Bibliometric Analysis of Nitrogen Removal in Constructed Wetlands: Current Trends and Future Research Directions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bibliometric Data Sources
2.2. Bibliometric Methodology
3. Results and Discussion
3.1. Research Area Analysis
3.2. Publication Years and Authors Analysis
3.3. Publication Regions and Languages Analysis
3.4. Publication Keywords and Main Items Analysis
3.5. Current Research Hotspot Analysis
4. Knowledge Gaps and Future Studies
- (1).
- Efficient nitrogen removal materials should be further explored to continuously optimize the substrate composition in CWs, taking into account both economic viability and environmental sustainability.
- (2).
- Researchers should investigate the use of genetic and ecological interventions for enhancing microbial populations’ ability to perform nitrogen conversion processes, such as nitrification, denitrification, ammonification, and anaerobic ammonia oxidation, at higher rates and with greater efficiency.
- (3).
- The advancement of bioscience control technologies in CWs, encompassing aquatic organisms, plants, biofilms, and microbial techniques, still encounters a substantial knowledge gap. Future research is anticipated to prioritize the investigation of the interplay between living organisms and nitrogen capture.
- (4).
- The integration of advanced sensors and real-time monitoring systems is essential for advancing microbial engineering in CWs. It enables continuous surveillance of microbial activity, environmental conditions, and nitrogen levels, facilitating the precise control and optimization of nitrogen removal performance. Smart data-driven systems can revolutionize this field by improving adaptability to changing nitrogen loading conditions.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vymazal, J. The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: A review of a recent development. Water Res. 2013, 47, 4795–4811. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zheng, B.; Chen, X.; Li, Z.; Xia, Q.; Wang, H.; Yang, Y.; Zhou, Y.; Yang, H. The use of constructed wetland for mitigating nitrogen and phosphorus from agricultural runoff: A review. Water 2021, 13, 476. [Google Scholar] [CrossRef]
- Keffala, C.; Ghrabi, A. Nitrogen and bacterial removal in constructed wetlands treating domestic waste water. Desalination 2005, 185, 383–389. [Google Scholar] [CrossRef]
- Troitsky, B.; Zhu, D.Z.; Loewen, M.; van Duin, B.; Mahmood, K. Nutrient processes and modeling in urban stormwater ponds and constructed wetlands. Can. Water Resour. J. 2019, 44, 230–247. [Google Scholar] [CrossRef]
- Hu, X.; Yue, J.; Yao, D.; Zhang, X.; Li, Y.; Hu, Z.; Liang, S.; Wu, H.; Xie, H.; Zhang, J. Plant development alters the nitrogen cycle in subsurface flow constructed wetlands: Implications to the strategies for intensified treatment performance. Water Res. 2023, 246, 120750. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Liao, Y.; Xu, Y.; Dang, Z.; Zhu, X.; Ji, G. Microbial coupling mechanisms of nitrogen removal in constructed wetlands: A review. Bioresour. Technol. 2020, 314, 123759. [Google Scholar] [CrossRef] [PubMed]
- Fu, G.; Wu, J.; Han, J.; Zhao, L.; Chan, G.; Leong, K. Effects of substrate type on denitrification efficiency and microbial community structure in constructed wetlands. Bioresour. Technol. 2020, 307, 123222. [Google Scholar] [CrossRef] [PubMed]
- Spiller, M.; Moretti, M.; De Paepe, J.; Vlaeminck, S.E. Environmental and economic sustainability of the nitrogen recovery paradigm: Evidence from a structured literature review. Resour. Conserv. Recycl. 2022, 184, 106406. [Google Scholar] [CrossRef]
- Xiang, S.; Liu, Y.; Zhang, G.; Ruan, R.; Wang, Y.; Wu, X.; Zheng, H.; Zhang, Q.; Cao, L. New progress of ammonia recovery during ammonia nitrogen removal from various wastewaters. World J. Microbiol. Biotechnol. 2020, 36, 144. [Google Scholar] [CrossRef]
- Luo, Y.; Le-Clech, P.; Henderson, R.K. Assessing the performance of membrane photobioreactors (MPBR) for polishing effluents containing different types of nitrogen. Algal Res. 2020, 50, 102013. [Google Scholar] [CrossRef]
- Mao, X.; Myavagh, P.H.; Lotfikatouli, S.; Hsiao, B.S.; Walker, H.W. Membrane bioreactors for nitrogen removal from wastewater: A review. J. Environ. Eng. 2020, 146, 03120002. [Google Scholar] [CrossRef]
