Risk of Natural Hazards Caused by Extreme Precipitation in Poland in 1951–2020
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Temporal and Spatial Distribution of Precipitation (Pr) and Number of Days with Precipitation of ≥0.1 mm (NDPr)
3.2. Characteristics of Average Daily Precipitation (dPrx) and Absolute Maximum Daily Precipitation (dPrmax)
3.3. Trend of Daily Precipitation (dPr) and Extreme Daily Precipitation (EDPr)
3.4. Frequency of Extreme Daily Precipitation (EDPr)
3.5. Extreme Daily Precipitation (EDPr) Hazard Zones
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Květoň, V.; Žák, M. Extreme Precipitation Events in the Czech Republic in the Context of Climate Change. Adv. Geosci. 2008, 14, 251–255. [Google Scholar] [CrossRef]
- Światek, M. Precipitation Changes on the Polish Coast of the Baltic Sea (1954–2003) Due to Changes in Intensity of Westerlies over Europe. Clim. Res. 2011, 48, 23–29. [Google Scholar] [CrossRef]
- Jung, C.; Schindler, D. Precipitation Atlas for Germany (GePrA). Atmosphere 2019, 10, 737. [Google Scholar] [CrossRef]
- Ziernicka-Wojtaszek, A.; Kopcińska, J. Variation in Atmospheric Precipitation in Poland in the Years 2001–2018. Atmosphere 2020, 11, 794. [Google Scholar] [CrossRef]
- Kalbarczyk, R.; Kalbarczyk, E. Precipitation Variability, Trends and Regions in Poland: Temporal and Spatial Distribution in the Years 1951–2018. Acta Geogr. Slov. 2021, 61, 41–71. [Google Scholar] [CrossRef]
- Kao, S.-C.; Ganguly, A.R. Intensity, Duration, and Frequency of Precipitation Extremes under 21st-Century Warming Scenarios. J. Geophys. Res. 2011, 116, D16119. [Google Scholar] [CrossRef]
- Chu, H.-J.; Pan, T.-Y.; Liou, J.-J. Extreme Precipitation Estimation with Typhoon Morakot Using Frequency and Spatial Analysis. Terr. Atmos. Ocean. Sci. 2011, 22, 549–558. [Google Scholar] [CrossRef]
- Łupikasza, E.B.; Hänsel, S.; Matschullat, J. Regional and Seasonal Variability of Extreme Precipitation Trends in Southern Poland and Central-eastern Germany 1951–2006. Int. J. Climatol. 2011, 31, 2249–2271. [Google Scholar] [CrossRef]
- Mo, C.; Ruan, Y.; He, J.; Jin, J.; Liu, P.; Sun, G. Frequency Analysis of Precipitation Extremes under Climate Change. Int. J. Climatol. 2018, 39, 1373–1387. [Google Scholar] [CrossRef]
- Myhre, G.; Alterskjær, K.; Stjern, C.W.; Hodnebrog, Ø.; Marelle, L.; Samset, B.H.; Sillmann, J.; Schaller, N.; Fischer, E.; Schulz, M.; et al. Frequency of Extreme Precipitation Increases Extensively with Event Rareness under Global Warming. Sci. Rep. 2019, 9, 16063. [Google Scholar] [CrossRef]
- Pattnayak, K.C.; Awasthi, A.; Sharma, K.; Pattnayak, B.B. Fate of Rainfall Over the North Indian States in the 1.5 and 2°C Warming Scenarios. Earth Space Sci. 2023, 10, e2022EA002671. [Google Scholar] [CrossRef]
- Li, S.; Chen, Y.; Wei, W.; Fang, G.; Duan, W. The increase in extreme precipitation and its proportion over global land. J. Hydrol. 2024, 628, 130456. [Google Scholar] [CrossRef]
- Goswami, B.N.; Venugopal, V.; Sengupta, D.; Madhusoodanan, M.S.; Xavier, P.K. Increasing Trend of Extreme Rain Events Over India in a Warming Environment. Science 2006, 314, 1442–1445. [Google Scholar] [CrossRef] [PubMed]
