed]
- Sidle, R.C. Dark clouds over the Silk Road: Challenges facing mountain environments in Central Asia. Sustainability 2020, 12, 9467. [Google Scholar] [CrossRef]
- Wohl, E. Human impacts to mountain streams. Geomorphology 2006, 79, 217–248. [Google Scholar] [CrossRef]
- Palmer, J.A.; Schilling, K.E.; Isenhart, T.M.; Schultz, R.C.; Tomer, M.D. Streambank erosion rates and loads within a single watershed: Bridging the gap between temporal and spatial scales. Geomorphology 2014, 209, 66–78. [Google Scholar] [CrossRef]
- Longoni, L.; Papini, M.; Brambilla, D.; Barazzetti, L.; Roncoroni, F.; Scaioni, M.; Ivanov, V.I. Monitoring riverbank erosion in mountain catchments using terrestrial laser scanning. Remote Sens. 2016, 8, 241. [Google Scholar] [CrossRef]
- Normatov, P.I.; Normatov, I.S. Monitoring of meteorological, hydrological conditions and water quality of the main tributaries of the transboundary Amu Darya river. In Achievements and Challenges of Integrated River Basin Management; IntechOpen: London, UK, 2018; Volume 149. [Google Scholar]
- Akhmadov, K.M.; Breckle, S.W.; Breckle, U. Effects of grazing on biodiversity, productivity, and soil erosion of alpine pastures in Tajik Mountains. In Land Use Change and Mountain Biodiversity; CRC: Boca Raton, FL, USA, 2006; pp. 239–247. [Google Scholar]
- Mustaeva, N.; Wyes, H.; Mohr, B.; Kayumov, A. Tajikistan: Country Assessment; Working Paper; CAREC (Regional Environmental Central for Central Asia) and PRISE (Pathways to Resilience in Semi-arid Economies): Almaty, Kazakhstan, 2015; 60p. [Google Scholar]
- Breu, T.; Hurni, H. Extreme environmental conditions in a breathtaking landscape. In The Tajik Pamirs Challenges of Sustainable Development in an Isolated Mountain Region; Centre for Development and Environment, University of Bern: Bern, Switzerland, 2003; pp. 8–11. [Google Scholar]
- Shea, E.C. Adaptative management: The cornerstone of climate-smart agriculture. J. Soil Water Conserv. 2014, 69, 198A–199A. [Google Scholar] [CrossRef]
- Pohl, E.; Knoche, M.; Gloaguen, R.; Andermann, C.; Krause, P. Sensitivity analysis and implications for surface processes from a hydrological modelling approach in the Gunt catchment, high Pamir Mountains. Earth Surf. Dynam. 2015, 3, 333–362. [Google Scholar] [CrossRef]
- Jalilov, S.M.; Keskinen, M.; Varis, O.; Amer, S.; Ward, F.A. Managing the water–energy–food nexus: Gains and losses from new water development in Amu Darya River Basin. J. Hydrol. 2016, 539, 648–661. [Google Scholar] [CrossRef]
- Li, Y.; Gholami, H.; Song, Y.; Fathabadi, A.; Malakooti, H.; Collins, A.L. Source fingerprinting loess deposits in Central Asia using elemental geochemistry with Bayesian and GLUE models. Catena 2020, 194, 104808. [Google Scholar] [CrossRef]
River/Tributary | Station | Latitude | Longitude | Drainage Area (km2) | Average Discharge (m3 s−1) | Record Period |
---|---|---|---|---|---|---|
Vakhsh | Darband | 38.683° N | 69.983° E | 28,874 | 620 | 2000–2019 |
Vakhsh | Gharm | 39.000° N | 70.333° E | 19,578 | 358 | 2012–2019 |
Sarbogh | Sangimaliki | 39.033° N | 70.200° E | 1772 | 94 | 2000–2011 |
Yarkhych | Khait | 39.183° N | 70.867° E | 1161 | 49 | 2011–2018 |
Obikhingob | Sangvor | 38.783° N | 71.233° E | 1881 | 47 | 2000–2018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidle, R.C.; Caiserman, A.; Jarihani, B.; Khojazoda, Z.; Kiesel, J.; Kulikov, M.; Qadamov, A. Sediment Sources, Erosion Processes, and Interactions with Climate Dynamics in the Vakhsh River Basin, Tajikistan. Water 2024, 16, 122. https://doi.org/10.3390/w16010122
Sidle RC, Caiserman A, Jarihani B, Khojazoda Z, Kiesel J, Kulikov M, Qadamov A. Sediment Sources, Erosion Processes, and Interactions with Climate Dynamics in the Vakhsh River Basin, Tajikistan. Water. 2024; 16(1):122. https://doi.org/10.3390/w16010122
Chicago/Turabian StyleSidle, Roy C., Arnaud Caiserman, Ben Jarihani, Zulfiqor Khojazoda, Jens Kiesel, Maksim Kulikov, and Aslam Qadamov. 2024. "Sediment Sources, Erosion Processes, and Interactions with Climate Dynamics in the Vakhsh River Basin, Tajikistan" Water 16, no. 1: 122. https://doi.org/10.3390/w16010122
APA StyleSidle, R. C., Caiserman, A., Jarihani, B., Khojazoda, Z., Kiesel, J., Kulikov, M., & Qadamov, A. (2024). Sediment Sources, Erosion Processes, and Interactions with Climate Dynamics in the Vakhsh River Basin, Tajikistan. Water, 16(1), 122. https://doi.org/10.3390/w16010122