Extracellular Polymeric Substance Composition Effects on Biosorption for Primary Carbon Diversion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bench-Scale Biosorption
2.2. EPS Extraction and Characterization
3. Results and Discussion
3.1. EPS Extraction and Characterization
3.2. Biosorption Correlation to EPSs
3.3. COD Removals with Reduced DO Concentration
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sheng, G.P.; Yu, H.Q.; Li, X.Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnol. Adv. 2010, 28, 882–894. [Google Scholar] [CrossRef] [PubMed]
- Nouha, K.; Kumar, R.S.; Balasubramanian, S.; Tyagi, R.D. Critical review of EPS production, syntheses and composition for sludge flocculation. J. Environ. Sci. 2018, 66, 225–245. [Google Scholar] [CrossRef] [PubMed]
- Frolund, B.; Palmgren, R.; Keiding, K.; Nielsen, P.H. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Appl. Microbiol. Biotechnol. 1996, 30, 1749–1758. [Google Scholar] [CrossRef]
- Liu, H.; Fang, H.H.P. Extraction of extracellular polymeric substances (EPS) of sludges. J. Biotechnol. 2002, 95, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Wingender, J.; Neu, T.R.; Flemming, H. Microbial Extracellular Polymeric Substances: Characterization, Structure and Function, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1999; p. 58. [Google Scholar]
- Wong, T.P.; Babcock, R.W., Jr.; Hu, B.; Schneider, J.; Milan, S. High rate biological contactor system using waste activated sludge from trickling filter/solids contact process. Water Sci. Technol. 2020, 81, 2202–2210. [Google Scholar] [CrossRef] [PubMed]
- Comte, S.; Guibaud, G.; Baudu, M. Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: Soluble or bound. Process Biochem. 2006, 41, 815–823. [Google Scholar] [CrossRef]
- Wong, T.P.; Babcock, R.W., Jr.; Uekawa, T.; Schneider, J.; Hu, B. Effects of Waste Activated Sludge Extracellular Polymeric Substances on Biosorption. Water 2022, 14, 218. [Google Scholar] [CrossRef]
- Schneider, J.; Babcock, R.W., Jr.; Wong, T.P.; Hu, B. Effects of Mixing Ratio, Contact Time and Dissolved Oxygen on Efficiency of Biosorption for Primary Carbon Diversion. Int. J. Water Wastewater Treat 2020, 6, 1–7. [Google Scholar]
- American Public Health Association/Amerian Water Works Association/Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association/Amerian Water Works Association/Water Environment Federation: Washington, DC, USA, 1999. [Google Scholar]
- Frolund, B.; Griebe, T.; Nielsen, P.H. Enzymatic activity in the activated-sludge floc matrix. Appl. Microbiol. Biotechnol. 1995, 43, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Novak, J.T. Characterization of activated sludge exocellular polymers using several cation-associated extraction methods. Water Res. 2007, 41, 1679–1688. [Google Scholar] [CrossRef] [PubMed]
- Raunkjaer, K.; Hvitved-Jacobsen, T.; Nielsen, P.H. Measurement of Pools of Protein, Carbohydrate and Lipid in Domestic Wastewater. Water Res. 1994, 28, 251–262. [Google Scholar] [CrossRef]
- Waterborg, J.H.; Matthews, H.R. The Lowry Method for Protein Quantitation. In Methods in Molecular Biology, 1st ed.; Walker, J.M., Ed.; Humana Press: Clifton, NJ, USA, 1984; Volume 1, pp. 1–3. [Google Scholar]
- Gaudy, A.F., Jr. Colorimetric Determination of Protein and Carbohydrate. Ind. Water Wastes 1962, 7, 17–22. [Google Scholar]
- Kintner, P.K., III; Buren, J.P.V. Carbohydrate Interference and Its Correction in Pectin Analysis Using the m-Hydroxydiphenyl Method. J. Food Sci. 1982, 47, 756–759. [Google Scholar] [CrossRef]
- Bella, G.D.; Torregrossa, M.; Viviani, G. The role of EPS concentration in MBR foaming: Analysis of a submerged pilot plant. Bioresour. Technol. 2011, 102, 1628–1635. [Google Scholar] [CrossRef] [PubMed]
