Denitrification Mechanism of Heterotrophic Aerobic Denitrifying Pseudomonas hunanensis Strain DC-2 and Its Application in Aquaculture Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Identification
2.2. The HN-AD Characterization of Strain DC-2
2.3. Optimization of Factors Affecting NH4+-N Removal Ability
2.4. Nitrogen Mass Balance
2.5. The Whole Genome
2.6. The Activity of Nitrogen-Metabolizing Enzymes
2.7. Application in Aquaculture Wastewater
2.8. Analytical Method and Statistical Analysis
3. Results and Discussion
3.1. Isolation and Identification
3.2. HN-AD Characteristics of Strain DC-2
3.3. Effects of Environmental Factors on Nitrogen Removal Characteristic of Strain DC-2
3.4. Denitrification Pathway Analysis
3.4.1. Nitrogen Mass Balance Analysis
3.4.2. Whole Genome Analysis
3.4.3. Analysis of Enzyme Activity of N Metabolism
3.4.4. Nitrogen Metabolic Pathway
3.5. Application in Aquaculture Wastewater
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajeev, R.; Adithya, K.K.; Kiran, G.S.; Selvin, J. Healthy microbiome: A key to successful and sustainable shrimp aquaculture. Rev. Aquac. 2021, 13, 238–258. [Google Scholar] [CrossRef]
- Xie, Y.; Tian, X.; He, Y.; Dong, S.; Zhao, K. Nitrogen removal capability and mechanism of a novel heterotrophic nitrification-aerobic denitrification bacterium Halomonas sp. DN3. Bioresour. Technol. 2023, 387, 129596. [Google Scholar] [CrossRef]
- Lu, Z.; Cheng, X.; Xie, J.; Li, Z.; Li, X.; Jiang, X.; Zhu, D. Iron-based multi-carbon composite and Pseudomonas furukawaii ZS1 co-affect nitrogen removal, microbial community dynamics and metabolism pathways in low-temperature aquaculture wastewater. J. Environ. Manag. 2024, 349, 119471. [Google Scholar] [CrossRef]
- Shao, Y.; Zhong, H.; Mao, X.; Zhang, H. Biochar-immobilized Sphingomonas sp. and Acinetobacter sp. isolates to enhance nutrient removal: Potential application in crab aquaculture. Aquac. Environ. Interact. 2020, 12, 251–262. [Google Scholar] [CrossRef]
- Liu, T.; Wang, B.; Liu, M.; Jiang, K.; Wang, L. Stutzerimonas frequens strain TF18 with superior heterotrophic nitrification-aerobic denitrification ability for the treatment of aquaculture effluent. Process Biochem. 2023, 130, 156–165. [Google Scholar] [CrossRef]
- Qing, H.; Donde, O.O.; Tian, C.; Wang, C.; Wu, X.; Feng, S.; Liu, Y.; Xiao, B. Novel heterotrophic nitrogen removal and assimilation characteristic of the newly isolated bacterium Pseudomonas stutzeri AD-1. J. Biosci. Bioeng. 2018, 126, 339–345. [Google Scholar] [CrossRef]
- Deng, M.; Zhao, X.; Senbati, Y.; Song, K.; He, X. Nitrogen removal by heterotrophic nitrifying and aerobic denitrifying bacterium Pseudomonas sp. DM02: Removal performance, mechanism and immobilized application for real aquaculture wastewater treatment. Bioresour. Technol. 2021, 322, 124555. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Q.; Wu, H.; Jiang, W.; Kahaer, A.; Tang, Q.; Hu, Z.; Hong, C.; Liu, D. Integrative chemical and omics analysis of the ammonia nitrogen removal characteristics and mechanism of a novel oligotrophic heterotrophic nitrification-aerobic denitrification bacterium. Sci. Total Environ. 2022, 852, 158519. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, J.; Wang, K.; Ma, Y.; Fang, J.; Liu, G. Discovery of a heterotrophic aerobic denitrification Pseudomonas sp. G16 and its unconventional nitrogen metabolic pathway. Bioresour. Technol. 2023, 387, 129670. [Google Scholar] [CrossRef] [PubMed]
- Arts, P.A.; Robertson, L.A.; Gijs Kuenen, J. Nitrification and denitrification by Thiosphaera pantotropha in aerobic chemostat cultures. FEMS Microbiol. Ecol. 1995, 18, 305–315. [Google Scholar] [CrossRef]
