Study of Interannual Variability of the Winter Mesothermal Temperature Maximum Layer in Southern Baikal
Abstract
:1. Introduction
2. Materials and Methods
2.1. CTD Measurements
2.2. Mooring Data
2.3. Meteorological Data and Wind Kinetic Energy Calculation
2.4. Statistical Methods
3. Results
3.1. Phenology of Hydrological Events
3.2. Comparison of Mooring and CTD Data
3.3. Variations in during Winter
3.4. Dependence of MTML Parameters on Meteorological Forcing
4. Discussion
5. Conclusions
- Water temperature in MTML and temperature of maximum density are fairly close. There is inverse temperature stratification above and direct temperature below MTML. Therefore, MTML is the boundary between inverse and direct stratification, and its depth of occurrence determines the thickness of the surface layer of water with inverse temperature stratification;
- Water temperature profiles in the MTML have high spatial and temporal variability, which indicates the processes of intense vertical turbulent mixing and internal wave motions. This is also in accordance with the higher vertical diffusivity values at depths of 200–300 m relative to deeper layers reported in [55];
- In the MTML, vertical stability is minimal and the thermodynamic characteristics of water have a number of unique properties: water temperature is equal to maximum density temperature, and hence, the thermal expansion coefficient of water is close to zero;
- Depending on the influence of meteorological and hydrological conditions on MTML formation, four types of maximal temperature in MTML behavior during ice season were identified;
- It is shown that MTML formation is affected not only by wind conditions in the late fall (as previously assumed) but also in the summer period. At increased wind activity in summer, larger maximal temperatures in the MTML and smaller depths are observed. At decreased wind activity, the opposite behavior is noted.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MTML | Mesothermal Temperature Maximum Layer |
Maximal temperature in the MTML | |
Temperature of the maximum density of water | |
Depth of the maximal temperature in the MTML | |
Depth of the upper boundary of MTML (or lower boundary of the thermocline) | |
Period of the fall cooling (Number of days passed from the moment of water surface tem- | |
perature crosses until the freezing of the lake) | |
Eastward component of wind speed at a height of 10 m above the surface of the Earth | |
Northward component of wind speed at a height of 10 m above the surface of the Earth | |
Wind kinetic energy flux from the atmosphere | |
Drag (wind stress) coefficient for the wind at a height of 10 m | |
Wind speed modulus at a height of 10 m above the surface of the Earth | |
Mean wind kinetic energy flux for summer period | |
Mean air temperature for summer period | |
Mean wind speed modulus for summer period | |
Mean wind kinetic energy flux for late fall cooling period | |
Mean air temperature for late fall cooling period | |
Mean wind speed modulus for late fall cooling period |
Appendix A
Year | °C | m | m | m s | mW m | m s | mW m | °C | ||
