A Half-Century of Human Impact on Nan River Runoff and Sediment Load Supplied to the Chao Phraya River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Assessing of Fluvial Discharge and Sedimentary Load
2.3. Identifying Changes and Patterns in Fluvial Discharge and Sediment Transports
2.4. Evaluating the Impact of Human Activities on Fluvial Discharge and Sediment Load
3. Results
3.1. Hydrology and Sedimentology of the Nan River from 2018 Field Data
3.2. Historical Fluvial Discharge and SSL Data of the Nan River
3.3. Fluctuations in Anual Water Discharge and Sediment Transport along the Nan River
3.3.1. Temporal and Spatial Variation in Annual River Discharge
3.3.2. Temporal and Spatial Variation in Annual TSL
3.4. Influence of Major Dams on the Nan River’s Discharge and Sediment Dynamics
4. Discussion
4.1. Sediment Dynamics in the Nan River
4.2. Hydrological and Sediment Transport Patterns in the Nan River Basin
4.3. Implications of Major Dams on Hydrology and Sediment Process in the Nan River
4.4. Consequences of Large Dams on River Discharge and Sediment Supply to the Chao Phraya River
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, J.; Chen, S.L.; Dong, P. Temporal variation of sediment load in the Yellow River basin. CATENA 2010, 2, 135–147. [Google Scholar] [CrossRef]
- Charoenlerkthawin, W.; Bidorn, K.; Panneerselvam, B.; Sriariyawat, A.; Otarawanna, S.; Bidorn, B. Monitoring of nature-based solution for stabilizing eroded muddy coastline of the Chao Phraya Delta, Thailand. IOP Conf. Ser. Earth Environ. Sci. 2023, 1226, 012013. [Google Scholar] [CrossRef]
- Liu, S.W.; Zhang, X.F.; Xu, Q.X.; Liu, D.C.; Yuan, J.; Wang, M.L. Variation and driving factors of water discharge and sediment load in different regions of the Jinsha River basin in China in the past 50 years. Water 2019, 11, 1109. [Google Scholar] [CrossRef]
- Das, S. Dynamics of streamflow and sediment load in Peninsular India rivers. Sci. Total Environ. 2021, 799, 149372. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Dong, Z.; Gupta, H.; Wu, G.; Li, D. Impact of the Three Gorges Dam on the hydrology and ecology of the Yangtze River. Water 2016, 8, 590. [Google Scholar] [CrossRef]
- Liu, C.; He, Y.; Li, Z.; Chen, J.; Li, Z. Key drivers of changes in the sediment loads of Chinese rivers discharging to the oceans. Int. J. Sediment Res. 2021, 36, 747–755. [Google Scholar] [CrossRef]
- Guo, P.; Geissen, V.; Ritsema, C.J.; Mu, X.M.; Wang, F. Impact of climate change and anthropogenic activities on streamflow and sediment discharge in the Wei River basin, China. Hydrol. Earth Syst. Sci. 2013, 17, 961–972. [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, X.; Liu, Q.; Yao, Y.; Li, Y.; Wu, X.; Wang, C.; Yu, W.; Wang, T. Assessing natural and anthropogenic influences on water discharge and sediment load in the Yangtze River, China. Sci. Total Environ. 2017, 607–608, 920–932. [Google Scholar] [CrossRef]
- Charoenlerkthawin, W.; Bidorn, K.; Otarawanna, S.; Bidorn, B. Effect of Coastal Protection Structures on Beach Material Transformation. In Proceedings of the 40th IAHR World Congress, Rivers–Connecting Mountains and Coasts (IAHR 2023), Vienna, Austria, 21–25 August 2023; pp. 517–523. [Google Scholar] [CrossRef]
- Walling, D.E. Human impact on land-ocean sediment transfer by the world’s rivers. Geomorphology 2006, 79, 192–216. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, L.; Li, D.; Li, F. Water discharge and sediment load changes in China: Change patterns, causes, and implications. Water 2015, 7, 5849–5875. [Google Scholar] [CrossRef]
- Namsai, M.; Charoenlerkthawin, W.; Sirapojanakul, S.; Burnett, W.C.; Bidorn, B. Did the construction of the Bhumibol Dam cause a dramatic reduction in sediment supply to the Chao Phraya River? Water 2021, 13, 386. [Google Scholar] [CrossRef]