- Huang, M.-Q.; Cui, Y.-W.; Yang, H.-J.; Xu, M.-J.; Cui, Y.; Chen, Z. A halophilic aerobic-heterotrophic strain SND-01: Nitrogen removal by ammonium assimilation and heterotrophic nitrification-aerobic denitrification. Bioresour. Technol. 2023, 374, 128758. [Google Scholar] [CrossRef]
- Huang, M.-Q.; Cui, Y.-W.; Huang, J.-L.; Sun, F.-L.; Chen, S. A novel Pseudomonas aeruginosa strain performs simultaneous heterotrophic nitrification-aerobic denitrification and aerobic phosphate removal. Water Res. 2022, 221, 118823. [Google Scholar] [CrossRef]
- Huang, X.J.; Weisener, C.G.; Ni, J.P.; He, B.H.; Xie, D.T.; Li, Z.L. Nitrate assimilation, dissimilatory nitrate reduction to ammonium, and denitrification coexist in Pseudomonas putida Y-9 under aerobic conditions. Bioresour. Technol. 2020, 312, 123597. [Google Scholar] [CrossRef]
- Hu, J.; Yan, J.; Wu, L.; Bao, Y.; Yu, D.; Li, J. Simultaneous nitrification and denitrification of hypersaline wastewater by a robust bacterium Halomonas salifodinae from a repeated-batch acclimation. Bioresour. Technol. 2021, 341, 125818. [Google Scholar] [CrossRef]
- Zhang, M.; He, T.; Chen, M.; Wu, Q. Ammonium and hydroxylamine can be preferentially removed during simultaneous nitrification and denitrification by Pseudomonas taiwanensis EN-F2. Bioresour. Technol. 2022, 350, 126912. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lei, Z.; He, X.; Zhang, Z.; Yang, Y.; Sugiura, N. Nitrate removal by Thiobacillus denitrificans immobilized on poly (vinyl alcohol) carriers. J. Hazard. Mater. 2009, 163, 1090–1095. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Huang, S.; Tian, Y.; Lu, X. Heterotrophic ammonium assimilation: An important driving force for aerobic denitrification of Rhodococcus erythropolis strain Y10. Chemosphere 2022, 291, 132910. [Google Scholar] [CrossRef] [PubMed]
- Rice, E.W.; Bridgewater, L.; American Public Health Association (Eds.) Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Shu, H.; Sun, H.M.; Huang, W.; Zhao, Y.; Ma, Y.H.; Chen, W.; Sun, Y.P.; Chen, X.Y.; Zhong, P.; Yang, H.R.; et al. Nitrogen removal characteristics and potential application of the heterotrophic nitrifying-aerobic denitrifying bacteria Pseudomonas mendocina S16 and Enterobacter cloacae DS’5 isolated from aquaculture wastewater ponds. Bioresour. Technol. 2022, 345, 126541. [Google Scholar] [CrossRef]
- He, X.; Sun, Q.; Xu, T.; Dai, M.; Wei, D. Removal of nitrogen by heterotrophic nitrification–aerobic denitrification of a novel halotolerant bacterium Pseudomonas mendocina TJPU04. Bioprocess Biosyst. Eng. 2019, 42, 853–866. [Google Scholar] [CrossRef]
- Wan, C.L.; Yang, X.; Lee, D.J.; Du, M.A.; Wan, F.; Chen, C. Aerobic denitrification by novel isolated strain using NO2−-N as nitrogen source. Bioresour. Technol. 2011, 102, 7244–7248. [Google Scholar] [CrossRef]
- Padhi, S.K.; Tripathy, S.; Sen, R.; Mahapatra, A.S.; Mohanty, S.; Maiti, N.K. Characterisation of heterotrophic nitrifying and aerobic denitrifying Klebsiella pneumoniae CF-S9 strain for bioremediation of wastewater. Int. Biodeterior. Biodegrad. 2013, 78, 67–73. [Google Scholar] [CrossRef]
- Gu, X.; Leng, J.; Zhu, J.; Zhang, K.; Zhao, J.; Wu, P.; Xing, Q.; Tang, K.; Li, X.; Hu, B. Influence mechanism of C/N ratio on heterotrophic nitrification- aerobic denitrification process. Bioresour. Technol. 2022, 343, 126116. [Google Scholar] [CrossRef]
- Liu, Y.; Ai, G.-M.; Miao, L.-L.; Liu, Z.-P. Marinobacter strain NNA5, a newly isolated and highly efficient aerobic denitrifier with zero N2O emission. Bioresour. Technol. 2016, 206, 9–15. [Google Scholar] [CrossRef]
- Zhang, M.; Lu, H.; Cai, L.; Sun, P.; Ma, B.; Li, J.; Chen, G.; Ruan, Y. C/N ratios inform sustainable aerobic denitrification for nitrogen pollution control: Insights into the key parameter from a view of metabolic division. J. Clean. Prod. 2023, 414, 137565. [Google Scholar] [CrossRef]