---|---|---|---|---|---|---|---|---|---|---|
2000 | 3.64 | 141 | 131 | 70 | 2.5 | 67 | 2.8 | 107 | 14.01 | −8.43 |
2001 | 3.609 | 197 | 117 | 40 | 2.6 | 69 | 2.5 | 81 | 15.24 | −12.89 |
2002 | 3.689 | 110 | 102 | 44 | 2.7 | 106 | 2.6 | 91 | 15.19 | −10.8 |
2003 | 3.656 | 146 | 121 | 84 | 2.4 | 57 | 2.4 | 63 | 15.84 | −8.93 |
2004 | 3.655 | 126 | 111 | 60 | 2.6 | 74 | 2.6 | 75 | 14.52 | −10.52 |
2005 | 3.634 | 156 | 129 | 36 | 2.6 | 74 | 2.8 | 116 | 14.41 | −9.03 |
2006 | 3.652 | 156 | 139 | 44 | 2.6 | 72 | 3.1 | 122 | 14.59 | −12.53 |
2007 | 3.64 | 141 | 128 | 49 | 2.7 | 77 | 2.5 | 81 | 13.87 | −6.49 |
2008 | 3.631 | 147 | 138 | 45 | 2.6 | 72 | 2.5 | 75 | 15.79 | −10.12 |
2009 | 3.559 | 166 | 153 | 54 | 2.7 | 82 | 2.6 | 101 | 14.71 | −11.61 |
2010 | 3.639 | 157 | 137 | 46 | 2.6 | 74 | 2.8 | 100 | 13.96 | −9.75 |
2011 | 3.599 | 156 | 143 | 32 | 2.7 | 75 | 3.2 | 146 | 13.99 | −16.15 |
2012 | 3.659 | 143 | 127 | 53 | 2.7 | 89 | 2.6 | 77 | 14.61 | −8.93 |
2013 | 3.633 | 145 | 130 | 35 | 2.6 | 71 | 2.8 | 97 | 14.51 | −14.73 |
2014 | 3.628 | 158 | 135 | 50 | 2.5 | 57 | 2.5 | 69 | 13.48 | −10.46 |
2015 | 3.606 | 123 | 121 | 72 | 2.5 | 58 | 2.5 | 71 | 14.84 | −9.68 |
2016 | 3.664 | 133 | 119 | 45 | 2.8 | 86 | 2.7 | 85 | 15.75 | −8.88 |
2017 | 3.642 | 140 | 131 | 47 | 2.5 | 62 | 2.4 | 68 | 15.49 | −8.57 |
2018 | 3.633 | 127 | 123 | 38 | 2.5 | 61 | 3.0 | 115 | 15.01 | −10.45 |
2019 | 3.641 | 142 | 128 | 25 | 2.8 | 84 | 2.9 | 120 | 15.28 | −14.09 |
2020 | 3.657 | 150 | 131 | 78 | 2.5 | 79 | 2.3 | 56 | 14.9 | −6.88 |
2021 | 3.577 | 190 | 152 | 42 | 2.6 | 65 | 2.8 | 95 | 15.2 | −14.22 |
2022 | 3.65 | 137 | 131 | 50 | 2.8 | 91 | 2.6 | 71 | 13.62 | −9.54 |
References
- Sherstyankin, P.; Alekseev, S.; Abramov, A.; Stavrov, K.G.; De Batist, M.; Hus, R.; Canals, M.; Casamor, J.L. Computer-based bathymetric map of Lake Baikal. Dokl. Earth Sci. 2006, 408, 564–569. [Google Scholar] [CrossRef]
- Timoshkin, O.A.; Sitnikova, T.Y.; Rusinek, O.; Pronin, N.; Proviz, V. Index of Animal Species Inhabiting Lake Baikal and Its Catchment Area; Nauka: Novosibirsk, Russia, 2001; Volume 1, p. 832. [Google Scholar]
- Galazii, G.I. Baikal in Questions and Answers; Forward Ltd.: London, UK, 2012; p. 159. [Google Scholar]
- Shimaraev, M.N.; Verbolov, V.I.; Granin, N.; Sherstyankin, P.P. Physical Limnology of Lake Baikal: A Review; BICER, Baikal International Center for Ecological Research: Okayama, Japan; Irkutsk, Russia, 1994. [Google Scholar]
- Vereshchagin, G. Some data on Baikal deep water regime near Marituy. Proc. Comm. Lake Baikal Study 1927, 2, 77–138. (In Russian) [Google Scholar]
- Shimaraev, M.; Granin, N. On the question of stratification and the mechanism of convection in Baikal. Dokl. Earth Sci. 1991, 321, 381–385. [Google Scholar]
- Sherstyankin, P.; Kuimova, L.; Potemkin, V. Temperature of maximal density and thermobaric properties of deep fresh water: Evidence from Lake Baikal. Dokl. Earth Sci. 2000, 375, 318–1322. [Google Scholar]
- Bouffard, D.; Wüest, A. Convection in Lakes. Annu. Rev. Fluid Mech. 2019, 51, 189–215. [Google Scholar] [CrossRef]
- Eklund, H. Stability of Lakes near the Temperature of Maximum Density. Science 1965, 149, 632–633. [Google Scholar] [CrossRef] [PubMed]
