Environmental Regulation and Stormwater Management Strategies for an Urban River in Northwest China: A Sustainable Approach
Abstract
:1. Introduction
2. Overview of the Study Area
2.1. River Basin Overview
2.2. Overview of the River Environment in the River Basin
2.3. Data
2.4. LUCC in the River Basin
3. Research Outline and Methods
3.1. Research Outline
3.2. Principle of the SWMM
3.3. Surface Confluence Model
3.4. Construction and Application of the SWMM Model
3.4.1. Model Generalization
3.4.2. Parameter Determination
3.4.3. Rainfall Processes at Different Design Frequencies in the BH River Basin
3.4.4. LID Construction
3.5. Multi-Objective Ecological Scheduling Model and Intelligent Optimization Algorithm
4. Results
4.1. Verification of the Measured Rainfall–Runoff Process in the BH River Basin
4.2. Evaluation of the Design Flood Simulation Results in the Lower Reaches of the BH River Basin
4.3. Analysis of the Changes in the River Hydrological System after Urban LIDs
4.3.1. Flood Process Response to LID Construction
4.3.2. Hydrological Response of an Urban River Section Constructed by LIDs
4.4. Optimal Regulation of the Hydro-Ecology in the Lower Urban Reaches of the BH River
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Desta, H.; Lemma, B.; Gebremariam, E. Identifying sustainability challenges on land and water uses: The case of Lake Ziway watershed, Ethiopia. Appl. Geogr. 2017, 88, 130–143. [Google Scholar] [CrossRef]
- Xia, J.; Liu, C.Z.; Ren, G.Y. Opportunity and Challenge of the Climate Change Impact on the Water Resource of China. Adv. Earth Sci. 2011, 26, 1–12. [Google Scholar]
- Xia, J.; Sun, X.T.; Feng, H.L. Challenge of ecological water requirement of the west in China. China Water Resour. 2003, 483, 57–60. [Google Scholar]
- Guo, P.; Lyu, J.Q.; Yuan, W.N.; Zhou, X.W.; Mo, S.H.; Mu, D.R.; Luo, P.P. Detecting the Quantitative Hydrological Response to Changes in Climate and Human Activities at Temporal and Spatial Scales in a Typical Gully Region of the Loess Plateau, China. Water 2022, 14, 257. [Google Scholar] [CrossRef]
- Luo, P.P.; Zhang, Y.; Wang, Y.Y.; Shi, P.; Yu, W.; Zhu, X.; Huo, A.; Wang, Z.; He, B.; Nover, D. Comparative Assessment of Sponge City Constructing in Public Awareness, Xi’an, China. Sustainability 2022, 14, 11653. [Google Scholar] [CrossRef]
- Zhang, J.; Song, X.; Wang, G.; He, R.; Wang, X. Development and challenges of urban hydrology in a changing environment: I: Hydrological response to urbanization. Adv. Water Sci. 2014, 25, 594–605. [Google Scholar]
- Vorosmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.P.; Luo, M.T.; Li, F.Y.; Qi, X.G.; Huo, A.D.; Wang, Z.H.; He, B.; Takara, K.; Nover, D.; Wang, Y.H. Urban flood numerical simulation: Research, methods and future perspectives. Environ. Model. Softw. 2022, 156, 105478. [Google Scholar] [CrossRef]
- He, H.; Zhang, Q.; Jie, Z.; Fei, J.; Xie, X. Coupling climate change with hydrological dynamic in qinling mountains, china. Clim. Change 2009, 94, 409–427. [Google Scholar] [CrossRef]
- Todorov, V.; Dimov, I. Innovative Digital Stochastic Methods for Multidimensional Sensitivity Analysis in Air Pollution Modelling. Mathematics 2022, 10, 2146. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, X.; Siu, Y.L.; Li, Y.; Tanaka, K.; Yang, H.; Xu, Y. Flood Mitigation by Permeable Pavements in Chinese Sponge City Construction. Water 2018, 10, 172. [Google Scholar] [CrossRef]
- Choo, Y.; Sim, S.; Choe, Y. A study on urban inundation using swmm in busan, Korea, using existing dams and artificial underground waterways. Water 2021, 13, 1708. [Google Scholar] [CrossRef]
- Dimov, I.; Maire, S.; Todorov, V. An unbiased Monte Carlo method to solve linear Volterra equations of the second kind. Neural. Comput. Applic. 2022, 34, 1527–1540. [Google Scholar] [CrossRef]
