Time-Domain Transfer Learning for Accurate Heavy Metal Concentration Retrieval Using Remote Sensing and TrAdaBoost Algorithm: A Case Study of Daxigou, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Overview of the Study Area
2.1.2. Data Preparation
Heavy Metals Data
Landsat 8 Multispectral Image and GIS Data
2.2. Methodology
2.2.1. Analysing Factors Contributing to Cu Concentrations
Factors Derived from Landsat 8 Imagery
Factors Derived from GIS Auxiliary Data
2.2.2. Our proposed Model for Cu Retrieval in the Topsoil
The Traditional TrAdaboost Algorithm
Our Cross Time-Domain Transfer Learning Model Based on TrAdaboost for Cu Concentrations
2.2.3. Evaluation Metrics
3. Results and Validation
3.1. Experiments
3.2. Results and Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Namee, A.M.; Bahaa, Z.; Fattah, M.Y. Some Strategies for Reducing and/or Removing Heavy Metals from Contaminated Soil: A Review. Proc. AIP Conf. 2023, 2775, 030006. [Google Scholar] [CrossRef]
- Vuong, X.T.; Vu, L.D.; Duong, A.T.T.; Duong, H.T.; Hoang, T.H.T.; Luu, M.N.T.; Nguyen, V.D.; Nguyen, T.T.T.; Van, T.H.; Minh, T.B. Speciation and environmental risk assessment of heavy metals in soil from a lead/zinc mining site in Vietnam. Int. J. Environ. Sci. Technol. 2022, 20, 5295–5310. [Google Scholar] [CrossRef]
- The Ministry of Environmental Protection. The Ministry of Land and Resources; National Soil Contamination Survey Report; The Ministry of Environmental Protection: Beijing, China, 2014. [Google Scholar]
- Bai, H.; Yang, Y.; Cui, Q.F.; Jia, P.; Wang, L. Retrieval of heavy metal concentrations in soil using GF-5 satellite images based on GA-XGBoost model. Laser Optoelectron. Prog. 2022, 59, 525–534. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, B.; Zou, B.; Wei, W.; Lei, Y.; Li, T. Retrieving soil heavy metals concentrations based on GaoFen-5 hyperspectral satellite image at an opencast coal mine, Inner Mongolia, China. Environ. Pollut. 2022, 300, 118981. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.S.; Zhou, Y. Research progress and trend of quantitative monitoring of hyperspectral remote sensing for heavy metals in soil. Trans. Nonferrous Met. Soc. China 2021, 31, 3450–3467. [Google Scholar] [CrossRef]
- Bou Kheir, R.; Shomar, B.; Greve, M.B. On the quantitative relationships between environmental parameters and heavy metals pollution in Mediterranean soils using GIS regression-trees: The case study of Lebanon. J. Geochem. Explor. 2014, 147, 250–259. [Google Scholar] [CrossRef]
- Ghrefat, H.; Zaman, H.; Batayneh, A.; El Waheidi, M.M.; Qaysi, S.; Al-Taani, A.; Jallouli, C.; Badhris, O. Assessment of heavy metal contamination in the soils of the gulf of aqaba(north western saudiarabia): Integration of geochemical, remote sensing, gis, and statistical data. J. Coast. Res. Int. Forum Littoral Sci. 2021, 4, 37. [Google Scholar] [CrossRef]
- Yu, J.; Wang, J.; Leblon, B.; Song, Y. Nitrogen Estimation for Wheat Using UAV-Based and Satellite Multispectral Imagery, Topographic Metrics, Leaf Area Index, Plant Height, Soil Moisture, and Machine Learning Methods. Nitrogen 2021, 3, 1–25. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Wu, M.; Li, L.; Xiu, L. Integrating spectral indices with environmental parameters for estimating heavy metal concentrations in rice using a dynamic fuzzy neural-network model. Comput. Geosci. 2011, 37, 1642–1652. [Google Scholar] [CrossRef]
- Wang, T.J.; Zhao, M.H.; Yang, Y.; Cui, Q.; Li, L. Inversion of heavy metals concentrations in soil using multispectral remote sensing imagery in Daxigou mining area of Shaanxi. Spectrosc. Spectr. Anal. 2019, 39, 3880–3887. [Google Scholar]