- Rzheplinsky, G.V.; Sorokina, A.I. Atlas of Wave and Wind Action in Lake Baikal; Gidrometeoizdat: Leningrad, Russia, 1977; p. 118. (In Russian) [Google Scholar]
- Weiss, R.; Carmack, E.; Koropalov, V. Deep-water renewal and biological production in Lake Baikal. Nature 1991, 349, 665–669. [Google Scholar] [CrossRef]
- Shimaraev, M.; Granin, N.; Zhdanov, A. Deep ventilation of Lake Baikal due to spring thermal bars. Limnol. Oceanogr. 1993, 38, 1068–1072. [Google Scholar] [CrossRef]
- Hohmann, R.; Kipfer, R.; Peeters, F.; Piepke, G.; Imboden, D.; Shimaraev, M. Processes of deep-water renewal in Lake Baikal. Limnol. Oceanogr. 1997, 42, 841–855. [Google Scholar] [CrossRef]
- Shimaraev, M.; Domysheva, V.; Gnatovskii, R.Y.; Blinov, V.; Sakirko, M. The influence of deep convection on aeration of the bottom zone in Baikal. Geogr. Nat. Resour. 2016, 37, 212–219. [Google Scholar] [CrossRef]
- Tsimitri, C.; Rockel, B.; Wuest, A.; Budnev, N.; Sturm, M.; Schmid, M. Drivers of deep water renewal events observed over 13 years in the South Basin of Lake Baikal. J. Geophys. Res. Oceans 2015, 120. [Google Scholar] [CrossRef]
- Piccolroaz, S.; Toffolon, M. Deep water renewal in Lake Baikal: A model for long-term analyses. J. Geophys. Res. Oceans 2013, 118, 6717–6733. [Google Scholar] [CrossRef]
- Schmid, M.; Budnev, N.; Granin, N.G.; Sturm, M.; Schurter, M.; Wüest, A. Lake Baikal deepwater renewal mystery solved. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Wuest, A.; Ravens, T.; Granin, N.; Kocsis, O.; Schurter, M.; Sturm, M. Cold Intrusions in Lake Baikal: Direct Observational Evidence for Deep-Water Renewal. Limnol. Oceanogr. 2005, 50, 184. [Google Scholar] [CrossRef]
- Farmer, D.; Carmack, E. Wind Mixing and Restratification in a Lake near the Temperature of Maximum Density. J. Phys. Oceanogr. 1981, 11, 1516–1533. [Google Scholar] [CrossRef]
- Carmack, E.; Vagle, S. Thermobaric Processes Both Drive and Constrain Seasonal Ventilation in Deep Great Slave Lake, Canada. J. Geophys. Res. Earth Surf. 2021, 126, e2021JF006288. [Google Scholar] [CrossRef]
- Crawford, G.; Collier, R. Long-term observations of deepwater renewal in Crater Lake, Oregon. Hydrobiologia 2007, 574, 47–68. [Google Scholar] [CrossRef]
- Boehrer, B.; Fukuyama, R.; Chikita, K.; Kikukawa, H. Deep water stratification in deep caldera lakes Ikeda, Towada, Tazawa, Kuttara, Toya and Shikotsu. Limnology 2009, 10, 17–24. [Google Scholar] [CrossRef]
- Johnson, L. Temperature of Maximum Density of Fresh Water and its Effect on Circulation in Great Bear Lake. J. Fish. Res. Board Can. 1966, 23, 963–973. [Google Scholar] [CrossRef]
- Vereshchagin, G. The main features of the vertical distribution of water mass dynamics in Baikal. In Academician V.I. Vernadsky to the 50th Anniversary of Scientific and Pedagogical Activity; Nauka: Moscow, Russia, 1936; pp. 1207–1230. [Google Scholar]
- Verbolov, V. Currents and water exchange in Lake Baikal. Water Resour. 1996, 23, 381–391. [Google Scholar]
- Irkutsk Center for Remote Sensing. Available online: http://sputnik.irk.ru/ (accessed on 10 December 2023).