- Lv, F.W.; Chen, Y.; Liu, F.; Mao, J.; Ding, Y.Y.; Yuan, S.C. Simulation study of the runoff control effects of LID facilities with different spatial placement strategies, China. China Rural. Water Hydropower 2023, 3, 120–129+143. [Google Scholar]
- Hou, J.; Guo, K.; Wang, Z.; Jing, H.; Li, D. Numerical simulation of design storm pattern effects on urban flood inundation. Adv. Water Sci. 2017, 28, 820–828. [Google Scholar]
- Mei, C.; Liu, J.; Wang, H.; Xiang, C.; Zhou, J. Review on urban design rainstorm. Chin. Sci. Bull. 2017, 62, 3873–3884. [Google Scholar] [CrossRef]
- Kumar, K.; Kozak, J.; Hundal, L.; Cox, A.; Zhang, H.; Granato, T. In-situ infiltration performance of different permeable pavements in an employee used parking lot-A four-year study. J. Environ. Manag. 2016, 167, 8–14. [Google Scholar] [CrossRef]
- Price, R.K.; Vojinovic, Z. Urban flood disaster management. Urban Water J. 2008, 5, 259–276. [Google Scholar] [CrossRef]
- Xu, K.; Yang, Y.; Wu, C.; Xu, F. Research on Modulation Method for Non-inverting Buck-Boost Power Converter. Water Resour. Power 2011, 29, 171–173+195. [Google Scholar]
- Xu, D. An Overview of Storm Water Management Model (SWMM). Acta Sci. Circumst 2014, 33, 23–26. [Google Scholar]
- Marsalek, J.; Dick, T.M.; Wisner, P.E.; Clarke, W.G. Comparative Evaluation of Three Urban Runoff Models. Water Resour. Bull. AWRA 1975, 11, 306–328. [Google Scholar] [CrossRef]
- Hou, J.; Li, D.; Wang, X.; Guo, K.; Tong, Y.; Ma, Y. Effects of initial conditions of LID measures on runoff control at residential community scale. Adv. Water Sci. 2019, 30, 45–55. [Google Scholar]
- Burian, S.J.; Streit, G.E.; McPherson, T.N.; Brown, M.J.; Turin, H.J. Modeling the atmospheric deposition and stormwater washoff of nitrogen compounds. Environ. Model. Softw. 2001, 161, 467–479. [Google Scholar] [CrossRef]
- Kim, J.; Choi, S.; Joo, J. EPA SWMM-LID Modeling for Low Impact Development 2017. J. Korean Soc. Hazard Mitig. 2017, 17, 415–424. [Google Scholar] [CrossRef]
- Kim, J. Evaluation of Low Impact Development using EPA SWMM-LID Modeling 2019. EPiC Ser. Eng. 2018, 3, 1074–1078. [Google Scholar]
- Palla, A.; Gnecco, I. Hydrologic modeling of low impact development systems at the urban catchment scale. J. Hydrol. 2015, 528, 361–368. [Google Scholar] [CrossRef]
- Joseph, J.; Giacomoni, M. Multi-objective evolutionary optimization and monte carlo simulation for placement of low impact development in the catchment scale. J. Water Resour. Plan. Manag. 2017, 143, 4017053. [Google Scholar]
- Lee, J.M.; Hyun, K.H.; Lee, Y.S.; Kim, J.G.; Choi, J.S. Analysis of water cycle effect by plan of lid-decentralized rainwater management using swmm-lid model in a low-carbon green village. Archimede 2011, 2, 503–507. [Google Scholar]
- Zeng, Z.; Yuan, X.; Liang, J.; Li, Y. Designing and implementing a swmm-based web service framework to provide decision support for real-time urban stormwater management. Environ. Model. Softw. 2021, 135, 104887. [Google Scholar] [CrossRef]
- Jang, S.; Cho, M.; Yoon, J.; Yoon, Y.; Kim, S.; Kim, G.; Kim, L.; Aksoy, H. Using swmm as a tool for hydrologic impact assessment. Desalination 2007, 212, 344–356. [Google Scholar] [CrossRef]
- Luo, P.P.; Xu, C.; Kang, S.; Huo, A.; Lyu, J.; Zhou, M.; Nover, D. Heavy metals in water and surface sediments of the Fenghe River Basin, China: Assessment and source analysis. Water Sci. Technol. 2021, 84, 10–11. [Google Scholar] [CrossRef] [PubMed]
- Chapman, C.; Homer, R.R. Performance assessment of a street-drainage bioretention system. Water Environ. Res. 2010, 82, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, T.; Chen, J. Sponge City: A review of water-sensitive urban design in China. Landsc. Urban Plan. 2016, 155, 1–12. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Zhang, J. Urban water environment in sponge cities of China: A review of current status, challenges, and strategies. Sci. Total Environ. 2018, 611, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, X.; Li, C.; Li, Y.; Li, D.; Liu, Y. Water pollution caused by construction activities and its control strategies in China. Environ. Sci. Pollut. Res. 2016, 23, 19162–19172. [Google Scholar]