- Łupikasza, E. Seasonal Patterns and Consistency of Extreme Precipitation Trends in Europe, December 1950 to February 2008. Clim. Res. 2017, 72, 217–237. [Google Scholar] [CrossRef]
- Rajczak, J.; Schär, C. Projections of Future Precipitation Extremes Over Europe: A Multimodel Assessment of Climate Simulations. J. Geophys. Res. Atmos. 2017, 122, 10773–10800. [Google Scholar] [CrossRef]
- Roxy, M.K.; Ghosh, S.; Pathak, A.; Athulya, R.; Mujumdar, M.; Murtugudde, R.; Terray, P.; Rajeevan, M. A Threefold Rise in Widespread Extreme Rain Events over Central India. Nat. Commun. 2017, 8, 708. [Google Scholar] [CrossRef] [PubMed]
- Darwish, M.M.; Fowler, H.J.; Blenkinsop, S.; Tye, M.R. A Regional Frequency Analysis of UK Sub-daily Extreme Precipitation and Assessment of Their Seasonality. Int. J. Climatol. 2018, 38, 4758–4776. [Google Scholar] [CrossRef]
- Yanagisawa, H.; Kazama, S.; Touge, Y. Spatial Frequency Analysis of Annual Extreme Daily Precipitation across Japan. J. Hydrol. Reg. Stud. 2022, 42, 101131. [Google Scholar] [CrossRef]
- Chinita, M.J.; Richardson, M.; Teixeira, J.; Miranda, P.M.A. Global Mean Frequency Increases of Daily and Sub-Daily Heavy Precipitation in ERA5. Environ. Res. Lett. 2021, 16, 074035. [Google Scholar] [CrossRef]
- Nissen, K.M.; Ulbrich, U. Increasing Frequencies and Changing Characteristics of Heavy Precipitation Events Threatening Infrastructure in Europe under Climate Change. Nat. Hazards Earth Syst. Sci. 2017, 17, 1177–1190. [Google Scholar] [CrossRef]
- Nuri Balov, M.; Altunkaynak, A. Frequency Analyses of Extreme Precipitation Events in Western Black Sea Basin (Turkey) Based on Climate Change Projections. Meteorol. Appl. 2019, 26, 468–482. [Google Scholar] [CrossRef]
- Cotterill, D.; Stott, P.; Christidis, N.; Kendon, E. Increase in the Frequency of Extreme Daily Precipitation in the United Kingdom in Autumn. Weather Clim. Extrem. 2021, 33, 100340. [Google Scholar] [CrossRef]
- Twardosz, R.; Niedźwiedź, T. Influence of Synoptic Situations on the Precipitation in Kraków (Poland). Int. J. Climatol. 2001, 21, 467–481. [Google Scholar] [CrossRef]
- Ustrnul, Z.; Czekierda, D. Circulation Background of the Atmospheric Precipitation in Central Europe (Based on the Polish Example). Meteorol. Z. 2001, 10, 103–111. [Google Scholar] [CrossRef]
- Twardosz, R. Analysis of Hourly Precipitation Characteristics in Kraków, Southern Poland, Using a Classification of Circulation Types. Hydrol. Res. 2009, 40, 553–563. [Google Scholar] [CrossRef]
- Wypych, A.; Ustrnul, Z.; Czekierda, D.; Palarz, A.; Sulikowska, A. Extreme Precipitation Events in the Polish Carpathians and Their Synoptic Determinants. Időjárás 2018, 122, 145–158. [Google Scholar] [CrossRef]
- Wibig, J.; Piotrowski, P. Impact of the Air Temperature and Atmospheric Circulation on Extreme Precipitation in Poland. Int. J. Climatol. 2018, 38, 4533–4549. [Google Scholar] [CrossRef]
- Araźny, A.; Bartczak, A.; Maszewski, R.; Krzemiński, M. The Influence of Atmospheric Circulation on the Occurrence of Dry and Wet Periods in Central Poland in 1954–2018. Theor. Appl. Climatol. 2021, 146, 1079–1095. [Google Scholar] [CrossRef]