- Budnev, N.M.; Wuest, A.; Lovtsov, S.V.; Parfenov, J.V.; Rubstov, V.J.; Rastegin, A.E.; Shturm, M.; Shurter, M.V. The hydrophysical processes in the south Baikal from the point of view of long-term temperature monitoring data. In Proceedings of the Fourth Vereshchagin Baikal Conference, Irkutsk, Russia, 26 September–1 October 2005; Institute of Geography SB RAS Publishers: Irkutsk, Russia, 2005; pp. 24–25. [Google Scholar]
- Lovtsov, S.V.; Parfenov, Y.V.; Rastegin, A.E.; Rubtsov, V.Y.; Chensky, A.G. Large scale temperature perturbations and inner waves in the Lake Baikal. In Proceedings of the Baikal School for Young Researchers on the Astrophysics and Microworld Physics (BSYPH 98), Irkutsk, Russia, 11–17 October 1998; pp. 279–285. [Google Scholar]
- Zhdanov, A.A.; Gnatovskii, R.Y.; Granin, N.G.; Blinov, V.V.; Aslamov, I.A.; Kozlov, V. Variations of under-ice currents in Southern Baikal by data of 2012–2016. Water Resour. 2017, 44, 442–452. [Google Scholar] [CrossRef]
- Muñoz Sabater, J.; Dutra, E.; Agusti-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Imboden, D.; Wuest, A. Mixing Mechanisms in Lakes. In Physics and Chemistry of Lakes; Springer: Berlin/Heidelberg, Germany, 1995; pp. 83–138. [Google Scholar] [CrossRef]
- Guseva, S.; Armani, F.; Desai, A.; Dias, N.; Friborg, T.; Iwata, H.; Jansen, J.; Lükő, G.; Mammarella, I.; Repina, I.; et al. Bulk Transfer Coefficients Estimated from Eddy-Covariance Measurements over Lakes and Reservoirs. J. Geophys. Res. Atmos. 2023, 128, e2022JD037219. [Google Scholar] [CrossRef]
- Picard, A.; Davis, R.; Gläser, M.; Fujii, K. Revised formula for the density of moist air (CIPM-2007). Metrologia 2008, 45, 149. [Google Scholar] [CrossRef]
- Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967, 27, 209–220. [Google Scholar] [PubMed]
- Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Kassambara, A. Practical Guide to Principal Component Methods in R: PCA, M (CA), FAMD, MFA, HCPC, Factoextra; 2017; Volume 2. Available online: http://www.sthda.com/english/wiki/practical-guide-to-principal-component-methods-in-r (accessed on 1 December 2023).
- Livingstone, D. Ice break-up on southern Lake Baikal and its relationship to local and regional air temperatures in Siberia and to the North Atlantic Oscillation. Limnol. Oceanogr. 1999, 44, 1486–1497. [Google Scholar] [CrossRef]
- Magnuson, J.J.; Robertson, D.M.; Benson, B.J.; Wynne, R.H.; Livingstone, D.; Arai, T.; Assel, R.A.; Barry, R.J.; Card, V.; Kuusisto, E.; et al. Historical Trends in Lake and River Ice Cover in the Northern Hemisphere. Science 2000, 289, 1743–1746. [Google Scholar] [CrossRef]
- Shimaraev, M.; Kuimova, L.; Sinyukovich, V.; Tsekhanovskii, V. Climate and hydrological processes in Lake Baikal in the 20th century. Russ. Meteorol. Hydrol. 2002, 3, 52–58. [Google Scholar]
- Todd, M.; Mackay, A. Large-Scale Climatic Controls on Lake Baikal Ice Cover. J. Clim. 2003, 16, 3186–3199. [Google Scholar] [CrossRef]
- Troitskaya, E.; Shimaraev, M.; Tsekhanovsky, V. Long-term changes in water surface temperature in Baikal. Geogr. Prir. Resur. [Geogr. Nat. Resour.] 2003, 2, 47–50. [Google Scholar]
- Kouraev, A.; Semovski, S.; Shimaraev, M.; Mognard, N.; Legrésy, B.; Rémy, F. The ice regime of Lake Baikal from historical and satellite data: Relationship to air temperature, dynamical, and other factors. Limnol. Oceanogr. 2007, 52, 1268–1286. [Google Scholar] [CrossRef]
- Katz, S.; Hampton, S.; Izmest’eva, L.; Moore, M. Influence of Long-Distance Climate Teleconnection on Seasonality of Water Temperature in the World’s Largest Lake—Lake Baikal, Siberia. PLoS ONE 2011, 6, e14688. [Google Scholar] [CrossRef] [PubMed]