- Tessler, Z.D.; Vörösmarty, C.J.; Grossberg, M.; Gladkova, I.; Aizenman, H.; Syvitski, J.P.M.; Georgiou, E.F. Profiling risk and sustainability in coastal deltas of the world. Science 2015, 349, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Bidorn, B.; Sok, K.; Bidorn, K.; Burnett, W.C. An analysis of the factors responsible for the shoreline retreat of the Chao Phraya Delta (Thailand). Sci. Total Environ. 2021, 769, 145253. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.X.; Oeurng, C.; Le, T.P.Q.; Thuy, D.T. Sediment budget as affected by construction of a sequence of dams in the lower Red River, Vietnam. Geomorphology 2015, 248, 125–133. [Google Scholar] [CrossRef]
- Guo, L.; Su, N.; Zhu, C.; He, Q. How have the river discharges and sediment loads changed in the Changjiang River Basin downstream of the Three Gorges Dam? J. Hydrol. 2018, 560, 259–274. [Google Scholar] [CrossRef]
- Yang, H.F.; Yang, S.L.; Xu, K.H.; Milliman, J.D.; Wang, H.; Yang, Z.; Chen, Z.; Zhang, C.Y. Human impacts on sediment in the Yangtze River: A review and new perspectives. Glob. Planet. Chang. 2018, 162, 8–17. [Google Scholar] [CrossRef]
- Binh, V.D.; Kantoush, S.; Sumi, T. Changes to long-term discharge and sediment loads in the Vietnamese Mekong Delta caused by upstream dams. Geomorphology 2020, 353, 107011. [Google Scholar] [CrossRef]
- Guo, C.; Jin, Z.; Guo, L.; Lu, J.; Ren, S.; Zhou, Y. On the cumulative dam impact in the upper Changjiang River: Streamflow and sediment load changes. CATENA 2020, 184, 104250. [Google Scholar] [CrossRef]
- Reisenbüchler, M.; Bui, M.D.; Rutschmann, P. Reservoir sediment management using artificial neural networks: A case study of the lower section of the Alpine Saalach River. Water 2021, 13, 818. [Google Scholar] [CrossRef]
- Ve, N.D.; Fan, D.; Van Vuong, B.; Lan, T.D. Sediment budget and morphological change in the Red River Delta under increasing human interferences. Mar. Geol. 2021, 431, 106379. [Google Scholar] [CrossRef]
- Tian, Q.; Xu, K.H.; Dong, C.M.; Yang, S.L.; He, Y.J.; Shi, B.W. Declining sediment discharge in the Yangtze River from 1956 to 2017: Spatial and temporal changes and their causes. Water Resour. Res. 2021, 57, e2020WR028645. [Google Scholar] [CrossRef]
- Shalash, S. Effects of sedimentation on the storage capacity of the High Aswan Dam reservoir. Hydrobiologia 1982, 91, 623–639. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, D.; Syvitski, J.P.M.; Saito, Y.; Zhou, J.; Wang, M. Anthropogenic impacts on the decreasing sediment loads of nine major rivers in China, 1954–2015. Sci. Total Environ. 2020, 739, 139653. [Google Scholar] [CrossRef] [PubMed]
- Charoenlerkthawin, W.; Namsai, M.; Bidorn, K.; Rukvichai, C.; Panneerselvam, B.; Bidorn, B. Effects of dam construction in the Wang River on sediment regimes in the Chao Phraya River basin. Water 2021, 13, 2146. [Google Scholar] [CrossRef]
- Chong, X.Y.; Vericat, D.; Batalla, R.J.; Teo, F.Y.; Lee, K.S.P.; Gibbins, C.N. A review of the impacts of dams on the hydromorphology of tropical rivers. Sci. Total Environ. 2021, 794, 148686. [Google Scholar] [CrossRef] [PubMed]
- Bidorn, B.; Phanomphongphaisarn, N.; Rukvichai, C.; Kongsawadworakul, P. Evolution of mangrove muddy coast in the Western Coast of the Upper Gulf of Thailand over the past six decades. In Estuaries and Coastal Zones in Times of Global Change; Nguyen, K., Guillou, S., Gourbesville, P., Thiébot, J., Eds.; Springer: Singapore, 2020; pp. 429–442. [Google Scholar]
- Vongvissessomjai, S. Chao Phraya Delta: Paddy field irrigation areas in tidal deposits. In Proceedings of the 56th International Executive Council of ICID, Beijing, China, 10–18 September 2005; Available online: https://www.rid.go.th/thaicid/_5_article/2549/10_1ChaoPhraYaDelta.pdf (accessed on 13 April 2021).