- Cao, Y.; Miao, Q.G.; Liu, J.C.; Gao, L. Advance and prospects of AdaBoost algorithm. Acta Autom. Sin. 2013, 39. [Google Scholar] [CrossRef]
- Yuan, Z.R.; Wei, L.F.; Zhang, Y.X.; Yu, M.; Yan, R.R. Hyperspectral Inversion and Analysis of Heavy Metal Arsenic Content in Farm land Soil Based on Optimizing CARS Combined with PSO-SVM Algorithm. Spectrosc. Spectr. Anal. 2020, 40, 567–573. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Guo, F.; Xu, Z.; Yang, X.Y.; Wu, K.Z. On retrieving the chromium and zinc concentrations in the arable soil by the hyperspectral reflectance based on the deep forest. Ecol. Indic. 2022, 144, 109440. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021, 109, 43–76. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, X.; Leung, H.; Li, L. Cross-task and cross-domain sar target recognition: A meta-transfer learning approach. Pattern Recognit. J. Pattern Recognit. Soc. 2023, 113, 109402–109412. [Google Scholar]
- Tao, C.; Cui, W.B.; Wang, Y.J.; Zou, B.; Zou, Z. Soil heavy metal qualitative classification model based on hyperspectral measurements and transfer learning. Spectrosc. Spectr. Anal. 2019, 39, 2602–2607. [Google Scholar] [CrossRef]
- Liu, L.F.; Ji, M.; Buchroithner, M. Transfer learning for soil spectroscopy based on convolutional neural networks and its application in soil clay concentrations mapping using hyperspectral imagery. Sensors 2018, 18, 3169. [Google Scholar] [CrossRef] [PubMed]
- Tao, C.; Wang, Y.J.; Cui, W.B.; Zou, B.; Zou, Z.; Tu, Y. A transferable spectroscopic diagnosis model for predicting arsenic contamination in soil. Sci. Total Environ. 2019, 669, 964–972. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tao, C.; Zou, B. A transfer learning approach utilizing combined artificial samples for improved robustness of model to estimate heavy metal contamination in soil. IEEE Access 2020, 8, 176960–176972. [Google Scholar] [CrossRef]
- Fang, W.X.; Hu, R.Z. Mineralization zoning in yindongzi-daxigou. Chin. J. Geochem. 2001, 20, 45–51. [Google Scholar] [CrossRef]
- Chen, L.; Wang, J.D.; Gu, T.F.; Yu, G.Q.; Wang, A.G. Research on fuzzy comprehensive evaluation of ecological environment in Daxigou iron mine. Chin. J. Soil Sci. 2017, 48, 794–799. [Google Scholar] [CrossRef]
- Mei, X.; Liu, H.Y.; Wu, L.H.; Luo, Y.X.; Zhang, Q.Y.; Jing, P.; Faustino, D.; Song, W. Spatial distribution and influencing factors of heavy metals in soil of northwest Guizhou based on HDXRF and ICP-MS. Soil 2023, 55, 399–408. [Google Scholar] [CrossRef]
- Shi, T.Z.; Chen, Y.Y.; Liu, Y.L.; Wu, G. Visible and near-infrared reflectance spectroscopy-An alternative for monitoring soil contamination by heavy metals. J. Hazard. Mater. 2014, 265, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Liu, D.H.; Chen, J.Q.; Dai, Q.Y.; Fu, Y.C. Research Progress on the Application of Clay Minerals in the Remediation of Cadmium Polluted Farmland. Soil Bull. 2018, 49, 499–504. [Google Scholar] [CrossRef]
- Dai, W.Y.; Yang, Q.; Xue, G.R.; Yu, Y. Boosting for transfer learning. In Proceedings of the 24th International Conference on Machine Learning, Corvallis, OR, USA, 20–24 June 2007. [Google Scholar]
- Pardoe, D.; Stone, P. Boosting for regression transfer. In Proceedings of the 27th International Conference on Machine Learning, DBLP, Haifa, Israel, 21–24 June 2010; Available online: https://icml.cc/Conferences/2010/papers/330.pdf (accessed on 10 May 2023).