- Kong, D.; Li, W.; Deng, Y.; Ruan, Y.; Chen, G.; Yu, J.; Lin, F. Denitrification-potential evaluation and nitrate-removal-pathway analysis of aerobic denitrifier strain Marinobacter hydrocarbonoclasticus RAD-2. Water 2018, 10, 1298. [Google Scholar] [CrossRef]
- Duan, J.; Fang, H.; Su, B.; Chen, J.; Lin, J. Characterization of a halophilic heterotrophic nitrification–aerobic denitrification bacterium and its application on treatment of saline wastewater. Bioresour. Technol. 2015, 179, 421–428. [Google Scholar] [CrossRef]
- Jean, W.D.; Yeh, Y.T.; Huang, S.P.; Chen, J.S.; Shieh, W.Y. Spongiibacter taiwanensis sp. nov., a marine bacterium isolated from aged seawater. Int. J. Syst. Evol. Microbiol. 2016, 66, 4094–4098. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.-G.; Zhang, X.-J.; Wang, Z.-S. Temperature effect on aerobic denitrification and nitrification. J. Environ. Sci. 2003, 15, 669–673. [Google Scholar]
- Yang, L.; Wang, X.H.; Cui, S.; Ren, Y.X.; Yu, J.; Chen, N.; Xiao, Q.; Guo, L.K.; Wang, R.H. Simultaneous removal of nitrogen and phosphorous by heterotrophic nitrification-aerobic denitrification of a metal resistant bacterium Pseudomonas putida strain NP5. Bioresour. Technol. 2019, 285, 121360. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Li, X.; Fan, W.; Wang, J. Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. ND7 isolated from municipal activated sludge. Bioresour. Technol. 2020, 301, 122749. [Google Scholar] [CrossRef]
- Zheng, L.; Dong, Y.; Li, B.; Yin, T.; Liu, C.; Lin, H. Simultaneous removal of high concentrations of ammonia nitrogen and calcium by the novel strain Paracoccus denitrificans AC-3 with good environmental adaptability. Bioresour. Technol. 2022, 359, 127457. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Wang, H.; Ma, X.; Wang, C.; Wang, M.; Liu, Z.; Lu, M.; Cao, J.; Ke, X. Efficient nitrogen removal of a novel Pseudomonas chengduensis strain BF6 mainly through assimilation in the recirculating aquaculture systems. Bioresour. Technol. 2023, 379, 129036. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, Q.; Yang, X.; Wu, D.; Li, Y.; Di, H. Isolation and characteristics of two heterotrophic nitrifying and aerobic denitrifying bacteria, Achromobacter sp. strain HNDS-1 and Enterobacter sp. strain HNDS-6. Environ. Res. 2023, 220, 115240. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, L.; Sun, H.; Wang, W.; Yang, Y.; Qi, Z.; Liu, X. Ammonia assimilation: A double-edged sword influencing denitrification of Rhodobacter azotoformans and for nitrogen removal of aquaculture wastewater. Bioresour. Technol. 2022, 345, 126495. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Tang, Z.; Xia, S.; Jiang, Y.; Li, M.; Wang, B. The intrinsic relevance of nitrogen removal pathway to varying nitrate loading rate in a polycaprolactone-supported denitrification system. Biodegradation 2022, 33, 317–331. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.-X.; Lin, W.; Wang, S.-S.; Zhang, W.-X.; Jiang, Y.-M.; Zhang, Y.; Han, Y.-H. Full evaluation of assimilatory and dissimilatory nitrate reduction in a new denitrifying bacterium Leclercia adecarboxylata strain AS3-1: Characterization and functional gene analysis. Environ. Technol. Innov. 2021, 23, 101731. [Google Scholar] [CrossRef]
- Zhang, M.; Li, A.; Yao, Q.; Wu, Q.; Zhu, H. Nitrogen removal characteristics of a versatile heterotrophic nitrifyingaerobic denitrifying bacterium, Pseudomonas bauzanensis DN13-1, isolatedfrom deep-sea sediment. Bioresour. Technol. 2020, 305, 122626. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Chen, Y.; Yao, R.; Zheng, Z.; Du, Q. New insight into the nitrogen metabolism of simultaneous heterotrophic nitrification-aerobic denitrification bacterium in mRNA expression. J. Hazard. Mater. 2019, 371, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Hu, Y.; Qiu, G.; Liang, D.; Li, Y.; Cheng, J.; Chen, Y.; Wang, G.; Xie, J.; Zhu, X. Genomics and metabolic characteristics of simultaneous heterotrophic nitrification aerobic denitrification and aerobic phosphorus removal by Acinetobacter indicus CZH-5. Bioresour. Technol. 2024, 395, 130322. [Google Scholar] [CrossRef]