- Babś, D.; Marcinowicz, R. Meteorologiczne uwarunkowania powodzi błyskawicznych w Gdańsku w 2018 roku. In Współczesne Problemy Klimatu Polski; Chojnacka-Ożga, L., Lorenc, H., Eds.; Seria Publikacji Naukowo-Badawczych IMGW-PIB; IMGW-PIB: Warsaw, Poland, 2019; pp. 164–171. ISBN 978-83-64979-33-0. (In Polish) [Google Scholar]
- Hosseinzadehtalaei, P.; Tabari, H.; Willems, P. Precipitation Intensity–Duration–Frequency Curves for Central Belgium with an Ensemble of EURO-CORDEX Simulations, and Associated Uncertainties. Atmos. Res. 2018, 200, 1–12. [Google Scholar] [CrossRef]
- Anli, A.S.; Apaydin, H.; Öztürk, F. Regional Frequency Analysis of the Annual Maximum Precipitation Observed in Trabzon Province. Tarim Bilim. Derg. 2009, 15, 240–248. (In Turkish) [Google Scholar] [CrossRef]
- Ma, S.; Zhou, T.; Dai, A.; Han, Z. Observed Changes in the Distributions of Daily Precipitation Frequency and Amount over China from 1960 to 2013. J. Clim. 2015, 28, 6960–6978. [Google Scholar] [CrossRef]
- Lorenc, H.; Cebulak, E.; Głowicki, B.; Kowalewski, M. Struktura występowania intensywnych opadów deszczu powodujących zagrożenie dla społeczeństwa, środowiska i gospodarki. In Klęski Żywiołowe a Bezpieczeństwo Wewnętrzne Kraju; Lorenc, H., Ed.; Seria Publikacji Naukowo-Badawczych IMGW-PIB; IMGW-PIB: Warsaw, Poland, 2012; pp. 7–32. ISBN 978-83-61102-67-0. (In Polish) [Google Scholar]
- Deng, Z.; Qiu, X.; Liu, J.; Madras, N.; Wang, X.; Zhu, H. Trend in Frequency of Extreme Precipitation Events over Ontario from Ensembles of Multiple GCMs. Clim. Dyn. 2016, 46, 2909–2921. [Google Scholar] [CrossRef]
- Li, Y.; Guo, B.; Wang, K.; Wu, G.; Shi, C. Performance of TRMM Product in Quantifying Frequency and Intensity of Precipitation during Daytime and Nighttime across China. Remote Sens. 2020, 12, 740. [Google Scholar] [CrossRef]
- Schaller, A.S.; Franke, J.; Bernhofer, C. Climate Dynamics: Temporal Development of the Occurrence Frequency of Heavy Precipitation in Saxony, Germany. Meteorol. Z. 2020, 29, 335–348. [Google Scholar] [CrossRef]
- Khan, S.A.; Hussain, I.; Hussain, T.; Faisal, M.; Muhammad, Y.S.; Mohamd Shoukry, A. Regional Frequency Analysis of Extremes Precipitation Using L-Moments and Partial L-Moments. Adv. Meteorol. 2017, 2017, 6954902. [Google Scholar] [CrossRef]
- Wartalska, K.; Kaźmierczak, B.; Nowakowska, M.; Kotowski, A. Precipitation Patterns for Modeling Land Drainage in Poland. Urban Water J. 2020, 17, 333–343. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Meusburger, K.; Spinoni, J.; Alewell, C.; Borrelli, P. Towards Estimates of Future Rainfall Erosivity in Europe Based on REDES and WorldClim Datasets. J. Hydrol. 2017, 548, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Bernhofer, C.; Frane, J. Aufbereitung Meteorologischer Daten für die Verwendung im Klimamodell im Rahmen des Projektes Neymo; Preparation of Meteorological Data for Use in the Climate Model as Part of the Neymo Project. Abschlussbericht. 2013, p. 75. Available online: https://slub.qucosa.de/api/qucosa%3A4637/attachment/ATT-0 (accessed on 25 April 2024). (In German).