- GB 15618-2018; Soil environment Quality Risk Control Standard for Soil Contamination of Agriculture Land (Trial). China Environmental Publishing Group, Ministry of Ecological Environment: Beijing, China, 2018.
Spectral Index | Formula | Description |
---|---|---|
NDVI | (B5 − B4)/(B5 + B4) | Describes the growth status and coverage of vegetation |
EVI | 2.5 × (B5 − B4)/(B5 + 6 × B4 − 7.5× B2 + 1) | More sensitive to vegetation cover than NDVI |
SAVI | 1.5 × (B5 − B4)/(B5 + B4 + 0.5) | Reduces the impact of soil background compared to NDVI |
CMR | B6/B7 | Enhances rock mineral information in cohesive soil |
Factor Type | Auxiliary Data | Coefficients |
---|---|---|
Cu | ||
Terrain-related | Elevation | 0.490 |
Slope | −0.041 | |
Aspect | 0.300 | |
Human activity related | Distance to mining area | −0.499 |
Distance to road in the mining area | −0.103 |
Group | Item | Purpose |
---|---|---|
A | Training samples from only in 2019 | To evaluate the performance of traditional Adaboost model in case of the same probability distribution but fewer training samples. |
B | Training samples from all samples collected in 2017 and 2019 | To evaluate the performance of traditional TrAdaboost model in case of different probability distribution but all of training samples. |
C | Training samples selected from samples collected in 2017 and 2019 | To evaluate the performance of our TrAdaboost model in case of different probability distribution and a selective use of training samples by transfer learning. |
Group | Number of Samples | Evaluation of Training Data | Evaluation of Test Data | |||||
---|---|---|---|---|---|---|---|---|
Training | Test | R2 | RMSE | RPD | R2 | RMSE | RPD | |
A | 31 | 11 | 0.82 | 7.30 | 1.95 | 0.60 | 7.84 | 1.64 |
B | 46 | 11 | 0.74 | 11.78 | 1.93 | 0.55 | 8.33 | 1.37 |
C | 46 | 11 | 0.78 | 10.83 | 2.51 | 0.66 | 7.24 | 1.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Tian, Q.; Bai, H.; Wei, Y.; Yan, Y.; Huo, A. Time-Domain Transfer Learning for Accurate Heavy Metal Concentration Retrieval Using Remote Sensing and TrAdaBoost Algorithm: A Case Study of Daxigou, China. Water 2024, 16, 1439. https://doi.org/10.3390/w16101439
Yang Y, Tian Q, Bai H, Wei Y, Yan Y, Huo A. Time-Domain Transfer Learning for Accurate Heavy Metal Concentration Retrieval Using Remote Sensing and TrAdaBoost Algorithm: A Case Study of Daxigou, China. Water. 2024; 16(10):1439. https://doi.org/10.3390/w16101439
Chicago/Turabian StyleYang, Yun, Qingzhen Tian, Han Bai, Yongqiang Wei, Yi Yan, and Aidi Huo. 2024. "Time-Domain Transfer Learning for Accurate Heavy Metal Concentration Retrieval Using Remote Sensing and TrAdaBoost Algorithm: A Case Study of Daxigou, China" Water 16, no. 10: 1439. https://doi.org/10.3390/w16101439
APA StyleYang, Y., Tian, Q., Bai, H., Wei, Y., Yan, Y., & Huo, A. (2024). Time-Domain Transfer Learning for Accurate Heavy Metal Concentration Retrieval Using Remote Sensing and TrAdaBoost Algorithm: A Case Study of Daxigou, China. Water, 16(10), 1439. https://doi.org/10.3390/w16101439