- Kang, Y.; Zhang, J.; Xie, H.; Guo, Z.; Ngo, H.H.; Guo, W.; Liang, S. Enhanced nutrient removal and mechanisms study in benthic fauna added surface-flow constructed wetlands: The role of Tubifex tubifex. Bioresour. Technol. 2017, 224, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J.; Zhao, Y.; Mander, Ü. Recent research challenges in constructed wetlands for wastewater treatment: A review. Ecol. Eng. 2021, 169, 106318. [Google Scholar] [CrossRef]
- Yao, D.; Dai, N.; Hu, X.; Cheng, C.; Xie, H.; Hu, Z.; Liang, S.; Zhang, J. New insights into the effects of wetland plants on nitrogen removal pathways in constructed wetlands with low C/N ratio wastewater: Contribution of partial denitrification-anammox. Water Res. 2023, 243, 120277. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, Y.; Liu, R.; Cao, Y.; Wang, G.; Ji, L.; Xu, Y. Effects of different substrates on nitrogen and phosphorus removal in horizontal subsurface flow constructed wetlands. Environ. Sci. Pollut. Res. 2019, 26, 16229–16238. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Guo, Q.; Wang, Y.; Xu, J.; Wei, Q.; Chen, L.; Liao, L. Enhancing nitrogen and phosphorus removal by applying effective microorganisms to constructed wetlands. Water 2020, 12, 2443. [Google Scholar] [CrossRef]
- Qi, R.; Zhang, L.; Yang, F.; Yan, C.-Z. Effect of hydraulic residence time on removal efficiency of pollutants in subsurface flow constructed wetlands and analysis of denitrification mechanism. Huan Jing Ke Xue Huanjing Kexue 2021, 42, 4296–4303. [Google Scholar] [PubMed]
- Tan, H.; Li, J.; He, M.; Li, J.; Zhi, D.; Qin, F.; Zhang, C. Global evolution of research on green energy and environmental technologies: A bibliometric study. J. Environ. Manag. 2021, 297, 113382. [Google Scholar] [CrossRef] [PubMed]
- Dell’Osbel, N.; Colares, G.S.; de Oliveira, G.A.; de Souza, M.P.; Barbosa, C.V.; Machado, Ê.L. Bibliometric analysis of phosphorous removal through constructed wetlands. Water Air Soil Pollut. 2020, 231, 117. [Google Scholar] [CrossRef]
- Colares, G.S.; Dell’Osbel, N.; Wiesel, P.G.; Oliveira, G.A.; Lemos, P.H.Z.; da Silva, F.P.; Lutterbeck, C.A.; Kist, L.T.; Machado, Ê.L. Floating treatment wetlands: A review and bibliometric analysis. Sci. Total Environ. 2020, 714, 136776. [Google Scholar] [CrossRef]
- Alsharif, A.H.; Salleh, N.; Baharun, R. Bibliometric analysis. J. Theor. Appl. Inf. Technol. 2020, 98, 2948–2962. [Google Scholar]
- Zhi, W.; Ji, G. Constructed wetlands, 1991–2011: A review of research development, current trends, and future directions. Sci. Total Environ. 2012, 441, 19–27. [Google Scholar] [CrossRef] [PubMed]
- de Souza, M.P.; Hoeltz, M.; Gressler, P.D.; Benitez, L.B.; Schneider, R.C. Potential of microalgal bioproducts: General perspectives and main challenges. Waste Biomass Valoriz. 2019, 10, 2139–2156. [Google Scholar] [CrossRef]
- Van Eck, N.; Waltman, L. Manual for VOSviwer version 1.6. 10. In CWTS Meaningful Metrics; Universiteit Leiden: Leiden, The Netherlands, 2019. [Google Scholar]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef]
- Nyer, S.C.; Volkenborn, N.; Aller, R.C.; Graffam, M.; Zhu, Q.; Price, R.E. Nitrogen transformations in constructed wetlands: A closer look at plant-soil interactions using chemical imaging. Sci. Total Environ. 2022, 816, 151560. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed wetlands for wastewater treatment: Five decades of experience. Environ. Sci. Technol. 2011, 45, 61–69. [Google Scholar] [CrossRef]
- Farooq, R. A review of knowledge management research in the past three decades: A bibliometric analysis. VINE J. Inf. Knowl. Manag. Syst. 2024, 54, 339–378. [Google Scholar] [CrossRef]
- Chiu, W.-T.; Ho, Y.-S. Bibliometric analysis of tsunami research. Scientometrics 2007, 73, 3–17. [Google Scholar] [CrossRef]
- Bastian, R.; Hammer, D. The use of constructed wetlands for wastewater treatment and recycling. In Constructed Wetlands for Water Quality Improvement; CRC Press: Boca Raton, FL, USA, 2020; pp. 59–68. [Google Scholar]
- Vymazal, J. The use of constructed wetlands for nitrogen removal from agricultural drainage: A review. Sci. Agric. Bohem. 2017, 48, 82–91. [Google Scholar] [CrossRef]