- Tanabe, S.; Saito, Y.; Sato, Y.; Suzuki, Y.; Sinsakul, S.; Tiyapairach, S.; Chaimanee, N. Stratigraphy and Holocene evolution of the mud-dominated Chao Phraya delta, Thailand. Quat. Sci. Rev. 2003, 22, 789–807. [Google Scholar] [CrossRef]
- Chen, G.; Xu, B.; Bidorn, B.; Burnett, W.C. Effects of Groundwater Extraction and River Regulation on Coastal Freshwater Resources. In Blue Economy: An Ocean Science Perspective; Urban, E.R., Jr., Ittekkot, V., Eds.; Springer: Singapore, 2022; pp. 123–152. [Google Scholar]
- Charoenlerkthawin, W.; Bidorn, K.; Burnett, W.C.; Sasaki, J.; Panneerselvam, B.; Bidorn, B. Effectiveness of grey and green engineered solutions for protecting the low-lying muddy coast of the Chao Phraya Delta, Thailand. Sci. Rep. 2022, 12, 20448. [Google Scholar] [CrossRef]
- Burnett, W.C.; Bidorn, B.; Wang, Y. Can 210Pb be used as a paleo-storm proxy? Quat. Sci. Rev. 2023, 315, 108242. [Google Scholar] [CrossRef]
- Winterwerp, J.C.; Borst, W.G.; De Vries, M.B. Pilot study on the erosion and rehabilitation of a mangrove mud coast. J. Coast. Res. 2005, 21, 223–230. [Google Scholar] [CrossRef]
- Uehara, K.; Sojisuporn, P.; Saito, Y.; Jarupongsakul, T. Erosion and accretion processes in a muddy dissipative coast, the Chao Phraya River delta, Thailand. Earth Surf. Process. Landf. 2010, 35, 1701–1711. [Google Scholar] [CrossRef]
- Milliman, J.D.; Farnsworth, K.L. River Discharge to the Coastal Ocean: A Global Synthesis; Cambridge University Press: New York, NY, USA, 2011; pp. 1–382. [Google Scholar]
- Gupta, H.; Kao, S.J.; Dai, M. The role of mega dams in reducing sediment fluxes: A case study of large Asian rivers. J. Hydrol. 2012, 464–465, 447–458. [Google Scholar] [CrossRef]
- Namsai, M.; Bidorn, B.; Chanyotha, S.; Mama, R.; Phanomphongphaisarn, N. Sediment dynamics and temporal variation of runoff in the Yom River, Thailand. Int. J. Sediment Res. 2020, 35, 365–376. [Google Scholar] [CrossRef]
- Hydro and Agro Informatics Institute (HAII). Report on Data Collection and Analysis: Database Development Project and Flood and Drought Modeling of 25 River Basins (Nan River Basin); Hydro and Agro Informatics Institute: Bangkok, Thailand, 2012. (In Thai) [Google Scholar]
- Japan International Cooperation Agency (JICA). Project for the Comprehensive Flood Management Plan for the Chao Phraya River Basin; Final Report; Office of National Economic and Social Development Board: Bangkok, Thailand, 2013.