- Wilén, B.M.; Jin, B.; Lant, P. Relationship between flocculation of activated sludge and composition of extracellular polymeric substances. Water Sci. Technol. 2003, 47, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, X.; Siddiqui, M.A.; Liu, H.; Zhou, T.; Huang, S.; Gao, L.; Lin, C.Z.K.; Wang, Q. Effect of humic substances on the anaerobic digestion of secondary sludge in wastewater treatment plants; a review. Environ. Chem. Lett. 2023, 21, 3023–3040. [Google Scholar] [CrossRef]
mg g −1 VSS | ||||||
---|---|---|---|---|---|---|
WWTP | Process | EPS/VSS (%) | Carbohydrate | Protein | Humic Acid | Uronic Acid |
A | TF/SC | 28 ± 1.7 | 32 ± 2.0 | 89 ± 11.2 | 151 ± 11.7 | 4 ± 0.7 |
B | MBR | 14 ± 0.4 | 27 ± 1.5 | 57 ± 1.3 | 53 ± 2.0 | 6 ± 0.2 |
C | CAS | 30 ± 2.9 | 46 ± 5.6 | 124 ± 12.3 | 128 ± 27.2 | 5 ± 0.8 |
mg EPS g −1 VSS | ||||||
---|---|---|---|---|---|---|
WWTP | Process | EPS/VSS (%) | Total | CER | Base | Sulfide |
A | TF/SC | 51 ± 2.7 | 507 ± 26.5 | 261 ± 24.7 | 169 ± 6.8 | 78 ± 9.8 |
B | MBR | 26 ± 1.0 | 256 ± 10.0 | 143 ± 4.0 | 67 ± 6.5 | 46 ± 3.3 |
C | CAS | 54 ± 2.3 | 499 ± 26.5 | 272 ± 12.0 | 147 ± 18.2 | 80 ± 3.8 |
WWTP | Removal of | Correlation With | R2 | ANOVA Significance F |
---|---|---|---|---|
A (TF/SC) | sCOD | Protein EPSs | 0.89 | <0.01 |
A (TF/SC) | sCOD | Total EPSs | 0.84 | <0.01 |
A (TF/SC) | ffCOD | Protein EPSs | 0.91 | <0.01 |
A (TF/SC) | ffCOD | Total EPSs | 0.88 | <0.01 |
B (MBR) | sCOD | Protein EPSs | 0.76 | <0.1 |
B (MBR) | sCOD | Total EPSs | 0.46 | >0.1 |
B (MBR) | ffCOD | Protein EPSs | 0.84 | <0.05 |
B (MBR) | ffCOD | Total EPSs | 0.58 | >0.1 |
C (CAS) | sCOD | Protein EPSs | 0.09 | >0.1 |
C (CAS) | sCOD | Total EPSs | 0.68 | <0.1 |
C (CAS) | ffCOD | Protein EPSs | 0.01 | >0.1 |
C (CAS) | ffCOD | Total EPSs | 0.62 | >0.1 |
mg Removed per mg Total EPSs | |||
---|---|---|---|
WWTP | Process | sCOD | ffCOD |
A | TF/SC | 1.41 ± 0.16 | 1.33 ± 0.15 |
B | MBR | 1.39 ± 0.08 | 1.11 ± 0.08 |
C | CAS | 1.50 ± 0.18 | 1.14 ± 0.21 |
Average | 1.43 ± 0.15 | 1.20 ± 0.18 |
Calculated | |||||||
---|---|---|---|---|---|---|---|
EPS/VSS % | WAS VSS mg L−1 | Total EPSs mg L−1 | Influent sCOD mg L−1 | Low sCOD Removed mg L−1 | Avg. sCOD Removed mg L−1 | High sCOD Removed mg L−1 | Measured sCOD Removed mg L−1 (%) |
28 | 2560 | 717 | 207 | 48 | 54 | 60 | 79 (38) |
28 | 3100 | 868 | 197 | 58 | 65 | 72 | 74 (38) |
28 | 3540 | 991 | 196 | 67 | 75 | 82 | 78 (40) |
28 | 2220 | 622 | 179 | 42 | 47 | 52 | 54 (30) |
28 | 3360 | 941 | 186 | 63 | 71 | 78 | 75 (40) |
Calculated | |||||||
---|---|---|---|---|---|---|---|
EPS/VSS % | WAS VSS mg L−1 | Total EPSs mg L−1 | Influent ffCOD mg L−1 | Low ffCOD Removed mg L−1 | Avg. ffCOD Removed mg L−1 | High ffCOD Removed mg L−1 | Measured ffCOD Removed mg L−1 (%) |
28 | 2560 | 717 | 93 | 38 | 45 | 52 | 36 (39) |
28 | 3100 | 868 | 119 | 47 | 55 | 63 | 42 (35) |
28 | 3540 | 991 | 131 | 53 | 63 | 72 | 52 (40) |
28 | 2220 | 622 | 120 | 33 | 39 | 45 | 46 (38) |
28 | 3360 | 941 | 148 | 51 | 59 | 68 | 59 (40) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, T.P.; Babcock, R.W., Jr.; Uekawa, T.; Schneider, J. Extracellular Polymeric Substance Composition Effects on Biosorption for Primary Carbon Diversion. Water 2024, 16, 1116. https://doi.org/10.3390/w16081116
Wong TP, Babcock RW Jr., Uekawa T, Schneider J. Extracellular Polymeric Substance Composition Effects on Biosorption for Primary Carbon Diversion. Water. 2024; 16(8):1116. https://doi.org/10.3390/w16081116
Chicago/Turabian StyleWong, Tiow Ping, Roger W. Babcock, Jr., Theodore Uekawa, and Joachim Schneider. 2024. "Extracellular Polymeric Substance Composition Effects on Biosorption for Primary Carbon Diversion" Water 16, no. 8: 1116. https://doi.org/10.3390/w16081116
APA StyleWong, T. P., Babcock, R. W., Jr., Uekawa, T., & Schneider, J. (2024). Extracellular Polymeric Substance Composition Effects on Biosorption for Primary Carbon Diversion. Water, 16(8), 1116. https://doi.org/10.3390/w16081116