- Goldman, C.; Kumagai, M.; Robarts, R. Climatic Change and Global Warming of Inland Waters: Impacts and Mitigation for Ecosystems and Societies; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Sizova, L.; Kuimova, L.; Shimaraev, M. Influence of the atmospheric circulation on ice-thermal processes on Baikal during 1950–2010. Geogr. Nat. Resour. 2013, 34, 158–165. [Google Scholar] [CrossRef]
- O’Reilly, C.M.; Sharma, S.; Gray, D.; Hampton, S.; Read, J.S.; Rowley, R.J.; Schneider, P.; Lenters, J.D.; McIntyre, P.B.; Kraemer, B.M.; et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 2015, 42, 10773–10781. [Google Scholar] [CrossRef]
- Shimaraev, M.; Troitskaya, E. Current trends in upper water layer temperature in coastal zones of Baikal. Geogr. Nat. Resour. 2018, 39, 349–357. [Google Scholar] [CrossRef]
- Shimaraev, M.; Troitskaya, E.; Gnatovskii, R.Y. Modern climate changes and deep water temperature of Lake Baikal. Dokl. Earth Sci. 2009, 427, 804–808. [Google Scholar] [CrossRef]
- Troitskaya, E.; Budnev, N.; Shimaraev, M. Changes in the heat content of water column in the slope area of the southern basin of Lake Baikal in the 21st Century. Water 2022, 14, 348. [Google Scholar] [CrossRef]
- Bulygina, O.N.; Korshunova, N.N.; Razuvaev, V.N. Changes in the wind regime over Russia in the last decades. Proc. Main Geophys. Obs. Named After A. I. Voeikov 2013, 568, 156–172. [Google Scholar]
- Coumou, D.; Lehmann, J.; Beckmann, J. The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science 2015, 348, 324–327. [Google Scholar] [CrossRef]
- Verbolov, V.I.; Sokolnikov, V.M.; Shimaraev, M.N. Hydrometeorological Regime and Heat Balance of Lake Baikal; Nauka: Leningrad, Russia; Moscow, Russia, 1965; p. 374. [Google Scholar]
- Shimaraev, M.N. The Elements of the Thermal Regime of Lake Baikal; Nauka: Novosibirsk, Russia, 1977; p. 149. [Google Scholar]
- Shimaraev, M.; Granin, N.; Kuimova, L. Practice of reconstruction of Baikal hydrophysical conditions in the Late Pleistocene and Holocene. Geol. Geofiz. 1995, 97–102. [Google Scholar]
- Ravens, T.; Kocsis, O.; Wuest, A.; Granin, N. Small-scale turbulence and vertical mixing in Lake Baikal. Limnol. Oceanogr. 2000, 45, 159–173. [Google Scholar] [CrossRef]
Dependent Variable | Explanatory Parameter | r | p-Value |
---|---|---|---|
0.364 * | 0.036 | ||
0.354 | 0.021 | ||
0.012 | 0.460 | ||
0.231 | 0.121 | ||
0.381 | 0.039 | ||
0.088 | 0.196 | ||
−0.031 | 0.523 | ||
−0.129 | 0.792 | ||
−0.050 | 0.591 | ||
−0.134 | 0.829 | ||
−0.031 | 0.578 | ||
0.259 | 0.044 | ||
0.322 | 0.035 | ||
0.103 | 0.182 | ||
−0.004 | 0.479 | ||
−0.033 | 0.517 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aslamov, I.; Troitskaya, E.; Gnatovsky, R.; Portyanskaya, I.; Lovtsov, S.; Bukin, Y.; Granin, N. Study of Interannual Variability of the Winter Mesothermal Temperature Maximum Layer in Southern Baikal. Water 2024, 16, 21. https://doi.org/10.3390/w16010021
Aslamov I, Troitskaya E, Gnatovsky R, Portyanskaya I, Lovtsov S, Bukin Y, Granin N. Study of Interannual Variability of the Winter Mesothermal Temperature Maximum Layer in Southern Baikal. Water. 2024; 16(1):21. https://doi.org/10.3390/w16010021
Chicago/Turabian StyleAslamov, Ilya, Elena Troitskaya, Ruslan Gnatovsky, Inna Portyanskaya, Sergey Lovtsov, Yuri Bukin, and Nikolay Granin. 2024. "Study of Interannual Variability of the Winter Mesothermal Temperature Maximum Layer in Southern Baikal" Water 16, no. 1: 21. https://doi.org/10.3390/w16010021
APA StyleAslamov, I., Troitskaya, E., Gnatovsky, R., Portyanskaya, I., Lovtsov, S., Bukin, Y., & Granin, N. (2024). Study of Interannual Variability of the Winter Mesothermal Temperature Maximum Layer in Southern Baikal. Water, 16(1), 21. https://doi.org/10.3390/w16010021