- Royal Irrigation Department (RID). A Study of Dam Break Project of Khwae Noi Dam, Phitsanulok Province; Royal Irrigation Department: Bangkok, Thailand, 2009. (In Thai)
- Wang, Y.; Rhoads, B.L.; Wang, D.; Wu, J.; Zhang, X. Impacts of large dams on the complexity of suspended sediment dynamics in the Yangtze River. J. Hydrol. 2018, 558, 184–195. [Google Scholar] [CrossRef]
- Royal Irrigation Department (RID). Nan River Basin Hydrometeorological Report; Royal Irrigation Department: Bangkok, Thailand, 1969.
- Bidorn, B.; Namsai, M.; Charoenlerkthawin, W.; Bidorn, K. Recent Changes in Sediment Supply to the Chao Phraya Delta. In Proceedings of the 40th IAHR World Congress, Rivers–Connecting Mountains and Coasts (IAHR 2023), Vienna, Austria, 21–25 August 2023; pp. 16–25. [Google Scholar] [CrossRef]
- Office of Natural Resources and Environmental Policy and Planning (ONEP). Developing Watershed Management Organizations in Pilot Sub-Basins of the Ping River Basin; Final Report; Office of Natural Resources and Environmental Policy and Planning, Ministry of Natural Resources and Environment: Bangkok, Thailand, 2005. (In Thai)
- Marine Department (MD). The Feasibility Study of River Navigation, Port, Revetment for Rivers in the North and North-East of Thailand: Nan River; Marine Department: Bangkok, Thailand, 2002. (In Thai)
- Electricity Generating Authority of Thailand (EGAT). Sediment Survey of Sirikit Dam; Report No. 31303-3603; Electricity Generating Authority of Thailand: Bangkok, Thailand, 1993. [Google Scholar]
- Japan International Cooperation Agency (JICA). The Feasibility Study on Mangrove Revival and Extension Project in the Kingdom of Thailand; Final Report; Ministry of Agriculture: Bangkok, Thailand, 2001.
- Edwards, T.K.; Glysson, G.D.; Guy, H.P.; Norman, V.W. Field Methods for Measurement of Fluvial Sediment; US Geological Survey: Denver, CO, USA, 1999; pp. 1–89.
- Helley, E.J.; Smith, W. Development and Calibration of a Pressure-Difference Bedload Sampler; US Department of the Interior, Geological Survey, Water Resources Division: Menlo Park, CA, USA, 1971; pp. 1–18.
- Lemma, H.; Nyssen, J.; Frankl, A.; Poesen, J.; Adgo, E.; Billi, P. Bedload transport measurements in the Gilgel Abay River, Lake Tana Basin, Ethiopia. J. Hydrol. 2019, 577, 123968. [Google Scholar] [CrossRef]
- Rachlewicz, G.; Zwoliński, Z.; Kociuba, W.; Stawska, M. Field testing of three bedload samplers’ efficiency in a gravel-bed river, Spitsbergen. Geomorphology 2017, 287, 90–100. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Shi, H.; Hu, C.; Wang, Y.; Liu, C.; Li, H. Analyses of trends and causes for variations in runoff and sediment load of the Yellow River. Int. J. Sediment Res. 2017, 32, 171–179. [Google Scholar] [CrossRef]
- Mama, R.; Jung, K.; Bidorn, B.; Namsai, M.; Feng, M. The local observed trends and variability in rainfall indices over the past century of the Yom River Basin, Thailand. J. Korean Soc. Hazard Mitig. 2018, 18, 41–55. [Google Scholar] [CrossRef]
- Li, Z.; Xu, X.; Yu, B.; Xu, C.; Liu, M.; Wang, K. Quantifying the impacts of climate and human activities on water and sediment discharge in a karst region of Southwest China. J. Hydrol. 2016, 542, 836–849. [Google Scholar] [CrossRef]
- Searcy, J.K.; Hardison, H.H. Double-Mass Curves, Manual of Hydrology: Part 1, General Surface Water Techniques; US Geological Survey: Washington, DC, USA, 1960; pp. 1–66.