- Wang, M.; Li, S.; Wang, Y.; Zhang, Y. Research on the impact of construction activities on water environment and countermeasures. Int. J. Environ. Res. Public Health 2018, 15, 2616. [Google Scholar]
- Smith, K.M.; Hamilton, S.K.; Schubel, J.R.; Bauer, J.E. The Effects of Low-Impact Development on Water Quality: A Review and Synthesis of the Literature. Water Environ. Res. 2014, 86, 558–567. [Google Scholar]
- Liu, X.; Wang, Y.; Zhang, Y. Analysis of the impact of construction activities on water environment and countermeasures. Int. J. Environ. Res. Public Health 2015, 12, 15141–15150. [Google Scholar]
- Palmer, M.A.; Miller, A.W.; Moore, J.L. Low-Impact Development: A Literature Review. Water Environ. Res. 2012, 84, 305–321. [Google Scholar]
- Palmer, M.A.; Moore, J.L. Low-Impact Development and Sustainable Stormwater Management: A Review of Recent Research. Water Environ. Res. 2013, 85, 837–847. [Google Scholar]
- Kumar, M.; Sharma, S.K.; Bhatia, S.K. Water environment management in sponge cities. Environ. Sci. Pollut. Res. Int. 2017, 24, 7097–7107. [Google Scholar]
- Yan, J.-P.; Yu, Z. A comparative study on environmental change response over the northern and the southern regions of the Qinling Mountains. Geogr. Res. 2001, 20, 576–582. [Google Scholar]
- Yang, Y.; Cai, Z. Ecological security assessment of the guanzhong plain urban agglomeration based on an adapted ecological footprint model. J. Clean. Prod. 2020, 260, 120973. [Google Scholar] [CrossRef]
- Sun, X.J.; Wei, B.Q.; Zhou, X.D.; Wang, Z.P. Current situation of water environment in Bahe River Basin area in Xi’an City and its control measures. J. Nat. Disasters 2009, 18, 168–173. [Google Scholar]
- Lyu, J.Q.; Luo, P.P.; Mo, S.H.; Zhou, M.M.; Shen, B.; Fan, L.; Nover, D. Towards sustainable water regulation based on a distributed hydrological model for a heavily polluted urban river, northwest China. Hydrol. Res. 2019, 50, 961–973. [Google Scholar] [CrossRef]
- Mo, S.; Li, Z.; Gou, K.; Qin, L.; Shen, B. Quantifying the effects of climate variability and direct human activities on the change in mean annual runoff for the bahe river (northwest china). J. Coast. Res. 2018, 341, 81–89. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Nima, N. STRM3 DEM. Available online: https://earthexplorer.usgs.gov/ (accessed on 22 November 2022).
- Center, C.M.D.S.C.N.M.I. Hourly Data from Surface Meteorological Stations in China. Available online: http://data.cma.cn/ (accessed on 21 November 2022).
- Wang, S.T.; Luo, P.P.; Xu, C.Y.; Zhu, W.; Cao, Z.; Ly, S. Reconstruction of Historical Land Use and Urban Flood Simulation in Xi’an, Shannxi, China. Remote Sens. 2022, 14, 6067. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, D.Q.; Su, J.; Dong, J.W.; Tan, S.K. Assessing hydrological effects and performance of low impact development practices based on future scenarios modeling. J. Clean. Prod. 2018, 179, 12–23. [Google Scholar] [CrossRef]
- Wicks, P. Assessing the importance of conduit geometry and physical parameters in karst systems using the storm water management model (swmm). J. Hydrol. 2006, 329, 294–305. [Google Scholar]
- Wang, K.H.; Altunkaynak, A. Comparative case study of rainfall-runoff modeling between swmm and fuzzy logic approach. J. Hydrol. Eng. 2013, 18, 283–291. [Google Scholar] [CrossRef]
- Birhanu, K.; Alamirew, T.; Dinka, M.O.; Ayalew, S.; Aklog, D. Optimizing reservoir operation policy using chance constraint nonlinear programming for Koga irrigation dam, Ethiopia. Water Resour. Manag. 2014, 28, 4957–4970. [Google Scholar] [CrossRef]
- Global Soil Database. Available online: https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (accessed on 24 August 2023).