- Rout, P.R.; Bhunia, P.; Dash, R.R. Simultaneous removal of nitrogen and phosphorous from domestic wastewater using Bacillus cereus GS-5 strain exhibiting heterotrophic nitrification, aerobic denitrification and denitrifying phosphorous removal. Bioresour. Technol. 2017, 244, 484–495. [Google Scholar] [CrossRef]
- Yang, J.X.; Feng, L.; Pi, S.S.; Cui, D.; Ma, F.; Zhao, H.P.; Li, A. A critical review of aerobic denitrification: Insights into the intracellular electron transfer. Sci. Total Environ. 2020, 731, 139080. [Google Scholar] [CrossRef]
- Song, T.; Zhang, X.L.; Li, J.; Wu, X.Y.; Feng, H.X.; Dong, W.Y. A review of research progress of heterotrophic nitrification and aerobic denitrification microorganisms (HNADMs). Sci. Total Environ. 2021, 801, 149319. [Google Scholar] [CrossRef]
- Wu, S.Q.; Lv, N.; Zhou, Y.; Li, X.F. Simultaneous nitrogen removal via heterotrophic nitrification and aerobic denitrification by a novel Lysinibacillus fusiformis B301. Water Environ. Res. 2023, 95, e10850. [Google Scholar] [CrossRef]
- Zhang, W.; Shen, J.; Zhang, H.; Zheng, C.; Wei, R.; Gao, Y.; Yang, L. Efficient nitrate removal by Pseudomonas mendocina GL6 immobilized on biochar. Bioresour. Technol. 2021, 320, 124324. [Google Scholar] [CrossRef]
- Ruan, Y.J.; Taherzadeh, M.J.; Kong, D.D.; Lu, H.F.; Zhao, H.P.; Xu, X.Y.; Liu, Y.; Cai, L. Nitrogen removal performance and metabolic pathways analysis of a novel aerobic denitrifying halotolerant Pseudomonas balearica strain RAD-17. Microorganisms 2020, 8, 72. [Google Scholar] [CrossRef] [PubMed]
N Source Type | Initial N (mg/L) | Final N (mg/L) | N Assimilation Rate (%) a | Gaseous N (%) b | ||||||
---|---|---|---|---|---|---|---|---|---|---|
NO3−-N | NO2−-N | NH4+-N | Biological-N | NH4+-N | NO2−-N | NO3−-N | Biological-N | |||
NH4+-N | 0 | 0 | 92.60 ± 0.48 | 0.59 ± 0.04 | 3.62 ± 1.27 | 0.06 ± 0.04 | ND | 59.09 ± 4.03 | 63.2 ± 4.0 | 30.4 ± 4.1 |
NO2−-N | 0 | 100.01 ± 2.85 | 0 | 0.59 ± 0.04 | 13.15 ± 0.59 | 34.43 ± 4.68 | ND | 42.12 ± 1.90 | 41.5 ± 1.9 | 9.2 ± 2.2 |
NO3−-N | 98.80 ± 2.95 | 0 | 0 | 0.59 ± 0.04 | 13.76 ± 0.90 | 0.22 ± 0.07 | 1.51 ± 1.11 | 55.32 ± 3.65 | 55.4 ± 3.7 | 28.6 ± 5.6 |
Enzymes | Activity of Enzymes (U/mL) |
---|---|
Ammonia monooxygenase (AMO) | (11.0 ± 0.3) × 104 |
Hydroxylamine oxidoreductase (HAO) | (5.6 ± 0.2) × 104 |
Nitrate reductase (NAR) | 9.8 ± 1.0 |
Nitrite reductase (NIR) | 58.1 ± 3.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sui, X.; Wu, X.; Xiao, B.; Wang, C.; Tian, C. Denitrification Mechanism of Heterotrophic Aerobic Denitrifying Pseudomonas hunanensis Strain DC-2 and Its Application in Aquaculture Wastewater. Water 2024, 16, 1625. https://doi.org/10.3390/w16111625
Sui X, Wu X, Xiao B, Wang C, Tian C. Denitrification Mechanism of Heterotrophic Aerobic Denitrifying Pseudomonas hunanensis Strain DC-2 and Its Application in Aquaculture Wastewater. Water. 2024; 16(11):1625. https://doi.org/10.3390/w16111625
Chicago/Turabian StyleSui, Xinya, Xingqiang Wu, Bangding Xiao, Chunbo Wang, and Cuicui Tian. 2024. "Denitrification Mechanism of Heterotrophic Aerobic Denitrifying Pseudomonas hunanensis Strain DC-2 and Its Application in Aquaculture Wastewater" Water 16, no. 11: 1625. https://doi.org/10.3390/w16111625
APA StyleSui, X., Wu, X., Xiao, B., Wang, C., & Tian, C. (2024). Denitrification Mechanism of Heterotrophic Aerobic Denitrifying Pseudomonas hunanensis Strain DC-2 and Its Application in Aquaculture Wastewater. Water, 16(11), 1625. https://doi.org/10.3390/w16111625