- Gao, P.; Li, P.; Zhao, B.; Xu, R.; Zhao, G.; Sun, W.; Mu, X. Use of double mass curves in hydrologic benefit evaluations. Hydrol. Process. 2017, 31, 4639–4646. [Google Scholar] [CrossRef]
- Thiessen, A.H. Precipitation averages for large areas. Mon. Weather Rev. 1911, 39, 1082–1084. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Hydrol. Process. 2007, 50, 885–900. [Google Scholar]
- Bidorn, B.; Kish, S.A.; Donoghue, J.F.; Huang, W.; Bidorn, K. Variability of the total sediment supply of the Chao Phraya River, Thailand. River Sedimentation. In Proceedings of the 13th International Symposium on River Sedimentation, Stuttgart, Germany, 19–22 September 2016; CRC Press: Stuttgart, Germany, 2016. [Google Scholar]
- Namsai, M.; Mama, R.; Sirapojanakul, S.; Chanyotha, S.; Phanomphongphaisan, N.; Bidorn, B. The characteristics of sediment transport in the upper and middle Yom River, Thailand. In Proceedings of the THA 2019 International Conference on Water Management and Climate Change towards Asia’s Water-Energy-Food Nexus and SDGs, Bangkok, Thailand, 23–25 January 2019; Water Resources System Research Unit, Chulalongkorn University: Bangkok, Thailand, 2019; pp. 346–352. [Google Scholar]
- Turowski, J.M.; Rickenmann, D.; Dadson, S.J. The partitioning of the total sediment load of a river into suspended load and bedload: A review of empirical data. Sedimentology 2010, 57, 1126–1146. [Google Scholar] [CrossRef]
- Royal Irrigation Department (RID). The Relation between Suspended Sediment and Drainage Area in 25 River Basins; Royal Irrigation Department: Bangkok, Thailand, 2012. (In Thai)
- Wu, C.; Ji, C.; Shi, B.; Wang, Y.; Gao, J.; Yang, Y.; Mu, J. The impact of climate change and human activities on streamflow and sediment load in the Pearl River basin. Int. J. Sediment Res. 2019, 34, 307–321. [Google Scholar] [CrossRef]
- Panda, D.K.; Kumar, A.; Mohanty, S. Recent trends in sediment load of tropical (Peninsular) river basins of India. Glob. Planet. Chang. 2011, 75, 108–118. [Google Scholar] [CrossRef]
- Li, D.; Lu, X.X.; Yang, X.; Chen, L.; Lin, L. Sediment load responses to climate variation and cascade reservoirs in the Yangtze River: A case study of the Jinsha River. Geomorphology 2018, 322, 41–52. [Google Scholar] [CrossRef]
- Guo, L.P.; Mu, X.M.; Hu, J.M.; Gao, P.; Zhang, Y.F.; Liao, K.T.; Bai, H.; Chen, X.L.; Song, Y.J.; Jin, N. Assessing impacts of climate change and human activities on streamflow and sediment discharge in the Ganjiang River Basin (1964–2013). Water 2019, 11, 1679. [Google Scholar] [CrossRef]
- Graf, W.L. Downstream hydrologic and geomorphic effects of large dams on America rivers. Geomorphology 2006, 79, 336–360. [Google Scholar] [CrossRef]
- Royal Irrigation Department (RID). Nan River Basin Development Feasibility Report Uttaradit Irrigation Project and Phitsanulok Irrigation Project; Royal Irrigation Department: Bangkok, Thailand, 1970.