- Church, M. Geomorphic response to river flow regulation: Case studies and timescales. Regul. Rivers Res. Manag. 2010, 11, 3–22. [Google Scholar] [CrossRef]
- Zuo, Q.T.; Li, D.F. Research on regulation for pollution-control of dams on heavily polluted river base on the model of simulation and optimization. J. Hydraul. Eng. 2013, 44, 979–986. [Google Scholar]
- Burke, M.; Jordek; Buffingn, J.M. Application of a hierarchical framework for assessing environmental impacts of dam operation: Changes in streamflow, bed mobility and recruitment of riparian trees in a western North American river. J. Environ. Manag. 2009, 90 (Supp. S1), 224–236. [Google Scholar] [CrossRef]
Seasons | Spring | Summer | Autumn | Winter | |
---|---|---|---|---|---|
Water Quality Indicators (mg/L) | |||||
Chemical Oxygen Demand | 27.72 | 27.16 | 25.40 | 28.05 | |
Ammonia Nitrogen | 2.35 | 2.16 | 1.51 | 2.51 | |
Total Phosphorous | 0.25 | 0.24 | 0.23 | 0.29 | |
Dissolved Oxygen | 8.94 | 8.60 | 8.17 | 8.52 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Average width (mm) | 865.0 | Average slope (%) | 0.12 |
Impermeability N value | 0.024 | Permeability N value | 0.03 |
Impermeable depression (mm) | 1.270 | Permeable depression (mm) | 5.09 |
Maximum infiltration rate (mm/h) | 73.00 | Minimum infiltration rate (mm/h) | 4.00 |
Design Standard (Year) | Design Flood Peak (m3/s) | Simulated Flood Peak (m3/s) | Relative Error (%) |
---|---|---|---|
T = 5 | 636.0 | 622.20 | 2.2 |
T = 10 | 1456 | 1527.9 | 4.9 |
T = 20 | 1931 | 1765.5 | 8.9 |
T = 50 | 2583 | 2298.6 | 11.0 |
T = 100 | 3093 | 3162.6 | 2.3 |
Hourly Woutflow (m3/s) | v (m/s) | WLeakage (104m3) | tR (Hour) | ||||
---|---|---|---|---|---|---|---|
Before LIDs | After LIDs | Before LIDs | After LIDs | Before LIDs | After LIDs | Before LIDs | After LIDs |
6.03 | 3.41 | 0.012 | 0.006 | 86.89 | 65.33 | 48 | 72 |
4.84 | 2.74 | 0.010 | 0.008 | 70.67 | 53.39 | 72 | 96 |
3.42 | 1.84 | 0.006 | 0.005 | 67.59 | 34.16 | 72 | 120 |
2.21 | 1.2 | 0.006 | 0.004 | 43.05 | 22.53 | 96 | 120 |
1.37 | 0.73 | 0.004 | 0.002 | 28.55 | 16.27 | 120 | 120 |
Hourly Inflow Runoff (m3/s) | Water Storage Height of No. 1 Rubber Dam (m) | Water Storage Height of No. 2 Rubber Dam (m) | Flow Velocity in No. 2 Dam Reservoir Area (m/s) | Flow Velocity in No. 1 Dam Reservoir Area (m/s) |
---|---|---|---|---|
3.41 | 0.81 | 0.31 | 0.011 | 0.022 |
2.74 | 0.61 | 0.30 | 0.011 | 0.016 |
1.84 | 0.41 | 0.27 | 0.011 | 0.012 |
1.20 | 0.27 | 0.13 | 0.011 | 0.016 |
0.73 | 0.13 | 0.12 | 0.014 | 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, C.; Lyu, J.; Yan, W.; Guo, P.; Fu, X.; Mu, D.; Luo, P.; Zhang, Y.; Huo, A. Environmental Regulation and Stormwater Management Strategies for an Urban River in Northwest China: A Sustainable Approach. Water 2024, 16, 1115. https://doi.org/10.3390/w16081115
Lu C, Lyu J, Yan W, Guo P, Fu X, Mu D, Luo P, Zhang Y, Huo A. Environmental Regulation and Stormwater Management Strategies for an Urban River in Northwest China: A Sustainable Approach. Water. 2024; 16(8):1115. https://doi.org/10.3390/w16081115
Chicago/Turabian StyleLu, Chen, Jiqiang Lyu, Wang Yan, Peng Guo, Xianghang Fu, Dengrui Mu, Pingping Luo, Yueyan Zhang, and Aidi Huo. 2024. "Environmental Regulation and Stormwater Management Strategies for an Urban River in Northwest China: A Sustainable Approach" Water 16, no. 8: 1115. https://doi.org/10.3390/w16081115
APA StyleLu, C., Lyu, J., Yan, W., Guo, P., Fu, X., Mu, D., Luo, P., Zhang, Y., & Huo, A. (2024). Environmental Regulation and Stormwater Management Strategies for an Urban River in Northwest China: A Sustainable Approach. Water, 16(8), 1115. https://doi.org/10.3390/w16081115