- Wei, D.; Singh, R.P.; Li, Y.; Fu, D. Nitrogen removal efficiency of surface flow constructed wetland for treating slightly polluted river water. Environ. Sci. Pollut. Res. 2020, 27, 24902–24913. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, W.; Wang, W.; Yin, W.; Liu, H.; Ma, X.; Zhou, Y.; Lei, P.; Wei, D.; Zhang, L. A review on China’s constructed wetlands in recent three decades: Application and practice. J. Environ. Sci. 2021, 104, 53–68. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Xie, S.; Ho, Y.-S. A bibliometric analysis of world volatile organic compounds research trends. Scientometrics 2010, 83, 477–492. [Google Scholar] [CrossRef]
- Garfield, E. KeyWords Plus-ISI’s breakthrough retrieval method. 1. Expanding your searching power on current-contents on diskette. Curr. Contents 1990, 32, 5–9. [Google Scholar]
- Li, J.; Zhang, Y.; Wang, X.; Ho, Y.-S. Bibliometric analysis of atmospheric simulation trends in meteorology and atmospheric science journals. Croat. Chem. Acta 2009, 82, 695–705. [Google Scholar] [CrossRef]
- Lin, Y.-F.; Jing, S.-R.; Lee, D.-Y.; Wang, T.-W. Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture 2002, 209, 169–184. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of nutrients in constructed wetlands for wastewater treatment through plant harvesting–Biomass and load matter the most. Ecol. Eng. 2020, 155, 105962. [Google Scholar] [CrossRef]
- Wang, H.X.; Xu, J.L.; Sheng, L.X.; Liu, X.J. A review of research on substrate materials for constructed wetlands. In Materials Science Forum; Trans Tech Publications Ltd.: Zurich, Switzerland, 2018; pp. 917–929. [Google Scholar]
- Tao, W.; Wen, J.; Han, Y.; Huchzermeier, M.P. Nitrogen removal in constructed wetlands using nitritation/anammox and nitrification/denitrification: Effects of influent nitrogen concentration. Water Environ. Res. 2012, 84, 2099–2105. [Google Scholar] [CrossRef] [PubMed]
- Fu, G.; Yu, T.; Ning, K.; Guo, Z.; Wong, M.-H. Effects of nitrogen removal microbes and partial nitrification-denitrification in the integrated vertical-flow constructed wetland. Ecol. Eng. 2016, 95, 83–89. [Google Scholar] [CrossRef]
- Platzer, C. Design recommendations for subsurface flow constructed wetlands for nitrification and denitrification. Water Sci. Technol. 1999, 40, 257–263. [Google Scholar] [CrossRef]
- Butterworth, E.; Richards, A.; Jones, M.; Dotro, G.; Jefferson, B. Assessing the potential for tertiary nitrification in sub-surface flow constructed wetlands. Environ. Technol. Rev. 2016, 5, 68–77. [Google Scholar] [CrossRef]
- Wu, T.; Yang, S.-S.; Zhong, L.; Pang, J.-W.; Zhang, L.; Xia, X.-F.; Yang, F.; Xie, G.-J.; Liu, B.-F.; Ren, N.-Q. Simultaneous nitrification, denitrification and phosphorus removal: What have we done so far and how do we need to do in the future? Sci. Total Environ. 2023, 856, 158977. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Long, Y.; Yu, G.; Wang, G.; Zhou, Z.; Li, P.; Zhang, Y.; Yang, K.; Wang, S. A review on microorganisms in constructed wetlands for typical pollutant removal: Species, function, and diversity. Front. Microbiol. 2022, 13, 845725. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Yang, B.; Wang, H.; Wang, S.; Jiao, K.; Zhang, C.; Li, F.; Wang, H. Improving the removal efficiency of nitrogen and organics in vertical-flow constructed wetlands: The correlation of substrate, aeration and microbial activity. Environ. Sci. Pollut. Res. 2023, 30, 21683–21693. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Xie, J.; Xie, H.; Huo, J.; Wu, H.; Hu, Z.; Xue, K.; Song, M.; Liang, S.; Zhang, J. Towards a better and more complete understanding of microbial nitrogen transformation processes in the rhizosphere of subsurface flow constructed wetlands: Effect of plant root activities. Chem. Eng. J. 2023, 463, 142455. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, J.; Kuang, S. Bibliometric Analysis of Nitrogen Removal in Constructed Wetlands: Current Trends and Future Research Directions. Water 2024, 16, 1453. https://doi.org/10.3390/w16101453
Dong J, Kuang S. Bibliometric Analysis of Nitrogen Removal in Constructed Wetlands: Current Trends and Future Research Directions. Water. 2024; 16(10):1453. https://doi.org/10.3390/w16101453
Chicago/Turabian StyleDong, Jiahao, and Shaoping Kuang. 2024. "Bibliometric Analysis of Nitrogen Removal in Constructed Wetlands: Current Trends and Future Research Directions" Water 16, no. 10: 1453. https://doi.org/10.3390/w16101453
APA StyleDong, J., & Kuang, S. (2024). Bibliometric Analysis of Nitrogen Removal in Constructed Wetlands: Current Trends and Future Research Directions. Water, 16(10), 1453. https://doi.org/10.3390/w16101453