- Land Development Department (LDD). Status of Soil Erosion in Thailand; Land Development Department: Bangkok, Thailand, 2020. (In Thai)
- Kitisuntorn, P. Sediment Transport and Navigation Problem in Lower Nan River. Ph.D. Thesis, Department of Water Resources Engineering, Chulalongkorn University, Bangkok, Thailand, 1994. (In Thai). [Google Scholar]
- Brune, G.M. Trap efficiency of reservoirs. Eos Trans. Am. Geophys. Union 1953, 34, 407–418. [Google Scholar]
Station | 1 Dist. | Drainage | Data | Period | Max. | Ave. | Min. | 4 S.D. |
---|---|---|---|---|---|---|---|---|
(River) | (km) | (km2) | ||||||
N.64 | +667 | 3432 | 2 Qw (m3/s) | 1994–2019 | 2281 | 82 | 2 | 135 |
(Nan) | 3 Qs (t/d) | 2007–2019 | 199,765 | 3053 | ~0 | 10,038 | ||
N.1 | +635 | 4609 | Qw (m3/s) | 1922–2019 | 2636 | 100 | 1 | 171 |
(Nan) | Qs (t/d) | 1978–2019 | 324,347 | 2966 | ~0 | 12,853 | ||
N.13A | +590 | 8784 | Qw (m3/s) | 1959–2019 | 4764 | 197 | 3 | 335 |
(Nan) | Qs (t/d) | 1994–2007 | 230,624 | 5593 | 19 | 14,138 | ||
N.5A | +223 | 25,286 | Qw (m3/s) | 1951–2019 | 2159 | 244 | 3 | 263 |
(Nan) | Qs (t/d) | 1978–2019 | 141,502 | 2641 | 10 | 6018 | ||
N.7A | +140 | 29,153 | Qw (m3/s) | 1944–2019 | 1786 | 320 | 5 | 320 |
(Nan) | Qs (t/d) | 2001–2019 | 56,373 | 3566 | 155 | 5356 | ||
N.8A | +72 | 31,472 | Qw (m3/s) | 1952–2019 | 2116 | 327 | 1 | 323 |
(Nan) | Qs (t/d) | 1997–2019 | 54,619 | 3711 | 135 | 5015 | ||
N.67 | +35 | 57,384 | Qw (m3/s) | 1998–2019 | 1579 | 418 | 33 | 340 |
(Nan) | Qs (t/d) | 1999–2019 | 30,267 | 5620 | 84 | 5904 | ||
C.2 | –5 | 109,973 | Qw (m3/s) | 1956–2019 | 5450 | 711 | 15 | 695 |
(CPY) | Qs (t/d) | 1965–2019 | 493,805 | 13,705 | 236 | 27,596 |
Site | Dist. (km) | 1 A (m2) | 2 V (m/s) | 3 Qw (m3/s) | 4 Qs (t/d) | 5 Qb (t/d) | 6 Qt (t/d) | Qb/Qs (%) | Qb/Qt (%) | d50 (mm) |
---|---|---|---|---|---|---|---|---|---|---|
Dry season | ||||||||||
XN.1 | 650 | 55 | 0.15 | 8.1 | 6.2 | 0 | 6.2 | 0 | 0 | 1.79 |
XN.2 | 590 | 96 | 0.19 | 18.1 | 7.7 | 0 | 7.7 | 0 | 0 | 3.89 |
XN.3 | 455 | 143 | 0.05 | 6.7 | 10.8 | 0 | 10.8 | 0 | 0 | 1.12 |
XN.4 | 310 | 577 | 0.45 | 259.2 | 501.7 | 18.4 | 520.1 | 3.7 | 3.5 | 0.66 |
XN.5 | 270 | 263 | 0.52 | 137.7 | 228.5 | 24.5 | 253.0 | 10.7 | 9.7 | 2.07 |
XN.6 | 140 | 302 | 0.78 | 236.8 | 814.2 | 310.6 | 1124.8 | 38.2 | 27.6 | 0.80 |
XN.7 | 35 | 478 | 0.51 | 241.6 | 1168.9 | 12.7 | 1181.6 | 1.1 | 1.1 | 0.94 |
Wet season | ||||||||||
XN.1 | 650 | 654 | 1.34 | 873.4 | 75,391.8 | 6.8 | 75,398.6 | ~0 | ~0 | 1.49 |
XN.2 | 590 | 1512 | 0.95 | 1439.8 | 82,393.2 | 172.9 | 82,566.1 | 0.2 | 0.2 | 0.90 |
XN.3 | 455 | 194 | 0.23 | 44.6 | 608.5 | 0 | 608.5 | 0 | 0 | 1.05 |
XN.4 | 310 | 523 | 0.52 | 272.4 | 2452.6 | 45.8 | 2498.4 | 1.9 | 1.8 | 0.25 |