- European Environment Agency. Climate Change Adaptation and Disaster Risk Reduction in Europe: Enhancing Coherence of the Knowledge Base, Policies and Practices; Luxembourg Publications Office of the European Union: Luxembourg, 2017; Volume 15, pp. 1–176. ISSN 1977-8449. [Google Scholar]
- Palharini, R.; Vila, D.; Rodrigues, D.; Palharini, R.; Mattos, E.; Undurraga, E. Analysis of Extreme Rainfall and Natural Disasters Events Using Satellite Precipitation Products in Different Regions of Brazil. Atmosphere 2022, 13, 1680. [Google Scholar] [CrossRef]
- Basumatary, V.; Sil, B. Generation of Rainfall Intensity-Duration-Frequency Curves for the Barak River Basin. Meteorol. Hydrol. Water Manag. 2017, 6, 47–57. [Google Scholar] [CrossRef]
- Lanciotti, S.; Ridolfi, E.; Russo, F.; Napolitano, F. Intensity–Duration–Frequency Curves in a Data-Rich Era: A Review. Water 2022, 14, 3705. [Google Scholar] [CrossRef]
- Takeleb, A.M.; Fajriani, Q.R.; Ximenes, M.A. Determination of Rainfall Intensity Formula and Intensity Duration Frequency (IDF) Curve at the Quelicai Administrative Post. Timor-Leste J. Eng. Sci. 2022, 3, 1–11. [Google Scholar]
- Sobik, M.; Błaś, M. Wyjątkowe zdarzenia meteorologiczne; Exceptional Meteorological Events. In Wyjątkowe Zdarzenia Przyrodnicze na Dolnym Śląsku i Ich Skutki; Migoń, P., Ed.; Rozprawy Naukowe IGiRR UWr; IGiRR UWr: Wrocław, Poland, 2010; Volume 14, pp. 35–80. ISBN 978-83-62673-00-1. (In Polish) [Google Scholar]
- Vörösmarty, C.J.; Bravo De Guenni, L.; Wollheim, W.M.; Pellerin, B.; Bjerklie, D.; Cardoso, M.; D’Almeida, C.; Green, P.; Colon, L. Extreme Rainfall, Vulnerability and Risk: A Continental-Scale Assessment for South America. Phil. Trans. R. Soc. A 2013, 371, 20120408. [Google Scholar] [CrossRef] [PubMed]
- Blenkinsop, S.; Alves, L.M.; Smith, A.J.P. ScienceBrief Review: Climate Change Increases Extreme Rainfall and the Chance of Floods. In Critical Issues in Climate Change Science; Quéré, C., Le Liss, P., Forster, P., Eds.; University of East Anglia: Norwich, UK, 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, C.-C.; Nguyen, D.V. Investigation of an Extreme Rainfall Event during 8–12 December 2018 over Central Vietnam—Part 1: Analysis and Cloud-Resolving Simulation. Nat. Hazards Earth Syst. Sci. 2023, 23, 771–788. [Google Scholar] [CrossRef]
- Bednorz, E. Opady atmosferyczne. In Atlas Klimatu Polski (1991–2020); Tomczyk, A.M., Bednorz, E., Eds.; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2022; pp. 93–103. ISBN 978-83-7986-415-7. (In Polish) [Google Scholar]
- Dobrowolski, A.; Czarnecka, H.; Ostrowski, J.; Zaniewska, M. Floods in Poland from 1946 to 2001—Origin, Territorial Extent and Frequency. In Proceedings of the Conference “Risks Caused by the Geodynamic Phenomena in Europe”, Wysowa, Poland, 20–22 May 2004; Volume 15, pp. 69–76. [Google Scholar]
- Kundzewicz, Z.W.; Szamałek, K.; Kowalczak, P. The Great Flood of 1997 in Poland. Hydrol. Sci. 1999, 44, 855–870. [Google Scholar] [CrossRef]
- Turlej, K.; Bartold, M.; Lewinski, S. Analysis of Extent and Effects Caused by the Flood Wave in May and June 2010 in the Vistula and Odra River Valleys. Geoinf. Issues 2010, 2, 49–57. [Google Scholar] [CrossRef]
- Climate of Poland 2022. IMGW-PIB. 2023. Available online: https://www.imgw.pl/sites/default/files/2023-07/climate-of-poland-2023_report.pdf (accessed on 5 June 2024).
- Ministerstwo Środowiska. Strategiczny Plan Adaptacji dla Sektorów i Obszarów Wrażliwych na Zmiany Klimatu do Roku 2020 z Perspektywą do Roku 2030 [A Strategic Plan for the Adaptation of Areas and Sectors Vulnerable to Climate Change by 2020, with the Prospect of 2030]; Ministerstwo Środowiska: Warsaw, Poland, 2013. Available online: https://bip.mos.gov.pl/strategie-plany-programy/strategiczny-plan-adaptacji-2020/ (accessed on 5 June 2024).