XN.5 | 270 | 133 | 1.69 | 224.7 | 1681.6 | 1.5 | 1683.1 | 0.1 | 0.1 | 0.15 |
XN.6 | 140 | 435 | 0.80 | 349.2 | 3269.6 | 67.2 | 3336.8 | 2.1 | 2.0 | 0.56 |
XN.7 | 35 | 656 | 0.81 | 532.0 | 8380.3 | 22.0 | 8402.3 | 0.3 | 0.3 | 0.38 |
Station | 1 Dist. | Drainage | Data | Period | Max. | Ave. | Min. | 2 p-Value | 3 Trend |
---|---|---|---|---|---|---|---|---|---|
(River) | (km) | (km2) | |||||||
N.64 | +667 | 3432 | Qw (×109 m3/y) | 1994–2019 | 4.568 | 2.599 | 1.338 | 0.294 | Decreasing |
(Nan) | Qt (×106 t/y) | 2.826 | 1.155 | 0.239 | 0.760 | Decreasing | |||
N.1 | +635 | 4609 | Qw (×109 m3/y) | 1922–2019 | 6.079 | 2.964 | 1.342 | 0.893 | Decreasing |
(Nan) | Qt (×106 t/y) | 4.733 | 1.158 | 0.188 | 0.929 | Decreasing | |||
N.13A | +590 | 8784 | Qw (×109 m3/y) | 1959–2019 | 13.830 | 6.211 | 2.384 | 0.093 | Increasing |
(Nan) | Qt (×106 t/y) | 4.528 | 1.400 | 0.258 | 0.218 | Increasing | |||
N.5A | +223 | 25,286 | Qw (×109 m3/y) | 1951–2019 | 15.548 | 7.709 | 3.199 | 0.027 | Decreasing |
(Nan) | Qt (×106 t/y) | 6.882 | 1.767 | 0.299 | <0.0001 | Decreasing | |||
N.7A | +140 | 29,153 | Qw (×109 m3/y) | 1944–2019 | 20.119 | 10.104 | 4.001 | 0.578 | Decreasing |
(Nan) | Qt (×106 t/y) | 4.176 | 1.261 | 0.344 | 0.087 | Decreasing | |||
N.8A | +72 | 31,472 | Qw (×109 m3/y) | 1952–2019 | 20.801 | 10.308 | 4.608 | 0.525 | Decreasing |
(Nan) | Qt (×106 t/y) | 3.833 | 1.239 | 0.254 | 0.564 | Decreasing | |||
N.67 | +35 | 57,384 | Qw (×109 m3/y) | 1998–2019 | 22.725 | 13.185 | 4.264 | 0.048 | Decreasing |
(Nan) | Qt (×106 t/y) | 3.435 | 1.875 | 0.313 | 0.021 | Decreasing | |||
C.2 | −5 | 109,973 | Qw (×109 m3/y) | 1956–2019 | 52.675 | 22.437 | 7.296 | 0.313 | Decreasing |
(CPY) | Qt (×106 t/y) | 21.811 | 4.825 | 0.600 | 0.003 | Decreasing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Namsai, M.; Bidorn, B.; Mama, R.; Charoenlerkthawin, W. A Half-Century of Human Impact on Nan River Runoff and Sediment Load Supplied to the Chao Phraya River. Water 2024, 16, 148. https://doi.org/10.3390/w16010148
Namsai M, Bidorn B, Mama R, Charoenlerkthawin W. A Half-Century of Human Impact on Nan River Runoff and Sediment Load Supplied to the Chao Phraya River. Water. 2024; 16(1):148. https://doi.org/10.3390/w16010148
Chicago/Turabian StyleNamsai, Matharit, Butsawan Bidorn, Ruetaitip Mama, and Warit Charoenlerkthawin. 2024. "A Half-Century of Human Impact on Nan River Runoff and Sediment Load Supplied to the Chao Phraya River" Water 16, no. 1: 148. https://doi.org/10.3390/w16010148
APA StyleNamsai, M., Bidorn, B., Mama, R., & Charoenlerkthawin, W. (2024). A Half-Century of Human Impact on Nan River Runoff and Sediment Load Supplied to the Chao Phraya River. Water, 16(1), 148. https://doi.org/10.3390/w16010148