Hazard Level | Hazard Type | Criterium | Selected Effects of Activity * |
---|---|---|---|
I | Waterlogging | >30 mm/day | There are local floods of low-lying terrain and facilities. Standing water collects in the streets and on non-porous surfaces, erosion and surface run-off occur, pedestrian and road traffic disruptions take place. |
II | Threatening flood | >50 mm/day | Rainwater starts to form “streams” in certain places. There are surface floods of terrain and low-lying facilities. First considerable infrastructure damage in towns and villages occurs, ponds are formed on farmland, soil around tree roots is washed away, and there are possible mudslides. |
III | High flood risk | >70 mm/day | Water absorption by the ground is limited. Storm drains and sewer systems in cities do not manage to drain water. Torrents are formed on steeply sloping terrain, destroying everything in their way, soil under railway and tramway tracks is washed away and landslides and mudslides occur. |
IV | Catastrophic flood | >100 mm/day | Intense, uncontrolled flow of rainwater into rivers occurs. The area around watercourses is flooded and whole infrastructure elements are destroyed, including bridges. These are natural disasters during which people lose their lives. Help from organized rescue units is required. Care for victims from government administration bodies is necessary. |
Statistics | Month | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | |
frequency of days with precipitation (%) | 52.7 | 50.5 | 43.8 | 40.4 | 43.1 | 45.0 | 46.0 | 40.7 | 41.9 | 41.6 | 50.5 | 53.7 |
number of days with precipitation of ≥0.1 mm (day) | 14.6 | 13.9 | 17.4 | 17.8 | 17.6 | 16.5 | 16.7 | 18.3 | 17.4 | 18.1 | 14.8 | 14.3 |
Statistics | Month | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | |
Average (mm) | 2.2 | 2.2 | 2.6 | 3.3 | 4.7 | 5.6 | 6.2 | 5.7 | 4.5 | 3.6 | 2.9 | 2.6 |
Absolute maximum (mm) | 65.3 | 76.4 | 53.2 | 81.6 | 162.7 | 232.0 | 167.6 | 147.4 | 100.5 | 93.1 | 70.8 | 59.4 |
dPr (mm) | Month | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Jan. | Feb. | Mar. | Apr. | May. | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | |
n.s. | n.s. | n.s. | − *** | n.s. | n.s. | n.s. | n.s. | n.s. | + * | − *** | n.s. |
EDPr (mm/day) | Month | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | |
>30 | n.s. | − * | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | + *** | n.s. | n.s. | n.s. |
>50 | − ** | − ** | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | + *** | n.s. | − ** | n.s. |
>70 | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | + ** | n.s. | n.s. | n.s. |
>100 | n.s. | n.s. | n.s. | n.s. | + ** | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Natural Hazard Zone | Country’s Area | Average Sum of Days with Precipitation in the Spring–Summer Season (from March to August) | Average Sum Days with Precipitation in the Autumn–Winter Season (from September to February) | ||||||
---|---|---|---|---|---|---|---|---|---|
(%) | >30 mm | >50 mm | >70 mm | >100 mm | >30 mm | >50 mm | >70 mm | >100 mm | |
I—low | 25.0 | 50.2 | 8.0 | 1.7 | 0.1 | 9.8 | 0.7 | 0.2 | 0.0 |
II—medium | 62.5 | 70.9 | 12.3 | 2.7 | 0.3 | 13.4 | 1.3 | 0.2 | 0.0 |
III—high | 12.5 | 181.8 | 47.6 | 15.3 | 3.5 | 49.2 | 8.2 | 1.7 | 0.1 |
∑ or | 100.0 | 80.9 | 16.2 | 4.3 | 0.7 | 17.6 | 2.1 | 0.4 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalbarczyk, R.; Kalbarczyk, E. Risk of Natural Hazards Caused by Extreme Precipitation in Poland in 1951–2020. Water 2024, 16, 1705. https://doi.org/10.3390/w16121705
Kalbarczyk R, Kalbarczyk E. Risk of Natural Hazards Caused by Extreme Precipitation in Poland in 1951–2020. Water. 2024; 16(12):1705. https://doi.org/10.3390/w16121705
Chicago/Turabian StyleKalbarczyk, Robert, and Eliza Kalbarczyk. 2024. "Risk of Natural Hazards Caused by Extreme Precipitation in Poland in 1951–2020" Water 16, no. 12: 1705. https://doi.org/10.3390/w16121705
APA StyleKalbarczyk, R., & Kalbarczyk, E. (2024). Risk of Natural Hazards Caused by Extreme Precipitation in Poland in 1951–2020. Water, 16(12), 1705. https://doi.org/10.3390/w16121705